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Overview of the presentation

@ Introduction: Model Order Reduction (MOR) and Control
© MOR-based control of infinite dimensional systems
© MOR-based stability analysis

@ Conclusion
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Motivations: why use model reduction?

Conclusion
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[ High/Infinite order model }

Model approximation/reduction

Reduced-order model
Ex = Ax + Bu
y = Cx+Du

- Simulation

- Analysis

- Optimization
- Control
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Control of high-order systems

 Ex =Ax+Bu ay
" y =Cx+Du e™™ g(ur t)=..
5 T~

1 ! A
T o st )
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Control of high-order systems

Ex = Ax+Bu )
P : Y —
y = Cx+Du e g(l{, t) = .

High-order K
tailored to P

Foias, C., (")zbay, H., Tannenbaum, A. (1996). Robust control of infinite
dimensional systems: frequency domain methods. Springer.
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Control of high-order systems

Ex =Ax+Bu )
P: Yy
y = Cx+ Du e g(u, t) = .

—

E [ High-order system P ]

/

[ Use P ] [Use reduced-model P,]

A A,
High-order K [ K, tailored to P, ]
tailored to P

Morris, K., Levine, W. S. (2010). Control of systems governed by partial
differential equations. The control theory handbook.
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Control of high-order systems

[ Use P J [Use reduced-model P,J

High-order K [ K, tailored to P, ]
tailored to P

Model-based design
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Control of high-order systems

Ex = Ax+Bu o
P: Y —
y =Cx+Du e a(ur f)=..

Y

[ Use data J

[ Use P J [Use reduced-model P,J

A

A
High-order K [ K, tailored to P, J
tailored to P

[Reduced controller ]

Model-based design

Kergus, P (2020), Data-driven control of infinite dimensional systems:
Application to a continuous crystallizer, submitted to IEEE Control System

Letters. 4/15
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Control of high-order systems

[ Use data J

[Reduced controller]

Model-based design

Model reduction is everywhere
Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. SIAM.
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MOR-based control of infinite dimensional systems

© MOR-based control of infinite dimensional systems
@ lllustrative example
@ The Loewner framework
@ Model-based approach
@ Data-driven approach
@ Model-based vs data-driven control
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lllustrative example

Time t/\

\

X(space variable)

(X 9 4+ 2x ay(x 9 = o (transport equation)
( 0) =0 (initial condition)
y(0,t) = %[]f(o, t) (control input)
% (0,s) = uf(0,s) (controller bandwidth),
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lllustrative example

W@A\

2
“o

X(space variable)

—X25

xs:ﬁe
y(x,s) NG

s2 + muwos + w3

x = 1.9592
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The Loewner framework

Build ﬁsuch that
vk, His) = Hse)

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A.
C., Lefteriu, S., lonita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and
Approximation: Theory and Algorithms.
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The Loewner framework

Build ﬁsuch that
vk, His) = Hse)

Build the Loewner pencil

L Hw)-HO)

T A
Lo - BiHG) = H)
K pi—Aj
(s} ={pitu{A;)

MOR-stability
0000

Conclusion

o

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A.

C., Lefteriu, S., lonita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and
Approximation: Theory and Algorithms.
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The Loewner framework

Non-redundant data

ﬁ' Ex = Ax+Bu E=-L, A= -1L°
Build the Loewner pencil ’ y=Cx Bi = H(u:), Cj = H(A))
H(ui)-H(A
p, < He) = HOY
T pi=A;
Build Hsuch that
vk, Hisy) = H(si) Lo - BiHG) = H)
" pi—Aj
{se} = {uit U {A;}

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A.
C., Lefteriu, S., lonita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and
Approximation: Theory and Algorithms.
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The Loewner framework

MOR-stability
0000

Build ﬁsuch that
vk, Hs) = Hiso)

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A.
C., Lefteriu, S., lonita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and
Approximation: Theory and Algorithms.

Build the Loewner pencil

1, < 0 -HG)
pi=Aj
Lo, = HiH) - AHA)
Y Hi= 4
(s} = {uit U (A7)

Non-redundant data
G Ex = Ax+Bu E=-L A= -1L°

y=Cx B; = H(), C; = H(A)

Redundant data and reduction
E'=Y'EX, A'=Y'AX, B =Y'B,

SVD of the Loewner pencil

~ | L ~
[Lre] =vzx, [ L } =YL, X"

C'=CX

Conclusion

o
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Model-based approach

Input
Plant's data {w;, H( w;)}Y;

Step 1
Obtain a reduced-order and

PN
rational model Hof the system H

Step 2
Design a controller C
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Model-based approach

Input
Plant's data {w;, H( a),)}:‘;l

~

Step 1
Obtain a reduced-order and

PN
rational model Hof the system H

Step 2
Design a controller C

Vi, H(w;) = H( w;)

Loewner framework

—H(S,J})
- -H(s,z), with r = 33

Gain [dB]

