

Outline

The standard robustness framework

Hard IQCs: Circle criterion as paradigm example

General IQC theorem: Dynamic multipliers

Ramifications

Conclusions and outlook

Classical Control Loop

Classical multi-input multi-output feedback loop:

Saturation at plant input:

Are stability and performance preserved?

2/44

Classical Control Loop

View complicating block as uncertainty Δ :

Give names to input and output of Δ and disconnect:

Standard Configuration: Analysis

System with input w and output z compactly written as z = Mw:

$$w \longrightarrow M$$
 $z \rightarrow$

Original system obtained by reconnecting Δ as $w = \Delta(z)$:

Classical configuration of absolute stability and robust control!

4/44

Classical Control Loop

Saturation at plant input and delay at plant output:

Now rewrite with two uncertainties as

Standard Configuration: Analysis

After disconnecting uncertainties we get

C	1.	<u> </u>
σ	/4	+4

Motivation

This configuration is extremely **flexible**:

- *M* comprises information about specific control configuration
- Δ represents complicating elements or uncertainties
- Is MIMO loop: Can capture structured systems/uncertainties

Provides unified framework for developing theory/algorithms:

- Just one configuration for multitude of interconnections
- *M* typically is linear time-invariant system
- \triangle captured by input-output properties (abstraction)
- Highly modular

Example I

Time-varying uncertain system:

$$\dot{x}(t) = egin{pmatrix} -1 & 2\delta_1(t) \ -rac{1}{2+\delta_1(t)} & -0.1+3\delta_2(t) \end{pmatrix} x(t) ext{ with } |\delta_1(t)| \leq r, \ |\delta_2(t)| \leq r.$$

Can be written as nominal system

$$\dot{x}(t) \,=\, egin{pmatrix} -1 & 0 \ -.5 & -0.1 \end{pmatrix} x(t) + egin{pmatrix} 0 & 2 & 0 \ -.5 & -2 & 1.5 \end{pmatrix} egin{pmatrix} w_1(t) \ w_2(t) \end{pmatrix} x_2(t) \end{pmatrix} = egin{pmatrix} -.5 & -4 \ 0 & 1 \ 0 & 2 \end{pmatrix} x(t) + egin{pmatrix} -.5 & -2 & 1.5 \ 0 & 0 \ 0 \ \hline 0 & 1 \end{pmatrix} egin{pmatrix} w_1(t) \ w_2(t) \end{pmatrix} \end{pmatrix} \ egin{pmatrix} w_1(t) \ w_2(t) \end{pmatrix} x_2(t) \end{pmatrix} = egin{pmatrix} w_1(t) \ w_2(t) \end{pmatrix} x_2(t) \end{pmatrix} + egin{pmatrix} -.5 & -2 \ 0 & 0 \ \hline 0 & 0 \end{pmatrix} \end{pmatrix} x_2(t) \end{pmatrix} \end{pmatrix}$$

with the time-varying feedback gains

$$w_1(t) = \delta_1(t) z_1(t) \;\; ext{and} \;\; w_2(t) = \delta_2(t) z_2(t).$$

8/44

Example I

Time-varying uncertain system:

$$\dot{x}(t)=egin{pmatrix} -1&2\delta_1(t)\ -rac{1}{2+\delta_1(t)}&-0.1+3\delta_2(t) \end{pmatrix}x(t) ext{ with } |\delta_1(t)|\leq r, ext{ } |\delta_2(t)|\leq r.$$

Compactly expressed as a **nominal** linear system

$$\dot{x}=Ax+Bw, \;\; z=Cx+Dw$$

in feedback with the uncertainty

$$w = \Delta(z).$$

The uncertainty Δ is a system which takes the input signal z(.) into the output signal w(.) according to the law

$$w(t) = egin{pmatrix} \delta_1(t) & 0 & 0 \ 0 & \delta_1(t) & 0 \ \hline 0 & 0 & \delta_2(t) \end{pmatrix} z(t)$$

8/44

Nonlinear system

$$\dot{x}(t) = Ax(t) + B \operatorname{\mathsf{sat}}_{eta}(Cx(t))$$

with saturation function

$$\mathsf{sat}_{oldsymbol{eta}}(z) = \left\{egin{array}{cc} eta z & ext{for} & |z| \leq 1 \ eta \operatorname{sign}(z) & ext{for} & |z| > 1 \end{array}
ight.$$

Graphs of saturation functions:

Example II

Compactly described as feedback interconnection $\dot{x} = Ax + Bw \\ z = Cx
ightarrow ext{and} \quad w = \Delta(z)$

with Δ taking the input z(.) into the output w(.) as

$$w(t) = \operatorname{sat}_{\beta}(z(t)).$$

Question of absolute stability theory:

Is loop stable for all

$$w(t) = \varphi(z(t))$$

with a static nonlinearity φ which satisfies the sector condition

 $arphi(z)(eta z-arphi(z))\geq 0 \ \ ext{for} \ \ z\in \mathbb{R}.$

9/44

Outline

The standard robustness framework

Hard IQCs: Circle criterion as paradigm example

General IQC theorem: Dynamic multipliers

Ramifications

Conclusions and outlook

10/44

Setup

Classical feedback interconnection with **linear system** in forward path and **uncertainty** in feedback path.

• Linear system **nominally stable**:

All eigenvalues of A are in open left-half plane.

Transfer matrix denoted as $M(s) = C(sI - A)^{-1}B + D$.

