Introduction	MOR-control	MOR-stability	Conclusion
00	000000	0000	0

Contrôle et analyse de stabilité de systèmes de dimension infinie Approches directes et indirectes par l'interpolation de Loewner

Pauline Kergus¹, Charles Poussot-Vassal², Pierre Vuillemin²

¹Department of Automatic Control, Lund University ²DTIS, ONERA, Toulouse

Journees Nationales d'Automatique de la SAGIP

26/11/2020

Overview of	the presentation		
00	000000	0000	0
Introduction	MOR-control	MOR-stability	Conclusion

Overview of the presentation

2 MOR-based control of infinite dimensional systems

3 MOR-based stability analysis

Introduction	
00	

MOR-control

MOR-stability 0000

Conclusion O

Control of high-order systems

Introduction	MOR-control	MOR-stability	Conclusion
0•	000000	0000	0

Control of high-order systems

Foias, C., Özbay, H., Tannenbaum, A. (1996). *Robust control of infinite dimensional systems: frequency domain methods.* Springer.

IntroductionMOR-controlMOR-stabilityConclusiono●000000000000

Control of high-order systems

Morris, K., Levine, W. S. (2010). Control of systems governed by partial differential equations. The control theory handbook.

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	0000	0

Control of high-order systems

Model-based design

MOR-control

MOR-stability 0000

Conclusion O

Control of high-order systems

Kergus, P (2020), Data-driven control of infinite dimensional systems: Application to a continuous crystallizer, submitted to IEEE Control System Letters.
 Introduction
 MOR-control
 MOR-stability
 Conclusion

 O•
 000000
 00000
 0
 0

Control of high-order systems

Model reduction is everywhere

Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. SIAM.

MOR-based control of infinite dimensional systems

1 Introduction: Model Order Reduction (MOR) and Control

- 2 MOR-based control of infinite dimensional systems
 - Illustrative example
 - The Loewner framework
 - Model-based approach
 - Data-driven approach
 - Model-based vs data-driven control
- 3 MOR-based stability analysis
 - Motivations
 - Loewner-based stability test

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O
Illustrative ex	ample		

$$\begin{array}{rcl} \frac{\partial \widetilde{y}(x,t)}{\partial x} + 2x \frac{\partial \widetilde{y}(x,t)}{\partial t} &= 0 & (\text{transport equation}) \\ \widetilde{y}(x,0) &= 0 & (\text{initial condition}) \\ \widetilde{y}(0,t) &= \frac{1}{\sqrt{t}} \widetilde{u}_f(0,t) & (\text{control input}) \\ \\ \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} u(0,s) &= u_f(0,s) & (\text{controller bandwidth}), \end{array}$$

Introduction	MOR-control	MOR-stability	Conclusion
00	○●○○○○	0000	O
Illustrative ex	ample		

$$y(x,s) = \frac{\sqrt{\pi}}{\sqrt{s}} e^{-x^2 s} \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} u(s) = H(x,s)u(0,s)$$

x = 1.9592

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O
The Loewner fra	amework		

Build \widehat{H} such that $\forall k, \ \widehat{H}(s_k) = H(s_k)$

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A. C., Lefteriu, S., Ionita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and Approximation: Theory and Algorithms.

The Leavener	fromourorle		
Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A. C., Lefteriu, S., Ionita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and Approximation: Theory and Algorithms.

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O
The Loewner fram	mework		

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A. C., Lefteriu, S., Ionita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and Approximation: Theory and Algorithms.

The Leave	an fuana arriante		
00	00000	0000	0
Introduction	MOR-control	MOR-stability	Conclusion

A tutorial introduction to the Loewner framework for model reduction, Antoulas, A. C., Lefteriu, S., Ionita, A. C., Benner, P., Cohen, A. (2017), Model Reduction and Approximation: Theory and Algorithms.

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O
Model-based	approach		

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O

Model-based approach

MOR-control

MOR-stability 0000

Conclusion O

Model-based approach

MOR-control

MOR-stability 0000 Conclusion O

Data-driven approach

 $K^{\star} = H^{-1}M(1 - M)^{-1}$

Risk of instabily compensation in the open-loop

$$\begin{array}{c} H(0) = \infty \\ H(\infty) = 0 \end{array} \qquad \longrightarrow \qquad \begin{array}{c} M(0) = 1 \\ M(\infty) = 0 \end{array}$$

MOR-control ○○○○●○ MOR-stability 0000 Conclusion O

Data-driven approach

MOR-control

MOR-stability 0000 Conclusion O

Data-driven approach

MOR-control ○○○○●○ MOR-stability 0000 Conclusion O

Data-driven approach

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O

Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- Model based approach
- Data-driven approach