MOR-stability Conclusion
0000 o

Normalized SVD
“of the Loewner matrix
—Chosen order 7 = 33

10715

50 100 150 200
i-th sinular value

107" 10°
Frequency [Hz]
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Model-based approach
Hostructured synthesis ( hinfstruct)
Input ki
Plant's data {w;, H( @)}, C(s) =k, + 5 k, =0.191  k; =0.0252
— Weight fun("tion W,
m itivity function §
=, 5= Sensitivity function S
g
s 0
&)
Step 1 -5
Obtain a reduced-order and 2 ‘ 1 ) 0
. /ﬁ H 10~ 107 10
rational model Hof the system Frequency [Hz]
0 T
-20 -

Gain [dB]

—Complementary sensitivity function M|

Step 2
[ Design a controller C ] 40 - = Complementary sensitivity function M

o
102 107"
Frequency [Hz|
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Data-driven approach

Input
- Plant's data {w;, H( @;)}¥,
- Reference model M

Step 1
Define the ideal controller K*

Step 2
Obtain a reduced order controller K

MOR-stability
0000

K* = H'M(1 - M)~

Conclusion

o
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Data-driven approach

nput K* = H'M1-M)™
- Plant's data {w;, H( @;)}¥,
- Reference model M Risk of instabily compensation in the open-loop

H(0) = oo M) =1
H(co) = 0 —=> M(e0) = 0

Step 1
Define the ideal controller K*

Step 2
Obtain a reduced order controller K

Conclusion

o
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Data-driven approach

Input
- Plant's data {w;, H( w;)}Y,

K* =

MOR-stability Conclusion
0000 o
HM(1 -M)!

- Reference model M

Risk of instabily compensation in the open-loop

H(0) = 0 = M(0) =1
H(e0) =0 M(c0) =0
1 HC
Mi(s) = s 2s M, = 1 ﬁc
Step 1 2+ 241 +
[ Define the ideal controller K* J @ @o
wo =0.5rad /s

Step 2
Obtain a reduced order controller K
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Data-driven approach
Input K* = H'M(1 -M)™!
- Plant's data {w;, H( @;)}¥,
- Reference model M Risk of instabily compensation in the open-loop
H(0) = o |:> M@O)=1
H(c0) =0 M(e0) =0
1 HC
M;(s) = T My =——F—
Step 1 S+ 41 1+HC
Define the ideal controller K* @
wo =0.5rad /s
ﬂ Loewner framework %
0.1347 s + 0.009259 0.1914 s + 0.02517
Kie) = T2 Ky = % C(s)
s + 0.001303 s + 1.526-10

Step 2
Obtain a reduced order controller K
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Data-driven approach

Input

K*
- Plant's data {w;, H( w;)}Y,

MOR-stability

Conclusion
0000

o

=H'M(1-M)!

- Reference model M

Risk of instabily compensation in the open-loop

H(0) = = M(©0) =1
H(c0) = 0 M(c0) =0
1 HC
Mi(s) = T My =—1H
Step 1 —+-+1 1+HC
Define the ideal controller K* @ 0
wo =0.5rad /s
—Kj (order 34)
5 - -K; (order 1) 7
— K3 (order 38)
K, (order 1)
S0 . o NO e C (model-based PI)
g -
Eﬂ U N A
e \pupEppy AU
Step 2 220
Obtain a reduced order controller K
-25
102 107

Frequency [Hz|
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Model-based vs data-driven control
The Loewner framework can be used as a central tool for the
control of infinite dimensional transfer functions
@ Model based approach
@ Data-driven approach
2
|—Plant
|- -Closed-loop obtained with K;
15 Closed-loop obtained with K|
=)
2 Z 05
- —Reference model M;
“4071_ _Closed-loop obtained with K; N\ =
—Reference model M, *\
_50 - ~Closed-loop obtained with K 0
-0.5
102 10t 10° 0 20 40 60 80 100

Frequency [Hz| Time [s]
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Model-based vs data-driven control

The Loewner framework can be used as a central tool for the
control of infinite dimensional transfer functions

@ Model based approach
- more steps

@ Data-driven approach
+ direct control design
- less flexible specifications

2
—Plant
- ~Closed-loop obtained with K;
s Closed-loop obtained with K,
g 1
|
Z o5
—Reforence model M, N
“4071_ _Closed-loop obtained with K; N\ =
—Reference model M, N\
501~ -Closed-loop obtained with Ky N
> ~ 0 05
10 10 10 o 20 40 60 80 100
Time [s]

Frequency [Hz|

Conclusion
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Model-based vs data-driven control

The Loewner framework can be used as a central tool for the
control of infinite dimensional transfer functions

@ Model based approach
- more steps
+/- guaranteed stability but for the reduced-order model H
@ Data-driven approach
+ direct control design
- less flexible specifications
+/- conservative data-driven stability test

2
—Plant
- -Closed-loop obtained with K
s Closed-loop obtained with K,
g 1
|
Z o5
—Reference model M, N
“4071_ _Closed-loop obtained with K; N\ =
—Reference model M, N\
501~ -Closed-loop obtained with Ky N
> ~ 0 05
10 10 10 o 20 40 60 80 100
Time [s]

Frequency [Hz|

Conclusion
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MOR-based stability analysis

© MOR-based stability analysis
@ Motivations
@ Loewner-based stability test

Conclusion
o
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Motivations

Does the controller stabilise the real system?

