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Classical Control Loop

Classical multi-input multi-output feedback loop:

PlantK+
�

r e

Saturation at plant input:

PlantsatK+
�

r e

Are stability and performance preserved?
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Classical Control Loop

View complicating block as uncertainty �:

Plant�K+
�

r e

Give names to input and output of � and disconnect:

PlantK+
z

�

r e w
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Standard Configuration: Analysis

System with input w and output z compactly written as z =Mw:

M zw

Original system obtained by reconnecting � as w = �(z):

M

�

w z

Classical configuration of absolute stability and robust control!
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Classical Control Loop

Saturation at plant input and delay at plant output:

Plantsat

delay

K+
�

r e

Now rewrite with two uncertainties as

Plant�1

�2

K+
z1

z2w2

�

r e w1
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Standard Configuration: Analysis

After disconnecting uncertainties we get

M

0
@ z1
z2

1
A

0
@w1

w2

1
A

Original system obtained with
0
@w1

w2

1
A =

0
@�1(z1)

�2(z2)

1
A :=

0
@�1 0

0 �2

1
A
0
@z1
z2

1
A:

M

0
@�1 0

0 �2

1
A0

@w1

w2

1
A

0
@ z1
z2

1
A
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Motivation

M

�

zw

This configuration is extremely flexible:

• M comprises information about specific control configuration

• � represents complicating elements or uncertainties

• Is MIMO loop: Can capture structured systems/uncertainties

Provides unified framework for developing theory/algorithms:

• Just one configuration for multitude of interconnections

• M typically is linear time-invariant system

• � captured by input-output properties (abstraction)

• Highly modular
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Example I

Time-varying uncertain system:

_x(t) =

0
@ �1 2�1(t)

� 1
2+�1(t)

�0:1 + 3�2(t)

1
Ax(t) with j�1(t)j � r; j�2(t)j � r:

Can be written as nominal system

_x(t) =

0
@ �1 0

�:5 �0:1

1
Ax(t) +

0
@ 0 2 0

�:5 �2 1:5

1
A
0
@w1(t)

w2(t)

1
A

0
@ z1(t)
z2(t)

1
A =

0
BB@
�:5 �4

0 1

0 2

1
CCAx(t) +

0
BB@
�:5 �2 1:5

0 0 0

0 1 0

1
CCA
0
@w1(t)

w2(t)

1
A

with the time-varying feedback gains

w1(t) = �1(t)z1(t) and w2(t) = �2(t)z2(t):
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Example I
Time-varying uncertain system:

_x(t) =

0
@ �1 2�1(t)

� 1
2+�1(t)

�0:1 + 3�2(t)

1
Ax(t) with j�1(t)j � r; j�2(t)j � r:

Compactly expressed as a nominal linear system

_x = Ax+Bw; z = Cx+Dw

in feedback with the uncertainty

w = �(z):

The uncertainty � is a system which takes the input signal z(:) into the
output signal w(:) according to the law

w(t) =

0
BB@
�1(t) 0 0

0 �1(t) 0

0 0 �2(t)

1
CCA z(t):
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Example II

Nonlinear system

_x(t) = Ax(t) +B sat�(Cx(t))

with saturation function

sat�(z) =

8<
: �z for jzj � 1

� sign(z) for jzj > 1

Graphs of saturation functions:

1

1
� = 1 � = 1:5

1

1:5
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Example II

Compactly described as feedback interconnection

_x = Ax+Bw

z = Cx

9=
; and w = �(z)

with � taking the input z(:) into the output w(:) as

w(t) = sat�(z(t)):

Question of absolute stability theory:

Is loop stable for all

w(t) = '(z(t))

with a static nonlinearity ' which satisfies
the sector condition

'(z)(�z � '(z)) � 0 for z 2 R:

w

z w = �z

w = 0z
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Setup

w = �(z)

x = Ax+Bw; x(0) = x0

z = Cx+Dw

M

�

zw

x0

Classical feedback interconnection with linear system in forward path
and uncertainty in feedback path.