Uncertainty △ very general. Diagonal combination of systems:
 Linear, nonlinear, dynamic, infinite-dimensional, …

Notion of Stability

Interconnection is **stable** if the trajectory of

$$egin{array}{lll} \dot{x} &= Ax + Bw, & x(0) = x_0 \ z &= Cx + Dw \end{array}
ight\} ext{ and } w = \Delta(z) \end{array}$$

for any initial condition x_0 generates signal w(.) of finite energy:

$$\|w\|^2:=\int_0^\infty w(t)^Tw(t)\,dt<\infty.$$

Can then infer that x(.) and z(.) are of finite energy and

$$\lim_{t o\infty}x(t)=0.$$

Remark. With $d(t) = Ce^{At}x_0$ the interconnection is equivalent to

$$egin{array}{lll} \dot{x}&=Ax+Bw, & x(0)=0\ z&=Cx+Dw+d \end{array}
ight\} ext{ and } w=\Delta(z). \end{array}$$

11/44

Example: Sector Bounded Nonlinearity

Sector bounded Lipschitz nonlinearity:

 $arphi(z)(eta z-arphi(z))\geq 0 ~~ ext{for}~~ z\in \mathbb{R}.$

Example: Sector Bounded Nonlinearity

Sector bounded Lipschitz nonlinearity:

$$arphi(z)(eta z-arphi(z))\geq 0 \ \ ext{for} \ \ z\in \mathbb{R}.$$

This can be also expressed as

$$egin{pmatrix} z \ arphi(z) \end{pmatrix}^T egin{pmatrix} 0 & 1 \ 1 & -rac{2}{eta} \end{pmatrix} egin{pmatrix} z \ arphi(z) \end{pmatrix} \geq 0$$

for all $z \in \mathbb{R}$.

Circle Criterion

Loop stability guaranteed by frequency domain inequality (FDI)

$$\left(egin{array}{c} M(i\omega) \ 1 \end{array}
ight)^* \left(egin{array}{c} 0 & 1 \ 1 & -rac{2}{eta} 1 \end{array}
ight) \left(egin{array}{c} M(i\omega) \ 1 \end{array}
ight) \prec 0 \ \ \mbox{for all} \ \ \omega \in [0,\infty].$$

Often expressed as $\operatorname{Re}(M(i\omega)) < \frac{1}{\beta}$ or $\operatorname{Re}(1 - \beta M(i\omega)) > 0$ for all ω .

13/44

Intermezzo: KYP Lemma

Let T be a real rational transfer matrix with realization

$$T(s)=C(sI-A)^{-1}B+D$$
 where $ext{eig}(A)\cap i\mathbb{R}=\emptyset.$

Strict Kalman-Yakubovich-Popov Lemma

For any real matrix $P = P^T$ the following statements are equivalent:

• The following frequency domain inequality holds:

$$T(i\omega)^* PT(i\omega) \prec 0$$
 for all $\omega \in [0,\infty]$.

• There exists some $X = X^T$ that satisfies the LMI

$$\begin{array}{c} A^T X + X A X B \\ B^T X & 0 \end{array} \right) + \left(\begin{array}{c} C \end{array} D \right)^T P \left(\begin{array}{c} C \end{array} D \right) \prec 0. \end{array}$$

Many different formulations exist in literature. This seems the cleanest.

Dissipation Proof: Circle Criterion

Recall FDI

$$\left(\begin{array}{c}M(i\omega)\\1\end{array}\right)^*\left(\begin{array}{c}0&1\\1&-\frac{2}{\beta}1\end{array}\right)\left(\begin{array}{c}M(i\omega)\\1\end{array}\right)\prec 0 \ \text{ for all } \ \omega\in[0,\infty].$$

Obtain realization

$$egin{pmatrix} M(s)\ 1 \end{pmatrix} = egin{pmatrix} C\ 0 \end{pmatrix} (sI-A)^{-1}B + egin{pmatrix} D\ 1 \end{pmatrix} \ \ ext{with} \ \ ext{eig}(A) \subset \mathbb{C}^-.$$

KYP Lemma: FDI implies existence of $X = X^T$ with

$$\begin{pmatrix} A^T \frac{X}{X} + \frac{X}{A} \frac{X}{A} B\\ B^T \frac{X}{X} & 0 \end{pmatrix} + \begin{pmatrix} C & D\\ 0 & 1 \end{pmatrix}^T \begin{pmatrix} 0 & 1\\ 1 & -\frac{2}{\beta} \end{pmatrix} \begin{pmatrix} C & D\\ 0 & 1 \end{pmatrix} \prec 0.$$

Left-upper block reads as $A^T X + X A \prec 0$ and hence $X \succ 0$.

15/44

16/44

|z|

Dissipation Proof: Circle Criterion

Trajectories of interconnection satisfy

$$w(t) = \varphi(z(t))$$

$$\dot{x}(t) = Ax(t) + Bw(t), \ x(0) = x_0$$

$$\begin{pmatrix} z(t) \\ w(t) \end{pmatrix} = \begin{pmatrix} C & D \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \end{pmatrix}$$

$$w \longrightarrow M$$

Perturb LMI: There exists some $\varepsilon > 0$ with

$$\begin{pmatrix} A^T X + X A X B \\ B^T X & 0 \end{pmatrix} + \begin{pmatrix} C D \\ 0 1 \end{pmatrix}^T \begin{pmatrix} 0 & 1 \\ 1 & -\frac{2}{\beta} + \varepsilon \end{pmatrix} \begin{pmatrix} C D \\ 0 & 1 \end{pmatrix} \prec 0.$$

Along trajectory get for all $t \ge 0$:

$$\dot{x}(t)^T oldsymbol{X} x(t) + x(t)^T oldsymbol{X} \dot{x}(t) + \left(egin{array}{c} z(t) \ w(t) \end{array}
ight)^T \left(egin{array}{c} 0 & 1 \ 1 & -rac{2}{eta} + oldsymbol{arepsilon} \end{array}
ight) \left(egin{array}{c} z(t) \ w(t) \end{array}
ight) \leq 0.$$