Uncertainty

Reference model M

The closed-loop is well-posed and internally stable for all stable
A = K — K* such that ||A]|s <71 if and only if |(1 — M)P||s < 7

Van Heusden, K., Karimi, A., Bonvin, D. (2009). Data-driven controller validation.

IFAC Proceedings. 12/15



Motivations

Does the controller stabilise the real system?

. [—Controller modelling error [[K; — K; ||
Uncertain I~ Estimated limit 5; '

ty | Controller modelling error [|K — K|
|—Estimated limit 5;"

Controller modelling error [|K” — K*[|c

02 \

Reference model M " \ \\

1 5 10 15 20 25 30
Order r of the controller K

The closed-loop is well-posed and internally stable for all stable
A = K — K* such that ||A]|s <71 if and only if |(1 — M)P||s < 7

Van Heusden, K., Karimi, A., Bonvin, D. (2009). Data-driven controller validation.
IFAC Proceedings. 12/15



Introduction MOR-control MOR-stability Conclusion
oo 000000 00®0 o

Loewner-based stability test

Interpolation-based infinite dimensional model control design and stability analysis, C.

Poussot-Vassal, P. Kergus, P. Vuillemin, chapter to appear.
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Loewner-based stability test

Closed-loop transfer T (infinite-dimensional)

C(s) —‘ H(s)e™

C(gwi)H(ywi)e ™ ™I%i
14+ C(gwi)H(gwi)e =TI

@ Compute samples T(yw;) =
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Loewner-based stability test

Closed-loop transfer T (infinite-dimensional)

Clygwi)H(gwi)e 7%
1+ C(ywi)H(gwi)e ™ TIvi

@ Compute samples T(jw;) =

@ Obtain a minimal realisation T through the Loewner framework
such that T(jw;) = T(jw;)
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Loewner-based stability test

Closed-loop transfer T (infinite-dimensional)

@ Compute samples T (jw;) = lf(cj(“;gg,(_f(u;g;;ﬁw

@ Obtain a minimal realisation T through the Loewner framework
such that T(jw;) = T(jw;)
© Compute 7A's . A
Ts=argmin||T — T
TESH n; 0o

On the closest stable descriptor system in the respective spaces RHo and
RHoo, Kohler, M., Linear Algebra and its Applications, 2014.
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Loewner-based stability test

Closed-loop transfer T (infinite-dimensional)

Clygwi)H(gwi)e 7%
1+ C(ywi)H(gwi)e ™ TIvi

@ Compute samples T(jw;) =

@ Obtain a minimal realisation T through the Loewner framework
such that T(jw;) = T(jw;)

© Compute T, A .
Ts=argmin||T — T|x
TEST n 1m0

@ Compute the stability index as § = || Ts — 7|~
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Loewner-based stability test

Closed-loop transfer T (infinite-dimensional)

Cwi)H(gwi)e™ ™%

@ Compute samples T(jw;) = T COoNH o 77

@ Obtain a minimal realisation T through the Loewner framework
such that T(jw;) = T(jw;)

© Compute T, A A
Ts=argmin||T — T|x
TEST n 1m0
@ Compute the stability index as § = || Ts — 7|~
IF S < ethen T is stable
ELSE S > € then T is unstable
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Results

Closed-loop transfer T (infinite-dimensional)

10°

10

Stability tag S

10.

0 4 45 5 5.5 6

Time delay 7 (s)

Stability tag as a function of the
delay 7 in the loop.
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0.02
05
0.015
0 0.01
= 0,005
205 z
= 4 0 1
E E
1 -0.005
-0.01
15
-0.015 /
2 0.02
25 2 15 -1 05 0 05 -1.05 1 -0.95
Re(L(s)) Re(L(s))

Nyquist diagram for varying values of 7: S < 10710 (stable
configuration) and S > 1071% (unstable configuration).
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1 1
1 1

! . [ Use data }
- Lo

1 1

1 1

| | High-order K [ K tailored to P, ] i [Reduced controller}
1 | tailored to P |

1 1

[ Use P } [Use reduced-model P,]

Model-based design

v' The Loewner framework is a versatile and efficient tool for the
control of high/infinite-order systems
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Model-based design

v' The Loewner framework is a versatile and efficient tool for the
control of high/infinite-order systems

v It provides a stability test when used with a projection on RH
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[ Use P } [Use reduced-model P,]

Model-based design

v' The Loewner framework is a versatile and efficient tool for the
control of high/infinite-order systems

v It provides a stability test when used with a projection on RH

— Move toward robustness analysis
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Conclusion

Y

[ Use data }

[ Use P } [Use reduced-model P,]

High-order K [ K tailored to P, ] [Reduced controller}
tailored to P

Model-based design

v' The Loewner framework is a versatile and efficient tool for the
control of high/infinite-order systems

v It provides a stability test when used with a projection on RH
— Move toward robustness analysis

— Which frequencies to use? What about noise?
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