• Linear system nominally stable:
All eigenvalues of A are in open left-half plane.

Transfer matrix denoted as M(s) = C(sI � A)�1B +D.

• Uncertainty � very general. Diagonal combination of systems:
Linear, nonlinear, dynamic, infinite-dimensional, ...
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Notion of Stability

Interconnection is stable if the trajectory of

_x = Ax+Bw; x(0) = x0

z = Cx+Dw

9=
; and w = �(z)

for any initial condition x0 generates signal w(:) of finite energy:

kwk2 :=
Z
1

0
w(t)Tw(t) dt <1:

Can then infer that x(:) and z(:) are of finite energy and

lim
t!1

x(t) = 0:

Remark. With d(t) = CeAtx0 the interconnection is equivalent to

_x = Ax+Bw; x(0) = 0

z = Cx+Dw + d

9=
; and w = �(z):
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Example: Sector Bounded Nonlinearity

Sector bounded Lipschitz nonlinearity:

'(z)(�z � '(z)) � 0 for z 2 R:

M

'

zw

x0
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Example: Sector Bounded Nonlinearity

Sector bounded Lipschitz nonlinearity:

'(z)(�z � '(z)) � 0 for z 2 R:

This can be also expressed as0
@ z

'(z)

1
AT

0
@ 0 1

1 � 2
�

1
A
0
@ z

'(z)

1
A � 0

for all z 2 R.

M

'

zw

x0

Circle Criterion
Loop stability guaranteed by frequency domain inequality (FDI)0

@M(i!)

1

1
A�
0
@ 0 1

1 � 2
�
1

1
A
0
@M(i!)

1

1
A � 0 for all ! 2 [0;1]:

Often expressed as Re(M(i!)) < 1
�

or Re(1� �M(i!)) > 0 for all !.
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Intermezzo: KYP Lemma

Let T be a real rational transfer matrix with realization

T (s) = C(sI � A)�1B +D where eig(A) \ iR = ;:

Strict Kalman-Yakubovich-Popov Lemma

For any real matrix P = P T the following statements are equivalent:

• The following frequency domain inequality holds:

T (i!)�PT (i!) � 0 for all ! 2 [0;1]:

• There exists some X = XT that satisfies the LMI0
@ATX +XA XB

BTX 0

1
A+

�
C D

�T
P
�
C D

�
� 0:

Many different formulations exist in literature. This seems the cleanest.
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Dissipation Proof: Circle Criterion

Recall FDI0
@M(i!)

1

1
A�
0
@ 0 1

1 � 2
�
1

1
A
0
@M(i!)

1

1
A � 0 for all ! 2 [0;1]:

Obtain realization0
@M(s)

1

1
A =

0
@ C

0

1
A (sI � A)�1B +

0
@D

1

1
A with eig(A) � C�:

KYP Lemma: FDI implies existence of X = XT with0
@ATX+XA XB

BTX 0

1
A+

0
@ C D

0 1

1
AT
0
@ 0 1

1 � 2
�

1
A
0
@ C D

0 1

1
A � 0:

Left-upper block reads as ATX +XA � 0 and hence X � 0:
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Dissipation Proof: Circle Criterion

Trajectories of interconnection satisfy

w(t) = '(z(t))

_x(t) = Ax(t) +Bw(t); x(0) = x00
@ z(t)

w(t)

1
A =

0
@ C D

0 1

1
A
0
@ x(t)

w(t)

1
A M

'

zw

x0

Perturb LMI: There exists some " > 0 with0
@ATX+XA XB

BTX 0

1
A+

0
@ C D

0 1

1
AT
0
@ 0 1

1 � 2
�
+ "

1
A
0
@ C D

0 1

1
A � 0:

Along trajectory get for all t � 0:

_x(t)TXx(t) + x(t)TX _x(t) +

0
@ z(t)

w(t)