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O

Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- Model based approach
 - more steps
- Data-driven approach
 - + direct control design
 - less flexible specifications

Introduction	MOR-control	MOR-stability	Conclusion
00		0000	O

Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- Model based approach
 - more steps

+/- guaranteed stability but for the reduced-order model \hat{H}

- Data-driven approach
 - + direct control design
 - less flexible specifications

+/- conservative data-driven stability test

Introduction	MOR-control	MOR-stability	Conclusion
00		●○○○	O

MOR-based stability analysis

Introduction: Model Order Reduction (MOR) and Control

- 2 MOR-based control of infinite dimensional systems
 - Illustrative example
 - The Loewner framework
 - Model-based approach
 - Data-driven approach
 - Model-based vs data-driven control
- 3 MOR-based stability analysis
 - Motivations
 - Loewner-based stability test

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	○●○○	O
Motivations			

Does the controller stabilise the real system?

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable $\Delta = K - K^*$ such that $\|\Delta\|_{\infty} \leq \gamma^{-1}$ if and only if $\|(1 - M)P\|_{\infty} < \gamma$

Van Heusden, K., Karimi, A., Bonvin, D. (2009). *Data-driven controller validation*. IFAC Proceedings.

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	••••	O
Motivations			

Does the controller stabilise the real system?

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable $\Delta = K - K^* \text{ such that } \|\Delta\|_{\infty} \leq \gamma^{-1} \text{ if and only if } \|(1 - M)P\|_{\infty} < \gamma$

Van Heusden, K., Karimi, A., Bonvin, D. (2009). *Data-driven controller validation*. IFAC Proceedings.

Introduction 00	MOR-control 000000	MOR-stability ○●0	Conclusion O
Loewner-bas	ed stability test		
	Closed-loop transfer	T(infinite-dimensional)	

 $H(s)e^{-\tau s}$

Interpolation-based infinite dimensional model control design and stability analysis, C. Poussot-Vassal, P. Kergus, P. Vuillemin, *chapter to appear*.

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	0000	0

() Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}$

Introduction 00		MOR-control 000000	MOR-stability ○●●	Conclusion O

- **1** Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}$
- **2** Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$

Introduction 00		MOR-control 000000	MOR-stability ○○●○	Conclusion O

- **()** Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}$
- **2** Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$
- **3** Compute \hat{T}_s

$$\hat{T}_s = \operatorname*{arg\,min}_{T \in \mathbb{S}^+_{n,n_i,n_o}} \|T - \hat{T}\|_{\infty}$$

On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_∞ , Köhler, M., Linear Algebra and its Applications, 2014.

Introduction 00		MOR-control 000000	MOR-stability ○○●○	Conclusion O

1 Compute samples
$$T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}$$

- **2** Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$
- **3** Compute \hat{T}_s

$$\hat{T}_s = \operatorname*{arg\,min}_{T\in\mathbb{S}^+_{n,n_i,n_o}} \|T-\hat{T}\|_{\infty}$$

 $\textbf{ Or must be stability index as } S = \| \hat{\mathcal{T}}_s - \hat{\mathcal{T}} \|_\infty$

Introduction 00		MOR-control 000000	MOR-stability ○○●○	Conclusion O

1 Compute samples
$$T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau_j\omega_i}}$$

- **2** Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$
- **3** Compute \hat{T}_s

$$\hat{T}_s = \operatorname*{arg\,min}_{T\in\mathbb{S}^+_{n,n_i,n_o}} \|T-\hat{T}\|_{\infty}$$

- **4** Compute the stability index as $S = \|\hat{T}_s \hat{T}\|_{\infty}$
- **IF** $S < \epsilon$ then T is stable
- **ELSE** $S > \epsilon$ then T is unstable

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	○○○●	O
Results			

Stability tag as a function of the delay τ in the loop.

Introduction	MOR-control	MOR-stability	Conclusion
00	000000	0000	O
Results			

MOR-control

MOR-stability 0000 Conclusion

Conclusion

✓ The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems

MOR-control

MOR-stability 0000 Conclusion

- ✓ The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems
- $\checkmark~$ It provides a stability test when used with a projection on \mathcal{RH}_∞

MOR-control

MOR-stability 0000 Conclusion

- $\checkmark\,$ The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems
- $\checkmark~$ It provides a stability test when used with a projection on \mathcal{RH}_∞
- $\rightarrow~$ Move toward robustness analysis

MOR-control

MOR-stability 0000 Conclusion

- ✓ The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems
- $\checkmark~$ It provides a stability test when used with a projection on \mathcal{RH}_∞
- $\rightarrow~$ Move toward robustness analysis
- $\rightarrow\,$ Which frequencies to use? What about noise?