Cnrs
${ }^{[1]}$ ISL - French-German Research Institute of Saint-Louis
${ }^{[2]}$ University Grenoble Alpes, Grenoble INP, GIPSA-lab

Quasi-LPV Modeling and Control of Projectile Pitch Dynamics through State Transformation Technique

May $24^{\text {th }} 2022$, Bidart
Ph.D. student Gian Marco VINCO ${ }^{[1][2]}$
Supervisors
Prof. Olivier SENAME ${ }^{[2]}$
Dr. Spilios THEODOULIS ${ }^{[1]}$
Dr. Guillaume STRUB ${ }^{[1]}$
A joint initiative of

Development of guided munitions:

* Unguided munitions suffer from on-target dispersion.
* Employment of aerodynamic control surfaces (nose-mounted canards and/or tail fins).
* Stability design approaches:
- spin-stabilized architecture ${ }^{[1-3]}$.
- fin-stabilized architecture ${ }^{[4-6]}$.

Limitations of spin-stabilization...

* High spin rate generates nonlinear couplings ${ }^{[7]}$.
* Operating range depends on the firing gun capability.

Long-Range Guided Projectile (LRGP):

Figure 1. LRGP concept and flight strategy.

References ${ }^{[1]}$ Doug Storsved. PGK and the impact of affordable precision on the fires mission.
${ }^{[2]}$ S. Theodoulis, Y. Morel, and P. Wernert. Modelling and stability analysis of the 155 mm spin-stabilized projectile equipped with steering fins. ${ }^{[3]}$ Thomas Pettersson, Richard Buretta, and David Cook. Aerodynamics and flight stability for a course corrected artillery round.
${ }^{[4]}$ Robert A. Nulk, Harold L. Pastricky, and Phillip A. Morrison. Copperhead semiactive laser guidance system development.
${ }^{[5]}$ Phillip H. Morrison and David S. Amberntson. Guidance and control of a cannon-launched guided projectile.
${ }^{[6]}$ Lawrence L. Wells. The projectile GRAM SAASM for ERGM and excalibur.
${ }^{[7]}$ K.H. Lloyd and D.P. Brown. Instability of spinning projectiles during terminal guidance.

Linear Parameter Varying formulation:

* Nontrivial transformation process.
* Standard approach in aerospace: linearization-based models ${ }^{[1-2]}$.
* Alternative methods:
- Function Substitution ${ }^{[3-4] ;}$
- Velocity-based ${ }^{[5]}$;
- State Transformation ${ }^{[6-7]}$.
* State Transformation: no approximations are involved in the process.
${ }^{[1]}$ Theodoulis, S., Morel, Y., Wernert, P., and Tzes, A. (2010). LPV modeling of guided projectiles for terminal guidance.
${ }^{[2]}$ Prempain, E., Postlethwaite, I., and Vorley, D. (2001). A gain scheduled autopilot design for a bank-to-turn missile.
${ }^{[3]}$ Pfifer, H. (2012). Quasi-LPV model of a NDI-controlled missile based on function substitution.
${ }^{[4]}$ Marcos, A. and Balas, G.J. (2004). Development of linear-parameter-varying models for aircraft.
${ }^{[5]}$ Leith, D.J. and Leithead, W. (1998). Gain-scheduled and nonlinear systems: dynamic analysis by velocity-based linearization families.
${ }^{[6]}$ Shamma, J.S. and Cloutier, J.R. (1993). Gain-scheduled missile autopilot design using linear parameter varying transformations.
${ }^{[7]}$ Carter, L.H. and Shamma, J.S. (1996). Gain-scheduled bank-to-turn autopilot design using linear parameter varying transformations.

Equation 1. Projectile pitch dynamics.