1
AT

0
@ 0 1

1 � 2
�
+ "

1
A
0
@ z(t)

w(t)

1
A � 0:
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Dissipation Proof: Circle Criterion

Trajectories of interconnection satisfy

w(t) = '(z(t))

_x(t) = Ax(t) +Bw(t); x(0) = x00
@ z(t)

w(t)

1
A =

0
@ C D

0 I

1
A
0
@ x(t)

w(t)

1
A M

'

zw

x0

Perturb LMI: There exists some " > 0 with0
@ATX+XA XB

BTX 0

1
A+

0
@ C D

0 1

1
AT
0
@ 0 1

1 � 2
�
+ "

1
A
0
@ C D

0 1

1
A � 0:

Along trajectory get for all t � 0:

d

dt
x(t)TXx(t) + "w(t)Tw(t) +

0
@ z(t)

w(t)

1
AT

0
@ 0 1

1 � 2
�

1
A
0
@ z(t)

w(t)

1
A � 0:
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Dissipation Proof: Circle Criterion

Integration on [0; T ] implies for all T > 0:

x(T )TXx(T )� xT0Xx0 +
Z T

0
"w(t)Tw(t) dt+

+
Z T

0

0
@ z(t)

w(t)

1
AT

0
@ 0 1

1 � 2
�

1
A
0
@ z(t)

w(t)

1
A dt � 0:

Exploit w(t) = '(z(t)) and sector condition to infer for all T > 0:
Z T

0

0
@ z(t)

w(t)

1
AT

0
@ 0 1

1 � 2
�

1
A
0
@ z(t)

w(t)

1
A dt � 0:

We hence infer for all T > 0:

x(T )TXx(T ) +
Z T

0
"w(t)Tw(t) dt � xT0Xx0:

Since X � 0 we get stability:
Z
1

0
w(t)Tw(t) dt �

1

"
xT0Xx0 <1:
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Hard IQC-Theorem

w = �(z)

x = Ax+Bw; x(0) = x0

z = Cx+Dw

M

�

zw

x0

Let � satisfy the hard Integral Quadratic Constraint (IQC)
Z T

0

0
@ z(t)

w(t)

1
ATP

0
@ z(t)

w(t)

1
A dt � 0 for all T > 0

for any input z(:) and uncertainty output w = �(z).

Hard IQC Theorem. Stability is guaranteed if the LMI0
@ATX+XA XB

BTX 0

1
A+

0
@ C D

0 I

1
ATP

0
@ C D

0 I

1
A � 0:

does have a solution X � 0.
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Example I+II

Time-varying uncertain system saturated system:

_x(t) =

0
@ �1 2�1(t)

� 1
2+�1(t)

�0:1 + 3�2(t)

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A :

Rewrite as linear system

_x(t) =

0
@ �1 0

�:5 �0:1

1
A

| {z }
A

x(t) +

0
@ 0 2 0 1

�:5 �2 1:5 0

1
A

| {z }
B

0
BB@
w1(t)

w2(t)

w3(t)

1
CCA

0
BB@
z1(t)

z2(t)

z3(t)

1
CCA =

0
BBBBB@
�:5 �4

0 1

0 2

1 0

1
CCCCCA

| {z }
C

x(t) +

0
BBBBB@
�:5 �2 1:5 0

0 0 0 0

0 1 0 0

0 0 0 0

1
CCCCCA

| {z }
D

0
BB@
w1(t)

w2(t)

w3(t)

1
CCA

in feedback with

w1(t) = �1(t)z1(t); w2(t) = �2(t)z2(t) and w3(t) = sat�(z3(t)):
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Example I+II

If j�1(t)j � r and j�2(t)j � r the trajectories with

w1(t) = �1(t)z1(t); w2(t) = �2(t)z2(t) and w3(t) = sat�(z3(t))

satisfy the hard IQC

Z T

0

0
BBBBBBBBBBB@

z1(t)

z2(t)

z3(t)

w1(t)

w2(t)

w3(t)