Dissipation Proof: Circle Criterion

Trajectories of interconnection satisfy

Perturb LMI: There exists some $\varepsilon > 0$ with

$$\begin{pmatrix} A^T X + X A X B \\ B^T X & 0 \end{pmatrix} + \begin{pmatrix} C D \\ 0 & 1 \end{pmatrix}^T \begin{pmatrix} 0 & 1 \\ 1 & -\frac{2}{\beta} + \varepsilon \end{pmatrix} \begin{pmatrix} C D \\ 0 & 1 \end{pmatrix} \prec 0.$$

Along trajectory get for all $t \ge 0$:

$$rac{d}{dt}x(t)^T X x(t) + oldsymbol{arepsilon}\,w(t)^T w(t) + \left(egin{array}{c} z(t) \ w(t) \end{array}
ight)^T \left(egin{array}{c} 0 & 1 \ 1 & -rac{2}{eta} \end{array}
ight) \left(egin{array}{c} z(t) \ w(t) \end{array}
ight) \leq 0.$$

Dissipation Proof: Circle Criterion

Integration on [0, T] implies for all T > 0:

$$egin{aligned} & x(T)^T oldsymbol{X} x(T) - x_0^T oldsymbol{X} x_0 + \int_0^T oldsymbol{arepsilon} w(t)^T w(t) \, dt + \ & + \int_0^T \left(egin{aligned} & z(t) \ & w(t) \end{array}
ight)^T \left(egin{aligned} & 0 & 1 \ & 1 & -rac{2}{eta} \end{array}
ight) \left(egin{aligned} & z(t) \ & w(t) \end{array}
ight) \, dt \leq 0. \end{aligned}$$

Exploit $w(t) = \varphi(z(t))$ and sector condition to infer for all T > 0: $\int_{0}^{T} \begin{pmatrix} z(t) \\ w(t) \end{pmatrix}^{T} \begin{pmatrix} 0 & 1 \\ 1 & -\frac{2}{\beta} \end{pmatrix} \begin{pmatrix} z(t) \\ w(t) \end{pmatrix} dt \ge 0.$

We hence infer for all T > 0:

$$x(T)^T {oldsymbol X} x(T) + \int_0^T {oldsymbol arepsilon} \, w(t)^T w(t) \, dt \leq x_0^T {oldsymbol X} x_0.$$

Since
$$X \succ 0$$
 we get stability: $\int_0^\infty w(t)^T w(t) \, dt \leq \frac{1}{\varepsilon} x_0^T X x_0 < \infty.$

16/44

Hard IQC-Theorem

Let
$$\Delta$$
 satisfy the hard Integral Quadratic Constraint (IQC)

for any input z(.) and uncertainty output $w = \Delta(z)$.

Hard IQC Theorem. Stability is guaranteed if the LMI

$$\begin{pmatrix} A^T X + XA XB \\ B^T X & 0 \end{pmatrix} + \begin{pmatrix} C D \\ 0 I \end{pmatrix}^T P \begin{pmatrix} C D \\ 0 I \end{pmatrix} \prec 0.$$

does have a solution $X \succ 0$.

Example I+II

Time-varying uncertain system saturated system:

$$\dot{x}(t) = \begin{pmatrix} -1 & 2\delta_1(t) \\ -\frac{1}{2+\delta_1(t)} & -0.1+3\delta_2(t) \end{pmatrix} x(t) + \begin{pmatrix} \mathsf{sat}_\beta(x_1(t)) \\ 0 \end{pmatrix}.$$

Rewrite as linear system

$$\dot{x}(t) = \underbrace{\begin{pmatrix} -1 & 0 \\ -.5 & -0.1 \end{pmatrix}}_{A} x(t) + \underbrace{\begin{pmatrix} 0 & 2 & 0 & | & 1 \\ -.5 & -2 & | & 1.5 & | & 0 \end{pmatrix}}_{B} \begin{pmatrix} w_1(t) \\ w_2(t) \\ w_3(t) \end{pmatrix}$$
$$\begin{pmatrix} z_1(t) \\ z_2(t) \\ z_3(t) \end{pmatrix} = \underbrace{\begin{pmatrix} -.5 & -4 \\ 0 & 1 \\ \hline 0 & 2 \\ \hline 1 & 0 \end{pmatrix}}_{C} x(t) + \underbrace{\begin{pmatrix} -.5 & -2 & | & 1.5 & | & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \end{array}} \begin{pmatrix} w_1(t) \\ w_2(t) \\ w_3(t) \end{pmatrix}$$

in feedback with

$$w_1(t) = \delta_1(t) z_1(t), \ \ w_2(t) = \delta_2(t) z_2(t) \ \ ext{and} \ \ w_3(t) = ext{sat}_eta(z_3(t)).$$

17/44

18/44

If $|\delta_1(t)| \leq r$ and $|\delta_2(t)| \leq r$ the trajectories with

 $w_1(t)=\delta_1(t)z_1(t), \;\; w_2(t)=\delta_2(t)z_2(t) \;\; ext{and} \;\; w_3(t)= ext{sat}_eta(z_3(t))$

satisfy the hard IQC

$$\int_{0}^{T}egin{pmatrix} z_{1}(t)\ z_{2}(t)\ z_{3}(t)\ w_{1}(t)\ w_{2}(t)\ w_{3}(t) \end{pmatrix}^{T} egin{pmatrix} D & 0 & 0 & rac{1}{r}G & 0 & 0 & 0 \ 0 & d & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & h & \ rac{1}{r}G^{T} & 0 & 0 & -rac{1}{r^{2}}D & 0 & 0 & \ rac{1}{r^{2}}G^{T} & 0 & 0 & -rac{1}{r^{2}}d & 0 & \ 0 & 0 & 0 & 0 & -rac{1}{r^{2}}d & 0 & \ rac{1}{w_{3}(t)}\end{pmatrix} dt \geq 0$$

in case that

 $D \succ 0$, $G + G^T = 0$ and d > 0 and h > 0.