Figure 2. Body reference frame and coordinates.

```
\(\left(X=\bar{q} S\left(C_{\mathrm{X}_{\alpha 0}}(\mathcal{M})+C_{\mathrm{X}_{\alpha 2}}(\mathcal{M}) \sin ^{2} \alpha+C_{\mathrm{X}_{\alpha 4}}(\mathcal{M}) \sin ^{4} \alpha+C_{\mathrm{X}_{\delta 0}}(\mathcal{M})+C_{\mathrm{X}_{\delta 2}}(\mathcal{M}) \sin ^{2} \delta_{\mathrm{eff}}\right)\right.\)
    \(Z=\bar{q} S\left(C_{\mathrm{Z}_{\alpha 1}}(\mathcal{M}) \sin \alpha+C_{\mathrm{Z}_{\delta 1}}(\mathcal{M}) \sin \delta_{q}+C_{\mathrm{Z}_{\delta 3}}(\mathcal{M}) \sin ^{3} \delta_{q}\right)\)
    \(M=\bar{q} d S\left(C_{\mathrm{m}_{\alpha 1}}(\mathcal{M}) \sin \alpha+C_{\mathrm{m}_{\alpha 3}}(\mathcal{M}) \sin ^{3} \alpha+C_{\mathrm{m}_{\alpha 5}}(\mathcal{M}) \sin ^{5} \alpha+C_{\mathrm{m}_{\delta 1}}(\mathcal{M}) \sin \delta_{q}+C_{\mathrm{m}_{\delta 3}}(\mathcal{M}) \sin ^{3} \delta_{q}\right)\)
```

Equation 2. Projectile aerodynamic forces and moments.

Local canards deflections ($\delta_{\mathrm{r}}, \delta_{\mathrm{l}}$) are combined into virtual roll and pitch deflections (δ_{p}, δ_{q}).

$$
\begin{aligned}
& \delta_{p}=\frac{-\delta_{r}+\delta_{l}}{2} \\
& \delta_{q}=\frac{\delta_{r}+\delta_{l}}{2}
\end{aligned} \quad \square\left[\begin{array}{c}
\delta_{p} \\
\delta_{q}
\end{array}\right]=\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
\delta_{\mathrm{r}} \\
\delta_{1}
\end{array}\right]
$$

Equation 3. Control allocator relation.

The longitudinal control is the nonlinear combination, $\delta_{\text {eff }}$:

$$
\delta_{\mathrm{eff}}=\sqrt{\delta_{p}^{2}+\delta_{q}^{2}}
$$

Equation 4. Longitudinal control contribution.

Figure 3. Canards local deflection angles.

Figure 4. Virtual deflections: (a) virtual roll; (b) virtual pitch.

State transformation aimed to remove all the nonlinearities present in the model, that do not depend on the scheduling variables ${ }^{[1-2]}$.

* Consider an output dependent system:

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{z} \\
\dot{w}
\end{array}\right] } & =\left[\begin{array}{l}
f_{1}(\rho) \\
f_{2}(\rho)
\end{array}\right]+\left[\begin{array}{ll}
A_{11}(\rho) & A_{12}(\rho) \\
A_{21}(\rho) & A_{22}(\rho)
\end{array}\right]\left[\begin{array}{c}
Z \\
w
\end{array}\right]+\left[\begin{array}{l}
B_{1}(\rho) \\
B_{2}(\rho)
\end{array}\right] u \\
y & =z \tag{1}
\end{align*}
$$

- State: $x(t)=[z(t) w(t)], z(t) \in \mathbb{R}^{n_{z}}, w(t) \in \mathbb{R}^{n_{w}}$,
- Input: $u(t) \in \mathbb{R}^{n_{u}}$,
- Nonlinearities: $f_{1}(\rho), f_{2}(\rho)$,
- Scheduling vector: $\rho(t)=[z(t) \Omega(t)]$.
* Assuming:
- $\quad f_{1}(\rho), f_{2}(\rho)$ only functions of the measured output $z(t)$,
- trim functions $w_{e q}(\rho), u_{e q}(\rho)$ are continuously differentiable,
- $n_{z}=n_{u}$,
then impose the trimming:
$\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}f_{1}(\rho) \\ f_{2}(\rho)\end{array}\right]+\left[\begin{array}{ll}A_{11}(\rho) & A_{12}(\rho) \\ A_{21}(\rho) & A_{22}(\rho)\end{array}\right]\left[\begin{array}{c}z \\ w_{e q}(\rho)\end{array}\right]+\left[\begin{array}{l}B_{1}(\rho) \\ B_{2}(\rho)\end{array}\right] u_{e q}(\rho) \quad \square \quad$ Trimming functions: $w_{e q}(\rho), u_{e q}(\rho)$
(2)