1
CCCCCCCCCCCA

T 0BBBBBBBBBBB@

D 0 0 1
r
G 0 0

0 d 0 0 0 0

0 0 0 0 0 h
1
r
GT 0 0 � 1

r2
D 0 0

0 0 0 0 � 1
r2
d 0

0 0 h 0 0 � 2
�
h

1
CCCCCCCCCCCA

| {z }
P

0
BBBBBBBBBBB@

z1(t)

z2(t)

z3(t)

w1(t)

w2(t)

w3(t)

1
CCCCCCCCCCCA
dt � 0

in case that

D � 0; G+GT = 0 and d > 0 and h > 0:

Is a routine combination of static D=G-scalings and sector condition.
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Example I+II

Test whether there exists a multiplier P in above class such that

X � 0;

0
@ATX+XA XB

BTX 0

1
A+

0
@ C D

0 I

1
ATP

0
@ C D

0 I

1
A � 0:

• Is standard LMI problem. Very easy to implement e.g. via Yalmip.

• If answer is yes we have guaranteed stability.

• If answer is no the test might be conservative.
Can use full block multipliers for (often drastic) improvements!

Old and recently emerging again: Can work with time-varying P (t)

structured as above and find solution X(t)� 0 of the differential LMI0
@ _X(t) + ATX(t)+X(t)A X(t)B

BTX(t) 0

1
A+

0
@ C D

0 I

1
ATP (t)

0
@ C D

0 I

1
A� 0:
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Large Variety of Techniques

• Input-Output Approach

- Small-gain, passivity, conic separation (Zames)
- Topological separation (Safonov)
- Stability multipliers (Desoer, Vidyasagar)
- Integral quadratic constraints (Megretski, Rantzer)

• Dissipativity Approach

- Absolute stability (Popov, Yakubovich, Brockett, J.L. Willems)
- Theory of dissipative dynamical systems (J.C. Willems)
- Abundance of LMI results in literature

Linked through Kalman-Yakubovich-Popov Lemma.

A long-standing gap was closed only recently!
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General Framework

• Exhibits general principle behind huge variety of stability tests:
- to handle structured uncertainties in robust control
- allowing general operator uncertainties
- for networked interconnected systems

• Extends seamlessly to performance

• Basis for robust and LPV synthesis
Controller transformation or elimination

• Various extensions tricky:
Popov, Yakubovich, delays

Trouble: Does not work for much more powerful dynamic IQCs!
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Reduce conservatism with frequency-dependent D=G scalings for �.
Reduce conservatism with Zames-Falb multiplier for sat�.

Recall that L2 denotes the set of finite energy signals on [0;1):

kxk2 :=
Z
1

0
x(t)Tx(t) dt <1:

Such signals have a Fourier transform denoted as x̂.

Uncertainties are assumed to be stable in the following sense:

z 2 L2 implies �(z) 2 L2:

For z 2 L2 it makes sense to consider ŵ for w = �(z).
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Reduce conservatism with frequency-dependent D=G scalings for �.

Suppose the transfer matrix H has no poles in iR and satisfies

H(i!)� +H(i!) � 0 for ! 2 [0;1]:

For � 2 [0; r] and w(t) = �z(t) with z 2 L2 we have
Z
1

�1

0
@ ẑ(i!)

ŵ(i!)

1
A�
0
@ 0 H(i!)�

H(i!) �1
r
[H(i!)� +H(i!)]

1
A
0
@ ẑ(i!)

ŵ(i!)

1
A d! � 0:

This is a frequency-domain IQC. Looks bombastic but is a triviality!
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Why?

Clearly w(t) = �z(t) implies ŵ(i!) = �ẑ(i!). Then observe

0
@ ẑ(i!)

ŵ(i!)

1
A�
0
@ 0 H(i!)�

H(i!) �1
r
[H(i!)� +H(i!)]