Is a **routine** combination of static D/G-scalings and sector condition.

18/44

Example I+II

Test whether there exists a **multiplier** P in above class such that

$$X \succ 0, \quad \begin{pmatrix} A^T X + X A X B \\ B^T X 0 \end{pmatrix} + \begin{pmatrix} C D \\ 0 I \end{pmatrix}^T P \begin{pmatrix} C D \\ 0 I \end{pmatrix} \prec 0.$$

- Is standard LMI problem. Very easy to implement e.g. via Yalmip.
- If answer is yes we have guaranteed stability.
- If answer is no the test might be conservative.

Can use full block multipliers for (often drastic) improvements!

Old and recently emerging again: Can work with time-varying P(t) structured as above and find solution $X(t) \gg 0$ of the differential LMI

$$egin{pmatrix} \dot{X}(t)+A^TX(t)+X(t)A \ X(t)B \ B^TX(t) \ 0 \ \end{pmatrix} + egin{pmatrix} C \ D \ 0 \ I \ \end{pmatrix}^T P(t) egin{pmatrix} C \ D \ 0 \ I \ \end{pmatrix} \ll 0. \end{split}$$

Large Variety of Techniques

- Input-Output Approach
 - Small-gain, passivity, conic separation (Zames)
 - Topological separation (Safonov)
 - Stability multipliers (Desoer, Vidyasagar)
 - Integral quadratic constraints (Megretski, Rantzer)
- Dissipativity Approach
 - Absolute stability (Popov, Yakubovich, Brockett, J.L. Willems)
 - Theory of dissipative dynamical systems (J.C. Willems)
 - Abundance of LMI results in literature

Linked through Kalman-Yakubovich-Popov Lemma.

A long-standing gap was closed only recently!

20/44

General Framework

- Exhibits general principle behind huge variety of stability tests:
 - to handle structured uncertainties in robust control
 - allowing general **operator** uncertainties
 - for **networked** interconnected systems
- Extends seamlessly to **performance**
- Basis for robust and LPV synthesis
 Controller transformation or elimination
- Various extensions tricky:
 Popov, Yakubovich, delays

Trouble: Does not work for much more powerful dynamic IQCs!

Outline

The standard robustness framework

Hard IQCs: Circle criterion as paradigm example

General IQC theorem: Dynamic multipliers

Ramifications

Conclusions and outlook

Example III

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} {\sf sat}_eta(x_1(t))\ 0 \end{array}
ight), \ \ \delta\in[0,r].$$

Reduce conservatism with **frequency-dependent** D/G scalings for δ . Reduce conservatism with **Zames-Falb multiplier** for sat_{β}.

Recall that L_2 denotes the set of **finite energy** signals on $[0,\infty)$: $||x||^2 := \int_0^\infty x(t)^T x(t) \, dt < \infty.$

Such signals have a Fourier transform denoted as \hat{x} .

Uncertainties are assumed to be stable in the following sense:

$$z \in L_2$$
 implies $\Delta(z) \in L_2$.

For $z\in L_2$ it makes sense to consider \hat{w} for $w=\Delta(z).$

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} { extstyle { extstyle$$

Reduce conservatism with **frequency-dependent** D/G scalings for δ .

Suppose the transfer matrix H has no poles in $i\mathbb{R}$ and satisfies $H(i\omega)^* + H(i\omega) \succ 0$ for $\omega \in [0,\infty]$. For $\delta \in [0,r]$ and $w(t) = \delta z(t)$ with $z \in L_2$ we have $\int_{-\infty}^{\infty} \left(egin{array}{c} \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight)^{st} \left(egin{array}{c} 0 & H(i\omega)^{st} \ H(i\omega)^{st} & H(i\omega)^{st} \ H(i\omega)^{st} + H(i\omega) \end{bmatrix}
ight) \left(egin{array}{c} \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight) \, d\omega \geq 0.$

This is a **frequency-domain** IQC. Looks bombastic but is a triviality!

23/44

Why?

Clearly $w(t) = \delta z(t)$ implies $\hat{w}(i\omega) = \delta \hat{z}(i\omega)$. Then observe

$$egin{aligned} & \left(egin{aligned} & \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight)^* & \left(egin{aligned} & 0 & H(i\omega)^* \ H(i\omega) & -rac{1}{r}[H(i\omega)^* + H(i\omega)] \end{array}
ight) & \left(egin{aligned} & \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight) = \ & = \hat{z}(i\omega)^* \left(egin{aligned} & I \ \delta I \end{array}
ight)^T \left(egin{aligned} & 0 & H(i\omega)^* \ H(i\omega)^* + H(i\omega)] \end{array}
ight) & \left(egin{aligned} & I \ \delta I \end{array}
ight) \hat{z}(i\omega) = \ & = \hat{z}(i\omega)^* \left[[H(i\omega)^* + H(i\omega)] \, \delta \left(1 - rac{1}{r} \delta
ight)
ight] \hat{z}(i\omega) \geq 0. \end{aligned}$$

Integration over frequency gives IQC.

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} {\sf sat}_eta(x_1(t))\ 0 \end{array}
ight), \ \ \delta\in[0,r].$$

Reduce conservatism with **Zames-Falb multiplier** for sat_{β} .