[^0]* By subtracting (1)-(2) and introducing the state derivative, $\dot{w}_{e q}=\frac{d w_{e q}}{d t}=\frac{d w_{e q}}{d \rho} \dot{\rho}$

$$
\left[\begin{array}{c}
\dot{Z} \\
\dot{\xi}
\end{array}\right]=\left[\begin{array}{cc}
0 & A_{12}(\rho) \\
0 & \tilde{A}_{22}(\rho)
\end{array}\right]\left[\begin{array}{l}
Z \\
\xi
\end{array}\right]+\left[\begin{array}{c}
B_{1}(\rho) \\
\tilde{B}_{2}(\rho)
\end{array}\right] v+\left[\begin{array}{c}
0 \\
E(\rho)
\end{array}\right] \dot{\Omega}
$$

Equation 5. Quasi-LPV State Transformation-based model.

Where: $\quad \xi:=w(t)-w_{e q}(\rho(t))$

$$
\begin{aligned}
v & :=u(t)-u_{e q}(\rho(t)) \\
\tilde{A}_{22}(\rho) & :=A_{22}(\rho)-\frac{d w_{e q}}{d z} A_{12}(\rho) \\
\tilde{B}_{2}(\rho) & :=B_{2}(\rho)-\frac{d w_{e q}}{d z} B_{1}(\rho) \\
E(\rho) & :=\frac{d w_{e q}}{d \Omega}
\end{aligned}
$$

* Input v depends on the selected equilibrium condition $u_{e q}$.

Considerations:

* $E(\rho)$ dynamics of the exogenous variables is assumed as a disturbance to be rejected, neglected in the model ${ }^{[1]}$.

Theoretical solution:

- Imposition of $u_{e q}(\rho)=0$

High limitation on the feasible trim map.

* Augment an integrator at the plant input, $u(t)=\int \sigma(t) d t$:

$$
\left[\begin{array}{c}
\dot{z} \\
\dot{\xi} \\
\dot{\nu}
\end{array}\right]=\left[\begin{array}{lll}
0 & A_{12}(\rho) & B_{1}(\rho) \\
0 & \tilde{A}_{22}(\rho) & \tilde{B}_{2}(\rho) \\
0 & \tilde{A}_{32}(\rho) & \tilde{B}_{3}(\rho)
\end{array}\right]\left[\begin{array}{l}
Z \\
\xi \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
I
\end{array}\right] \sigma
$$

Equation 6. Quasi-LPV integrator-augmented model.

$$
\begin{aligned}
& \text { Where: } \quad \begin{aligned}
\tilde{A}_{32}(\rho) & :=-\frac{d u_{e q}}{d z} A_{12}(\rho) \\
& \tilde{B}_{3}(\rho):=-\frac{d u_{e q}}{d z} B_{1}(\rho)
\end{aligned}
\end{aligned}
$$

Considerations:

* Input is uniformly zero at every equilibrium point.
* Motivated by the intention of designing a controller with pure integral action.

Advantages:
\checkmark Exact transformation between the original nonlinear system and the obtained quasi-LPV model.

2. State Transformation Approach

Standard quasi-LPV

Figure 5. Quasi-LPV model: simulation architecture.

* Feedback loop updating the input at the current trim point.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{z} \\
\dot{\xi}
\end{array}\right] } & =\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q}_{\mathrm{dev}}
\end{array}\right]=\left[\begin{array}{cc}
0 & A_{12}(\rho) \\
0 & \tilde{A}_{22}(\rho)
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q_{\mathrm{dev}}
\end{array}\right]+\left[\begin{array}{c}
B_{1}(\rho) \\
\tilde{B}_{2}(\rho)
\end{array}\right] \delta_{q, \mathrm{dev}} \\
q_{\mathrm{dev}} & =q-q_{\mathrm{eq}} \quad \delta_{q, \mathrm{dev}}=\delta_{q}-\delta_{q, \mathrm{eq}} \\
\rho(t) & =[z(t) \Omega(t)]=[\alpha(t) h(t) V(t)]
\end{aligned}
$$

Equation 7. Quasi-LPV standard pitch dynamics model.