1
A
0
@ ẑ(i!)

ŵ(i!)

1
A =

= ẑ(i!)�

0
@ I

�I

1
AT

0
@ 0 H(i!)�

H(i!) �1
r
[H(i!)� +H(i!)]

1
A
0
@ I

�I

1
A ẑ(i!) =

= ẑ(i!)�
�
[H(i!)� +H(i!)] �

�
1�

1

r
�
��
ẑ(i!) � 0:

Integration over frequency gives IQC.
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Reduce conservatism with Zames-Falb multiplier for sat�.

Let h(i!) := g � f̂(i!) and the inverse Fourier transform of f satisfy

f(t) � 0 and
Z
1

�1

f(t) dt < g:

Then w(t) = sat�(z(t)) with z 2 L2 satisfies
Z
1

�1

0
@ ẑ(i!)

ŵ(i!)

1
A�
0
@ 0 h(i!)�

h(i!) � 1
�
[h(i!)� + h(i!)]

1
A
0
@ ẑ(i!)

ŵ(i!)

1
A d! � 0:

Classical but not obvious. Not so well-known that it’s due to convexity!
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Key Ideas of Proof

The potential V (x) :=
Z x

0
sat�(z) dz is convex since sat� is monotone.

The standard subgradient inequality from convex analysis implies

V 0(x) (x� y) � V (x)� V (y) for all x; y 2 R:

Since w(t) = sat�(z(t)) we hence get for all t; � 2 R:

w(t) (z(t)� z(t� � )) � V (z(t))� V (z(t� � )):

Since z has finite energy we inferZ
1

�1

w(t) (z(t)� z(t� � )) dt � 0:

Since f(� ) � 0 and g >
R
1

�1
f(� ) d� we getZ

1

�1

w(t)
�
gz(t)�

Z
1

�1

f(� )z(t� � ) d�
�
dt � 0:

Parseval gives the IQC for � =1:Z
1

�1

ŵ(i!)� h(i!)ẑ(i!) d! � 0:
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Parametrization of Multipliers

With any stable transfer matrix  one parameterizes H as

H =  �Q with a real matrix Q:

Example. If H is SISO and

 (s) =

0
BBB@

1
1
s+1
1

(s+1)2

1
CCCA ; Q =

0
BB@
q11 q12 q12

q21 0 0

q31 0 0

1
CCA

we get

 �Q = q31
1

(1� s)2
+ q21

1

1� s
+ q11 + q12

1

1 + s
+ q31

1

(1 + s)
:
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Parametrization of Multipliers

With any stable transfer matrix  one parameterizes H as

H =  �Q with a real matrix Q:

Observe that we directly obtain0
@ 0 H�

H �1
r
[H� +H]

1
A =

0
@  �1

r
 

0  

1
A�
0
@ 0 QT

Q 0

1
A

| {z }
P

0
@  �1

r
 

0  

1
A

| {z }
	

:

This motivates that multipliers in IQC theory are often described as

	�P	

with a fixed stable dynamic filter 	 and a real symmetric structured
matrix variable P that is contained in a convex set described by LMIs.
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IQC-Theorem

w = �(z)

x = Ax+Bw; x(0) = x0

z = Cx+Dw

M

�

zw

x0

For any z 2 L2 let w = �(z) 2 L2 depend causally on z and satisfy
Z
1

�1

0
@ ẑ(i!)

ŵ(i!)

1
A�	(i!)�P	(i!)

0
@ ẑ(i!)

ŵ(i!)

1
A d! � 0:

IQC Theorem. Stability is guaranteed if0
@M(i!)

I

1
A�	(i!)�P	(i!)

0
@M(i!)

I

1
A � 0 for all ! 2 [0;1]

and the multiplier is positive/negative.

Variant of Megretski, Rantzer (97)
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Dissipation Proof

Stability FDI:0
@M(i!)

I

1
A�	(i!)�P	(i!)

0
@M(i!)