Let
$$h(i\omega) := g - \hat{f}(i\omega)$$
 and the inverse Fourier transform of f satisfy
 $f(t) \ge 0$ and $\int_{-\infty}^{\infty} f(t) dt < g$.
Then $w(t) = \operatorname{sat}_{\beta}(z(t))$ with $z \in L_2$ satisfies
 $\int_{-\infty}^{\infty} \begin{pmatrix} \hat{z}(i\omega) \\ \hat{w}(i\omega) \end{pmatrix}^* \begin{pmatrix} 0 & h(i\omega)^* \\ h(i\omega) & -\frac{1}{\beta}[h(i\omega)^* + h(i\omega)] \end{pmatrix} \begin{pmatrix} \hat{z}(i\omega) \\ \hat{w}(i\omega) \end{pmatrix} d\omega \ge 0.$

Classical but not obvious. Not so well-known that it's due to convexity!

25/44

Key Ideas of Proof

The potential $V(x) := \int_0^x \operatorname{sat}_{\beta}(z) dz$ is **convex** since $\operatorname{sat}_{\beta}$ is monotone.

The standard subgradient inequality from convex analysis implies

$$V'(x)\,(x-y)\geq V(x)-V(y)$$
 for all $x,y\in\mathbb{R}.$

Since $w(t) = \mathsf{sat}_{\beta}(z(t))$ we hence get for all $t, \tau \in \mathbb{R}$:

$$w(t)\left(z(t)-z(t- au)
ight)\geq V(z(t))-V(z(t- au)).$$

Since z has finite energy we infer

$$\int_{-\infty}^\infty w(t)\left(z(t)-z(t- au)
ight)\,dt\geq 0.$$

Since $f(au) \geq$ 0 and $g > \int_{-\infty}^{\infty} f(au) \, d au$ we get

$$\int_{-\infty}^\infty w(t) \, \left(g z(t) - \int_{-\infty}^\infty f(au) z(t- au) \, d au
ight) \, dt \geq 0.$$

Parseval gives the IQC for $\beta = \infty$:

$$\int_{-\infty}^\infty \hat{w}(i\omega)^*\, m{h}(i\omega) \hat{z}(i\omega)\, d\omega \geq 0.$$

Parametrization of Multipliers

With any stable transfer matrix ψ one parameterizes H as $H = \psi^* Q \psi$ with a real matrix Q.

Example. If H is SISO and

we get

$$\psi^* Q \psi = q_{31} rac{1}{(1-s)^2} + rac{q_{21}}{1-s} + rac{q_{11}}{1+s} + rac{q_{12}}{1+s} + rac{q_{31}}{1+s} rac{1}{(1+s)}.$$

27/44

Parametrization of Multipliers

With any stable transfer matrix ψ one parameterizes H as $H = \psi^* Q \psi$ with a real matrix Q.

Observe that we directly obtain

$$egin{pmatrix} 0 & H^* \ H & -rac{1}{r}[H^*+H] \ \end{pmatrix} = egin{pmatrix} \psi & -rac{1}{r}\psi \ 0 & \psi \ \end{pmatrix}^* \underbrace{egin{pmatrix} 0 & Q^T \ Q & 0 \ \end{pmatrix}}_P \underbrace{egin{pmatrix} \psi & -rac{1}{r}\psi \ 0 & \psi \ \end{pmatrix}}_\Psi.$$

This motivates that multipliers in IQC theory are often described as $\Psi^* P \Psi$

with a fixed stable dynamic filter Ψ and a real symmetric structured matrix variable P that is contained in a convex set described by LMIs.

IQC-Theorem

For any
$$z \in L_2$$
 let $w = \Delta(z) \in L_2$ depend **causally** on z and satisfy $\int_{-\infty}^{\infty} \left(\begin{array}{c} \hat{z}(i\omega) \\ \hat{w}(i\omega) \end{array} \right)^* \Psi(i\omega)^* P \Psi(i\omega) \left(\begin{array}{c} \hat{z}(i\omega) \\ \hat{w}(i\omega) \end{array} \right) d\omega \geq 0.$

IQC Theorem. Stability is guaranteed if
$$\binom{M(i\omega)}{I}^* \Psi(i\omega)^* \mathcal{P}\Psi(i\omega) \binom{M(i\omega)}{I} \prec 0 \text{ for all } \omega \in [0,\infty]$$

and the multiplier is positive/negative.

Variant of Megretski, Rantzer (97)

28/44

Dissipation Proof

Stability FDI:

$$\binom{M(i\omega)}{I}^{*}\Psi(i\omega)^{*}P\Psi(i\omega)\begin{pmatrix}M(i\omega)\\I\end{pmatrix} \prec 0 \text{ for all } \omega \in [0,\infty].$$

With minimal realization $\Psi = \left(\Psi_1 \ \Psi_2 \right) = \left[\begin{array}{c|c} A_{\Psi} & B_{\Psi 1} & B_{\Psi 2} \\ \hline C_{\Psi} & D_{\Psi 1} & D_{\Psi 2} \end{array} \right]$ get

$$\Psiigg(egin{array}{c} M\ I \end{array}igg) = egin{bmatrix} A_\Psi & B_{\Psi 1}C & B_{\Psi 1}D + B_{\Psi 2}\ 0 & A & B\ \hline C_\Psi & D_{\Psi 1}C & B_{\Psi 1}D + B_{\Psi 2} \end{bmatrix} =: egin{bmatrix} A_f & B_f\ \hline C_f & D_f \end{bmatrix}, \ \ \sigma(A_f) \subset \mathbb{C}^-.$$

KYP Lemma: Stability FDI implies existence of $X = X^T$ with $\begin{pmatrix} A_f^T X + X A_f \ X B_f \\ B_f^T X & 0 \end{pmatrix} + \begin{pmatrix} C_f \ D_f \end{pmatrix}^T P \begin{pmatrix} C_f \ D_f \end{pmatrix} \prec 0.$