Augmented quasi-LPV

Figure 6. Augmented quasi-LPV model: simulation architecture.

* Integrator at the input of the NL model for compensation.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{Z} \\
\dot{\xi} \\
\dot{\nu}
\end{array}\right] } & =\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q}_{\mathrm{dev}} \\
\dot{\delta}_{q, \mathrm{dev}}
\end{array}\right]=\left[\begin{array}{lll}
0 & A_{12}(\rho) & B_{1}(\rho) \\
0 & \tilde{A}_{22}(\rho) & \tilde{B}_{2}(\rho) \\
0 & \tilde{A}_{32}(\rho) & \tilde{B}_{3}(\rho)
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q_{\mathrm{dev}} \\
\delta_{q, \mathrm{dev}}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
I
\end{array}\right] \sigma \\
\delta_{q, \mathrm{dev}} & =\int \sigma
\end{aligned}
$$

[^1]
2. State Transformation Approach

* The pitch nonlinear dynamics is not input affine.

Not feasible for State Transformation formulation.
(nonlinear with respect to $\delta_{\text {eff }}$ and δ_{q}.)

Adopted solution:

* Assume a narrower canards deflection range $\delta_{\mathrm{r}}, \delta_{\mathrm{l}}$ to assure linear response.
* Fit the reduced CFD dataset with a linear regression models:

$$
\begin{aligned}
C_{\mathrm{Z}_{\delta}} & =C_{\mathrm{Z}_{\delta}}(\mathcal{M}) \sin \delta_{q} \\
C_{\mathrm{m}_{\delta}} & =C_{\mathrm{m}_{\delta}}(\mathcal{M}) \sin \delta_{q}
\end{aligned}
$$

Neglect the nonlinear longitudinal term $\delta_{\text {eff }}$.

Figure 4. CFD aerodynamic data: (a) vertical force; (b) pitching moment.

The selected scheduling parameter:

$$
\begin{aligned}
\rho(t) & =[z(t) \Omega(t)]=[\alpha(t) h(t) V(t)], \\
\alpha & \in[10,16](\mathrm{deg}), \\
V & \in[31.60,316.05](\mathrm{m} / \mathrm{s}) .
\end{aligned}
$$

Trimmed flight conditions:

* Altitude assumed constant, $h=6029$ (m).
* Trimming analysis to define the initial equilibrium conditions, $q_{\text {eq }}$ and $\delta_{q, \text { eq }}$.
* Selection criteria:
- Lower trimmed input value (allows larger input command in simulations);
- Stability characterization of the projectile.

Figure 7. Trimming analysis: (a) control deflection; (b) pitch rate.

$\alpha(\mathrm{deg})$	$V(\mathrm{~m} / \mathrm{s})$	$h(\mathrm{~m})$	$q_{\text {eq }}(\mathrm{deg} / \mathrm{s})$	$\delta_{q, \mathrm{eq}}(\mathrm{deg})$
14	158.026	6029	-1	0.6

Table 1. Selected trimming conditions.

3. Models Validations and Comparison

Simulation parameters:

* Deflection commands ${ }^{[1]}$:
- $\delta_{q_{1}}=20(\mathrm{deg})$, at $t_{1}=5(\mathrm{~s})$,
- $\delta_{q_{2}}=-15(\mathrm{deg})$, at $t_{2}=30(\mathrm{~s})$.

Considerations:

* $\mathrm{NL}_{\text {sim }}$ and q -LPV curves are perfectly overlapped for both the models (exact transformation).
* Mismatch between NL and q-LPV curves due to the simplified aerodynamic model.
* Larger oscillation for the quasi-LPV model due to the destabilizing effect of the inner feedback loop.

${ }^{[1]}$ Modelled as pulses for the Augmented quasi-LPV model.
Figure 8. Simulation results comparison.

RMSE evaluated between the three models and normalized by the original nonlinear system values.

Considerations:

* Perfect correspondence between the NL $-\mathrm{NL}_{\text {sim }}$ and NL - qLPV.