I

1
A � 0 for all ! 2 [0;1]:

With minimal realization 	 =
�
	1 	2

�
=

"
A	 B	1 B	2

C	 D	1 D	2

#
get

	

0
@M
I

1
A =

2
664
A	 B	1C B	1D +B	2

0 A B

C	 D	1C B	1D +B	2

3
775 =:

2
4Af Bf
Cf Df

3
5 ; �(Af) � C�:

KYP Lemma: Stability FDI implies existence of X = XT with0
@ATfX +XAf XBf

BT
f X 0

1
A+

�
Cf Df

�T
P
�
Cf Df

�
� 0:
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Dissipation Proof

M

�

zw

x0

	
y

Literally as in the static case we get dissipation inequality for T > 0:0
@ x (T )
x(T )

1
ATX

0
@ x (T )
x(T )

1
A�

0
@ x (0)

x0

1
ATX

0
@ x (0)

x0

1
A+

+
Z T

0
"w(t)Tw(t) dt+

Z T

0
y(t)TPy(t) dt � 0:

Trouble: Neither X � 0 nor
Z T

0
y(t)TPy(t) dt � 0 are true any more!
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Technical Result

Theorem. The FDIs0
@M
I

1
A�	�P	

0
@M
I

1
A iR
� 0 and 	�

1P	1

iR
� 0

guarantee the existence of stabilizing solution Z of ARE

AT	Z + ZA	 + CT
	PC	�

� (ZB	 + CT
	PD	)(D

T
	PD	)

�1(BT
	Z +DT

	PC	) = 0:

Moreover, all solutions X = XT of0
@ATfX +XAf XBf

BT
f X 0

1
A+

�
Cf Df

�T
P
�
Cf Df

�
� 0

satisfy the coupling condition X �

0
@ Z 0

0 0

1
A � 0:

Special case: Seiler (15), Veenman, S (13) General case: S, Veenman (18)
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Consequences for Uncertainty

It is routine (Parseval) that the IQC
Z
1

�1

0
@ ẑ(i!)

ŵ(i!)

1
A�	(i!)�P	(i!)

0
@ ẑ(i!)

ŵ(i!)

1
A d! � 0

translates for y = 	

 
z
w

!
into the infinite horizon time-domain IQC

Z T

0
y(t)TPy(t) dt+

Z
1

T
y(t)TPy(t) dt � 0:

Theorem. Suppose the multiplier also satisfies

	�

2P	2

iR
4 0:

Then the following finite horizon IQC with terminal cost holds:Z T

0
y(t)TPy(t) dt+ x	(T )

TZx	(T ) � 0 for all T � 0:

Special case: Pfifer, Seiler (16) General case: S, Veenman (18)
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Dissipation Proof

M

�

zw

x0

	
y

Recall dissipation inequality for T > 0:0
@ x (T )
x(T )

1
ATX

0
@ x (T )
x(T )

1
A�

0
@ x (0)

x0

1
ATX

0
@ x (0)

x0

1
A+

+
Z T

0
"w(t)Tw(t) dt+

Z T

0
y(t)TPy(t) dt � 0:

Combined with finite horizon IQC we get for T > 0:0
@ x (T )
x(T )

1
AT
2
4X �

0
@ Z 0

0 0

1
A
3
5
0
@ x (T )
x(T )

1
A�

0
@ x (0)

x0

1
ATX

0
@ x (0)

x0

1
A+

+
Z T

0
"w(t)Tw(t) dt � 0:
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Dissipation Proof

Conclusions: For all x0 infer that w 2 L2 (stability) and T > 0:0
@ x (T )
x(T )

1
AT
2
4X �

0
@ Z 0

0 0

1
A
3
5
0
@ x (T )
x(T )

1
A �

0
@ x (0)

x0

1
ATX

0
@ x (0)

x0

1
A

• Dissipation proof of IQC theorem for positive/negative multipliers:

	�P	 =

0
@< 0 �

� 4 0

1
A :

Recently handled general case and multi-valued uncertainties.
S, Veenman (18), S, Holicki (18)

• Benefit: Absolute stability criteria imply hard time-domain constraints!
Fetzer, S, Veenman (18)

• Permits to routinely merge IQC stability results with a multitude of
existing time-domain dissipation constraints.
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Geralization of IQC Theorem

New IQC Theorem

• Let � satisfy a finite-horizon IQC with terminal cost Z:Z T

0
y(t)TPy(t) dt+ x	(T )

TZx	(T ) � 0 for all T � 0

holds along all filtered trajectories y = 	

 
z

�(z)

!
.

• Let there exists a solution X of0
@ATfX +XAf XBf

BT
f X 0

1
A+

�
Cf Df

�T
P
�
Cf Df

�
� 0

that satisfies X �

0
@ Z 0

0 0

1
A � 0:

Then the above conclusions can be drawn.

No additional assumptions whatsoever required! S, Veenman (18)
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Rewrite as linear system

_x(t) =

0
@ �1 0

�:5 �0:1

1
A

| {z }
A

x(t) +

0
@ 0 2 1

�:5 �2 0

1
A

| {z }
B

0
@w1(t)

w2(t)

1
A

0
@ z1(t)
z2(t)

1
A =

0
BB@
�:5 �4

0 1

1 0

1
CCA

| {z }
C

x(t) +

0
BB@
�:5 �2 0

0 0 0

0 0 0

1
CCA

| {z }
D

0
@w1(t)

w2(t)

1
A

in feedback with

w1(t) = �z1(t); w2(t) = sat�(z2(t)):
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Combine earlier individual IQCs for causal and stable uncertainties

w1(t) = �z1(t); w2(t) = sat�(z2(t))

to infer

Z
1

�1

0
BBBBB@
ẑ1

ẑ2

ŵ1

ŵ2

1
CCCCCA

�0
BBBBB@

0 0 H� 0

0 0 0 h�

H 0 �1
r
[H� +H] 0

0 h� 0 � 1
�
[h� + h]

1
CCCCCA

| {z }
�

0
BBBBB@
ẑ1

ẑ2

ŵ1

ŵ2

1
CCCCCA d! � 0:

This is a positive/negative multiplier by inspection!
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

The parametrizations

H =  �1Q1 1 and h =  �2Q2 2

routinely lead to

� =

0
BBBBB@
 1 0 �1

r
 1 0

0  2 0 � 1
�
 2

0 0  1 0

0 0 0  2

1
CCCCCA

�0
BBBBB@

0 0 QT
1 0

0 0 0 QT
2

Q1 0 0 0

0 Q2 0 0

1
CCCCCA

| {z }
P

0
BBBBB@
 1 0 �1

r
 1 0

0  2 0 � 1
�
 2

0 0  1 0

0 0 0  2

1
CCCCCA

| {z }
	

:

Exactly in right format to implement stability FDI as LMI!
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Constraints for parametrizations H =  �1Q1 1 and h =  �2Q2 2:

For dynamic D/G multiplier observe that

H� +H =  �1
h
QT
1 +Q1

i
 1

iR
� 0

is equivalent to existence of solution Y1 = Y T
1 of the LMI

0
@AT 1Y1+Y1A 1 Y1B 1

BT
 1
Y1 0

1
A+� C 1 D 1

�Th
QT
1 +Q1

i �
C 1 D 1

�
� 0:

Straightforward to implement as LMI constraint!
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Example III

Time-invariant uncertain system saturated system:

_x(t) =

0
@ �1 2�

� 1
2+�

�0:1

1
Ax(t) +

0
@ sat�(x1(t))

0

1
A ; � 2 [0; r]:

Constraints for parametrizations H =  �1Q1 1 and h =  �2Q2 2:
For Zames-Falb multiplier choose