Dissipation Proof

Literally as in the static case we get dissipation inequality for T > 0:

$$egin{aligned} &ig(egin{aligned} x_\psi(T)\ x(T) \end {aligned} ^T X &ig(egin{aligned} x_\psi(T)\ x(T) \end {aligned} \end{pmatrix} &- ig(egin{aligned} x_\psi(0)\ x_0 \end {aligned} \end{pmatrix}^T X &ig(egin{aligned} x_\psi(0)\ x_0 \end {aligned} \end{pmatrix} + \ &+ \int_0^T oldsymbol{arepsilon} w(t)^T w(t) \,dt + \int_0^T y(t)^T oldsymbol{P} y(t) \,dt \leq 0. \end{aligned}$$

Trouble: Neither $X \succ 0$ nor $\int_0^T y(t)^T P y(t) dt \ge 0$ are true any more!

30/44

Technical Result

Theorem. The FDIs

$$\binom{M}{I}^{*}\Psi^{*}P\Psi\binom{M}{I} \stackrel{i\mathbb{R}}{\prec} 0 \text{ and } \Psi_{1}^{*}P\Psi_{1} \stackrel{i\mathbb{R}}{\succ} 0$$

guarantee the existence of stabilizing solution Z of ARE

$$egin{aligned} &A_{\Psi}^Toldsymbol{Z}+oldsymbol{Z}A_{\Psi}+C_{\Psi}^Toldsymbol{P}C_{\Psi}-\ &-(oldsymbol{Z}B_{\Psi}+C_{\Psi}^Toldsymbol{P}D_{\Psi})(D_{\Psi}^Toldsymbol{P}D_{\Psi})^{-1}(B_{\Psi}^Toldsymbol{Z}+D_{\Psi}^Toldsymbol{P}C_{\Psi})=0. \end{aligned}$$

Moreover, all solutions $X = X^T$ of

Τ

$$\begin{pmatrix} A_f^T \boldsymbol{X} + \boldsymbol{X} A_f \ \boldsymbol{X} B_f \\ B_f^T \boldsymbol{X} & 0 \end{pmatrix} + \begin{pmatrix} C_f \ D_f \end{pmatrix}^T \boldsymbol{P} \begin{pmatrix} C_f \ D_f \end{pmatrix} \prec 0$$

satisfy the coupling condition $X - \begin{pmatrix} Z & 0 \\ 0 & 0 \end{pmatrix} \succ 0$.

Special case: Seiler (15), Veenman, S (13) General case: S, Veenman (18)

Consequences for Uncertainty

It is routine (Parseval) that the IQC

$$\int_{-\infty}^{\infty} \left(egin{array}{c} \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight)^{*} \Psi(i\omega)^{*} P \Psi(i\omega) \left(egin{array}{c} \hat{z}(i\omega) \ \hat{w}(i\omega) \end{array}
ight) d\omega \geq 0$$

translates for $y = \Psi \begin{pmatrix} z \\ w \end{pmatrix}$ into the **infinite horizon** time-domain IQC

$$\int_0^T y(t)^T {oldsymbol P} y(t) \, dt + \int_T^\infty y(t)^T {oldsymbol P} y(t) \, dt \geq 0.$$

Theorem. Suppose the multiplier also satisfies

$$\Psi_2^* \mathbb{P} \Psi_2 \stackrel{i\mathbb{R}}{\preccurlyeq} 0.$$

Then the following finite horizon IQC with terminal cost holds:

$$\int_0^T y(t)^T {m P} y(t) \, dt + x_\Psi(T)^T {m Z} x_\Psi(T) \geq 0 \hspace{3mm} ext{for all} \hspace{3mm} T \geq 0.$$

Special case: Pfifer, Seiler (16) General case: S, Veenman (18)

32/44

Dissipation Proof

Recall dissipation inequality for T > 0:

$$egin{aligned} & \left(egin{aligned} x_\psi(T) \ x(T) \end{array}
ight)^T & \left(egin{aligned} x_\psi(0) \ x(T) \end{array}
ight)^T & \left(egin{aligned} x_\psi(0) \ x_0 \end{array}
ight)^T & X & \left(egin{aligned} x_\psi(0) \ x_0 \end{array}
ight) + \ & + \int_0^T oldsymbol{arepsilon} w(t)^T w(t) \, dt + \int_0^T y(t)^T oldsymbol{P} y(t) \, dt \leq 0. \end{aligned}$$

Combined with finite horizon IQC we get for T > 0:

$$egin{aligned} & \left(egin{aligned} x_\psi(T) \ x(T) \end{array}
ight)^T & \left[egin{aligned} X - \left(egin{aligned} Z & 0 \ 0 & 0 \end{array}
ight) & \left(egin{aligned} x_\psi(T) \ x(T) \end{array}
ight) - \left(egin{aligned} x_\psi(0) \ x_0 \end{array}
ight)^T & \left(egin{aligned} x_\psi(0) \ x_0 \end{array}
ight) + \ & + \int_0^T oldsymbol{arepsilon} w(t)^T w(t) \, dt \leq 0. \end{aligned}$$

Dissipation Proof

Conclusions: For all x_0 infer that $w \in L_2$ (stability) and T > 0: $\begin{pmatrix} x_{\psi}(T) \\ x(T) \end{pmatrix}^T \begin{bmatrix} X - \begin{pmatrix} Z & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} x_{\psi}(T) \\ x(T) \end{pmatrix} \leq \begin{pmatrix} x_{\psi}(0) \\ x_0 \end{pmatrix}^T \begin{pmatrix} x_{\psi}(0) \\ x_0 \end{pmatrix}$

Dissipation proof of IQC theorem for positive/negative multipliers:

$$\Psi^* {m P} \Psi = \left(egin{array}{cc} arphi & \mathbf{0} & \mathbf{*} \ \mathbf{*} & \preccurlyeq \mathbf{0} \end{array}
ight)$$

Recently handled general case and multi-valued uncertainties.