Standard quasi-LPV

Considerations:

* Larger $\mathrm{NL}_{\text {sim }}$ - qLPV mismatch due to the different ways the integrator is implemented.
* Lower error between the original nonlinear system and the qLPV (higher accuracy).

Figure 9. RMSE results related to the Standard quasi-LPV model. س 0.18 $\sum^{\text {山 }} 0$. $\sum_{a}^{\infty} 0.1$ ס 0.12
 틍 0.08 $\stackrel{0}{乙} 0.06$ 0.04 0.02

Figure 10. RMSE results related to the Augmented quasi-LPV model.

Results Overview:

* Derivation of the pitch dynamics of the guided projectile.
* Investigation of the State Transformation formulation, and considerations on advantages and limitations.
* Development of two quasi-LPV models:
- Standard formulation dependent on the trim point.
- Augmented model with integrator at the input.
* Models comparison:
- Simulation accuracy with respect to the original nonlinear dynamics.
- Performance comparison (RMSE, graphical).

Future Works:

* Derivation of a quasi-LPV model of the roll-yaw projectile dynamics.
* Development of a LPV based Bank-To-Turn autopilot through polytopic design.
* Development of an appropriate guidance law for lift/drag maximization.
* State observer design for accurate Angle-of-Attack estimation to couple the control strategy with an appropriate gliding guidance law.

Thank you for your kind attention!
 Any questions?

ISL - French-German Research Institute of Saint-Louis University Grenoble Alpes, Grenoble INP, GIPSA-lab
[1] Balas, G.J. (2002). Linear, parameter-varying control and its application to aerospace systems. In Proceedings of the ICAS congress. Toronto, Canada.
[2] Leith, D.J. and Leithead, W. (1998). Gain-scheduled and nonlinear systems: dynamic analysis by velocity-based linearization families. International Journal of Control, 70(2), 289-317.
[3] Leith, D.J. and Leithead, W.E. (2000). Survey of gain-scheduling analysis and design. International journal of control, 73(11), 1001-1025.
[4] Marcos, A. and Balas, G.J. (2004). Development of linear-parameter-varying models for aircraft. Journal of Guidance, Control, and Dynamics, 27(2), 218-228.
[5] Mohammadpour, J. and Scherer, C.W. (2012). Control of linear parameter varying systems with applications. Springer Science \& Business Media.
[6] Pfifer, H. (2012). Quasi-LPV model of a NDI-controlled missile based on function substitution. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, 4970. Minneapolis, MN, USA.
[7] Prempain, E., Postlethwaite, I., and Vorley, D. (2001). A gain scheduled autopilot design for a bank-to-turn missile. In Proceedings of the 2001 European Control Conference (ECC), 2052-2057. IEEE, Porto, Portugal.
[8] Sename, O., Gaspar, P., and Bokor, J. (2013). Robust control and linear parameter varying approaches: application to vehicle dynamics, volume 437. Springer.
[9] Carter, L.H. and Shamma, J.S. (1996). Gain-scheduled bank-to-turn autopilot design using linear parameter varying transformations. Journal of guidance, control, and dynamics, 19(5), 1056-1063.
[10] Shamma, J.S. and Cloutier, J.R. (1993). Gain-scheduled missile autopilot design using linear parameter varying transformations. Journal of guidance, Control, and dynamics, 16(2), 256-263.
[11] Theodoulis, S., Morel, Y., Wernert, P., and Tzes, A. (2010). LPV modeling of guided projectiles for terminal guidance. In Proceedings of the 18th Mediterranean Conference on Control and Automation, MED'10, 1455-1460. IEEE, Marrakech, Morocco.
[12] Vinco, G.M., Theodoulis, S., and Sename, O. (2022). Flight dynamics modeling and simulator design for a new class of long-range guided projectiles. In CEAS EuroGNC Conference. Berlin, Germany.

[^0]: References
 ${ }^{[1]}$ Leith, D.J. and Leithead, W.E. (2000). Survey of gain-scheduling analysis and design.
 ${ }^{[2]}$ Shamma, J.S. and Cloutier, J.R. (1993). Gain-scheduled missile autopilot design using linear parameter varying transformations.

[^1]: Equation 8. Quasi-LPV Augmented pitch dynamics model.