 2(s) =

0
BBB@

1
1
s+1
1

(s+1)2

1
CCCA ; Q2 =

0
BB@
q11 q12 q12

q21 0 0

q31 0 0

1
CCA

and recall

 �Q = q31
1

(1� s)2
+ q21

1

1� s
+ q11 + q12

1

1 + s
+ q31

1

(1 + s)
:

Impose easy to implement LP constraints

q31; q21; q12; q13 � 0 and q11 � q31 + q21 + q12 + q13:
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Example III: Results

Take r = 1, � = 1. Plot guaranteed L2-gain bounds of d 7! w in

z =Mw + d; w = ��(z)

over � 2 [0; 1] for static and dynamic multipliers:

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50
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Lessons

• IQC theory is encompassing classical and modern approaches:

- absolute stability theory
- �-theory
- dissipativity theory

• Is highly flexible and modular:

- easy to combine uncertainties of diverse nature
- permits compositional safety verification of complex systems

• Has close links to Lyapunov approach:

- via dissipativity theory
- often more powerful/more insightful

• It is not difficult to apply!
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Outline

The standard robustness framework

Hard IQCs: Circle criterion as paradigm example

General IQC theorem: Dynamic multipliers

Ramifications

Conclusions and outlook
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IQC-Theorem: Performance

M Md

Me Med

�

wz

de

Work with FDI0
BBBBB@
M Md

I 0

Me Med

0 I

1
CCCCCA

�0
BB@
	�P	

I 0

0 �2I

1
CCA
0
BBBBB@
M Md

I 0

Me Med

0 I

1
CCCCCA

iR
� 0

to guarantee stability and kek � kdk for all loop responses.

Can compute best achievable performance levels  by LMIs.
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IQC-Theorem and Dissipativity Theory

M Md

Me Med

�

wz

de

Link to dissipativity theory:

• Straightforward extension to time-varying/LPV systems

- Just replace KYP Lemma by time-varying/LPV versions
- Can incorporate all classically known multipliers

• Permits local stability/performance analysis

- Guarantee robust ellipsoidal bounds on output
- Exploit locality to reduce conservatism
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Extended IQC-Theorem: New Result

w 2 '(z)

z = Mw +Mdd

e = Mew +Medd
M Md

Me Med

'

wz

de

' : R⇒ R is subdifferential of convex f : R! R with 0 2 '(0).

Example: f(x) = jxj leads to '(x) =

8>><
>>:

1 for x > 0

[� 1; 1] for x = 0

�1 for x < 0

New: Can use Zames-Falb multipliers in IQC-Theorem.
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Extended IQC-Theorem: New Result

Relay systems:

• Switching control

• Unilateral constraints

• Complementarity systems

z

wIdeal Relay
' = @j:j

0 2 4 6 8 10 12 14 16 18 20
Parameter 

0

2

4

6

E
ne

rg
y 

ga
in

 b
ou

nd

Brogliato(04)
ZF (  = 2)
ZF (  = 3)

Family of systems depending on � 2 [0; 20]
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IQC-Theorem in Discrete-Time

xt+1 = Axt +Bwt

zt = Cxt

rf

wz

x0

Optimization algorithms for strongly convex f : Rn ! R:

• Gradient descent is a first order linear system.

• Nesterov proposed accelerated gradient descent:

- Much better practical performance
- Proved fast convergence by estimation sequence

• Better convergence rate show with first order Zames-Falb multiplier
Lessard, Recht, Packard (16)
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Conclusions and Outlook

• Surveyed classical and more recent IQC-theory

- Clarified the link to dissipativity theory

- Illustrated how to apply the framework

- Discussed the crucial benefits

• Interesting issues

- Scalability: Exploit interconnection structure

- Solvers: Dedicated and stable algorithms

- Controller synthesis

• Publications related to this talk:
https://www.imng.uni-stuttgart.de/mst/publications/

https://www.imng.uni-stuttgart.de/mst/publications/
https://www.imng.uni-stuttgart.de/mst/publications/