S, Veenman (18), S, Holicki (18)

- Benefit: Absolute stability criteria imply hard time-domain constraints!
 Fetzer, S, Veenman (18)
- Permits to routinely merge IQC stability results with a multitude of existing time-domain dissipation constraints.

34/44

Geralization of IQC Theorem

New IQC Theorem

• Let \triangle satisfy a finite-horizon IQC with terminal cost Z:

$$\int_0^T y(t)^T {m P} y(t) \, dt + x_\Psi(T)^T {m Z} x_\Psi(T) \geq 0 \hspace{3mm} ext{for all} \hspace{3mm} T \geq 0$$

holds along all filtered trajectories $y = \Psi \left(egin{array}{c} z \ \Delta(z) \end{array}
ight).$

Let there exists a solution X of

$$\left(egin{array}{c} A_f^T oldsymbol{X} + oldsymbol{X} A_f \ oldsymbol{X} B_f \ oldsymbol{B}_f^T oldsymbol{X} & 0 \end{array}
ight) + \left(egin{array}{c} C_f \ D_f \end{array}
ight)^T oldsymbol{P} \left(egin{array}{c} C_f \ D_f \end{array}
ight) \prec 0$$

that satisfies $X - \begin{pmatrix} Z & 0 \\ 0 & 0 \end{pmatrix} \succ 0$.

Then the above **conclusions** can be drawn.

No additional assumptions whatsoever required!

S, Veenman (18)

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} { extstyle { extstyle$$

Rewrite as linear system

$$\dot{x}(t) = \underbrace{\begin{pmatrix} -1 & 0 \\ -.5 & -0.1 \end{pmatrix}}_{A} x(t) + \underbrace{\begin{pmatrix} 0 & 2 & | 1 \\ -.5 & -2 & | 0 \end{pmatrix}}_{B} \begin{pmatrix} w_1(t) \\ w_2(t) \end{pmatrix}_{B}$$
 $\begin{pmatrix} z_1(t) \\ z_2(t) \end{pmatrix} = \underbrace{\begin{pmatrix} -.5 & -4 \\ 0 & 1 \\ \hline 1 & 0 \end{pmatrix}}_{C} x(t) + \underbrace{\begin{pmatrix} -.5 & -2 & | 0 \\ 0 & 0 & | 0 \\ \hline 0 & 0 & | 0 \end{pmatrix}}_{D} \begin{pmatrix} w_1(t) \\ w_2(t) \end{pmatrix}$

in feedback with

$$w_1(t)=\delta z_1(t), \hspace{0.2cm} w_2(t)= ext{sat}_{eta}(z_2(t)).$$

36/44

Example III

ime-invariant uncertain system saturated system:
$$\dot{x}(t) = egin{pmatrix} -1 & 2\delta \ -rac{1}{2+\delta} & -0.1 \end{pmatrix} x(t) + egin{pmatrix} {\sf sat}_eta(x_1(t)) \ 0 \end{pmatrix}, \ \ \delta \in [0,r].$$

Combine earlier individual IQCs for causal and stable uncertainties

$$w_1(t)=\delta z_1(t), \hspace{0.2cm} w_2(t)=\operatorname{sat}_{eta}(z_2(t))$$

to infer

Т

$$\int_{-\infty}^{\infty} \left(egin{array}{c|c} \hat{z}_1 \ \hat{z}_2 \ \hat{w}_1 \ \hat{w}_2 \end{array}
ight)^* \underbrace{ \left(egin{array}{c|c} 0 & 0 & H^* & 0 \ 0 & 0 & h^* \ H & 0 & -rac{1}{r}[H^* + H] & 0 \ 0 & h^* & 0 & -rac{1}{eta}[h^* + h] \end{array}
ight) }_{\Pi} \left(egin{array}{c|c} \hat{z}_1 \ \hat{z}_2 \ \hat{w}_1 \ \hat{w}_2 \end{array}
ight) d\omega \geq 0.$$

This is a positive/negative multiplier by inspection!

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} { extstyle {\operatorname{sat}}_{eta}(x_1(t))}\ 0 \end{array}
ight), \ \ \delta\in[0,r].$$

The parametrizations

$$H=\psi_1^* Q_1 \psi_1$$
 and $h=\psi_2^* Q_2 \psi_2$

routinely lead to

$$\Pi = egin{pmatrix} \psi_1 & 0 & -rac{1}{r}\psi_1 & 0 \ 0 & \psi_2 & 0 & -rac{1}{eta}\psi_2 \ 0 & 0 & \psi_1 & 0 \ 0 & 0 & Q_2^T \ Q_1 & 0 & 0 & Q_2^T \ Q_1 & 0 & 0 & 0 \ 0 & Q_2 & 0 & 0 \ \end{pmatrix} egin{pmatrix} \psi_1 & 0 & -rac{1}{r}\psi_1 & 0 \ 0 & \psi_2 & 0 & -rac{1}{eta}\psi_2 \ 0 & 0 & \psi_1 & 0 \ 0 & 0 & Q_2 & 0 & 0 \ \end{pmatrix} egin{pmatrix} \psi_1 & 0 & -rac{1}{eta}\psi_1 & 0 \ 0 & \psi_2 & 0 & -rac{1}{eta}\psi_2 \ 0 & 0 & \psi_1 & 0 \ 0 & 0 & 0 & \psi_2 \ \end{pmatrix} egin{pmatrix} P & & \Psi \end{pmatrix} \end{pmatrix}.$$

Exactly in right format to implement stability FDI as LMI!

36/44

Example III

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} {\sf sat}_{eta}(x_1(t))\ 0 \end{array}
ight), \ \ \delta\in[0,r].$$

Constraints for parametrizations $H = \psi_1^* Q_1 \psi_1$ and $h = \psi_2^* Q_2 \psi_2$:

For dynamic D/G multiplier observe that

$$H^* + H = \psi_1^* \left[oldsymbol{Q}_1^T + oldsymbol{Q}_1
ight] \psi_1 \stackrel{i \mathbb{R}}{\succ} 0$$

is equivalent to existence of solution $Y_1 = Y_1^T$ of the LMI

$$\begin{pmatrix} A_{\psi_1}^T Y_1 + Y_1 A_{\psi_1} & Y_1 B_{\psi_1} \\ B_{\psi_1}^T Y_1 & 0 \end{pmatrix} + \begin{pmatrix} C_{\psi_1} & D_{\psi_1} \end{pmatrix}^T \begin{bmatrix} Q_1^T + Q_1 \end{bmatrix} \begin{pmatrix} C_{\psi_1} & D_{\psi_1} \end{pmatrix} \succ 0.$$

Straightforward to implement as LMI constraint!

Time-invariant uncertain system saturated system:

$$\dot{x}(t)=\left(egin{array}{cc} -1 & 2\delta\ -rac{1}{2+\delta} & -0.1 \end{array}
ight)x(t)+\left(egin{array}{c} { extsf{sat}}_eta(x_1(t))\ 0 \end{array}
ight), \ \ \delta\in[0,r].$$

Constraints for parametrizations $H = \psi_1^* Q_1 \psi_1$ and $h = \psi_2^* Q_2 \psi_2$: For Zames-Falb multiplier choose

and recall

$$\psi^* Q \psi = q_{31} rac{1}{(1-s)^2} + rac{q_{21}}{1-s} + rac{q_{11}}{1+s} + rac{q_{12}}{1+s} + rac{q_{31}}{1+s} rac{1}{(1+s)}.$$

Impose easy to implement LP constraints

 $q_{31}, q_{21}, q_{12}, q_{13} \ge 0$ and $q_{11} \ge q_{31} + q_{21} + q_{12} + q_{13}$.

36/44

Example III: Results

Take r= 1, eta= 1. Plot guaranteed L_2 -gain bounds of $d\mapsto w$ in

 $z = Mw + d, \ \ w = au \Delta(z)$

over $au \in [0, 1]$ for **static** and **dynamic** multipliers:

Lessons

- IQC theory is encompassing classical and modern approaches:
 - absolute stability theory
 - μ -theory
 - dissipativity theory
- Is highly flexible and modular:
 - easy to combine uncertainties of diverse nature
 - permits compositional safety verification of complex systems
- Has close links to Lyapunov approach:
 - via dissipativity theory
 - often more powerful/more insightful
- It is not difficult to apply!

Outline

The standard robustness framework

Hard IQCs: Circle criterion as paradigm example

General IQC theorem: Dynamic multipliers

Ramifications

Conclusions and outlook

38/44

IQC-Theorem: Performance

Work with FDI

$$\begin{pmatrix} M & M_d \\ I & 0 \\ \hline M_e & M_{ed} \\ 0 & I \end{pmatrix}^* \begin{pmatrix} \Psi^* \mathcal{P} \Psi \\ \hline I & 0 \\ 0 & -\gamma^2 I \end{pmatrix} \begin{pmatrix} M & M_d \\ I & 0 \\ \hline M_e & M_{ed} \\ 0 & I \end{pmatrix} \stackrel{i\mathbb{R}}{\prec} 0$$
to guarantee stability and $||e|| \leq \gamma ||d||$ for all loop responses.

Can compute best achievable performance levels γ by LMIs.

39/44

IQC-Theorem and Dissipativity Theory

Link to dissipativity theory:

- Straightforward **extension** to time-varying/LPV systems
 - Just replace KYP Lemma by time-varying/LPV versions
 - Can incorporate all classically known multipliers
- Permits local stability/performance analysis
 - Guarantee robust ellipsoidal bounds on output
 - Exploit locality to reduce conservatism

Extended IQC-Theorem: New Result

 $\varphi: \mathbb{R} \rightrightarrows \mathbb{R}$ is subdifferential of convex $f: \mathbb{R} \to \mathbb{R}$ with $0 \in \varphi(0)$.

Example:
$$f(x) = |x|$$
 leads to $\varphi(x) = egin{cases} 1 & ext{for} & x > 0 \ [-1,1] & ext{for} & x = 0 \ -1 & ext{for} & x < 0 \end{cases}$

New: Can use Zames-Falb multipliers in IQC-Theorem.

41/44

Extended IQC-Theorem: New Result

IQC-Theorem in Discrete-Time

Optimization algorithms for strongly convex $f : \mathbb{R}^n \to \mathbb{R}$:

- Gradient descent is a first order linear system.
- Nesterov proposed accelerated gradient descent:
 - Much better practical performance
 - Proved fast convergence by estimation sequence
- Better convergence rate show with first order Zames-Falb multiplier
 Lessard, Recht, Packard (16)

43/44

Conclusions and Outlook

- Surveyed classical and more recent IQC-theory
 - Clarified the link to dissipativity theory
 - Illustrated how to apply the framework
 - Discussed the crucial benefits

• Interesting issues

- Scalability: Exploit interconnection structure
- Solvers: Dedicated and stable algorithms
- Controller synthesis
- Publications related to this talk: https://www.imng.uni-stuttgart.de/mst/publications/