
gipsa-lab
Cnrs
${ }^{[1]}$ ISL - French-German Research Institute of Saint-Louis, GNC group, Saint-Louis, France
${ }^{[2]}$ University Grenoble Alpes, Grenoble INP, GIPSA-lab, Grenoble, France
${ }^{[3]}$ TU Delft, Faculty of Aerospace Engineering, Delft, The Netherlands

Uneven Grid-based Linear Parameter-Varying Controller Design for Guided Projectiles

$1{ }^{\text {er }}$ Congrès Annuel de la SAGIP
7 June 2023, Marseille, France

Ph.D. student Gian Marco VINCO ${ }^{[1][2]}$

Supervisors
Prof. Spilios THEODOULIS ${ }^{[3]}$, Prof. Olivier SENAME [2] , Dr. Guillaume STRUB ${ }^{[1]}$

A joint initiative of

Outline

Flight Control Framework

* Traditionally based on LTI gain-scheduling design;
* Controller obtained as the interpolation of a collection of local controllers designed at specific flight points;
* Lack of a priori stability and performance guarantees at any intermediate flight conditions.

Linear Parameter Varying Framework

* Increasing number of applications concerning aircraft and missiles LPV modeling and control design;
* Stronger stability and performance guarantees across the flight envelope considered during the design;
* Limited applications on guided projectiles design.

Long Range Guided Projectile (LRGP)

Figure 1. LRGP concept: (a) aerodynamic surfaces; (b) side-top view.

Pitch Channel Dynamics ${ }^{[1]}$

$$
\left\{\begin{align*}
\dot{\alpha} & =\left(\frac{1}{m V}\right)(-X \sin \alpha+Z \cos \alpha+m g(\sin \alpha \sin \vartheta+\cos \alpha \cos \vartheta))+q \\
\dot{q} & =\frac{1}{I_{y y}}(M) \tag{1}\\
\eta_{z} & =\frac{Z}{m g}
\end{align*}\right.
$$

$$
\text { Aerodynamics }{ }^{[2]}
$$

$$
\left\{\begin{array}{l}
X=\bar{q} S\left(C_{\mathrm{x}_{\alpha 0}}+C_{\mathrm{x}_{\alpha 2}} \sin ^{2} \alpha+C_{\mathrm{X}_{\alpha 4}} \sin ^{4} \alpha\right) \tag{2}\\
Z=\bar{q} S\left(C_{\mathrm{Z}_{\alpha 1}} \sin \alpha+\left(\frac{d}{V}\right) C_{Z_{\mathrm{D}}} q+C_{\mathrm{Z}_{\delta_{q}}} \delta_{q}\right) \\
M=\bar{q} d S\left(C_{\mathrm{m}_{\alpha 1}} \sin \alpha+C_{\mathrm{m}_{\alpha 3}} \sin ^{3} \alpha+C_{\mathrm{m}_{\alpha 5}} \sin ^{5} \alpha+\left(\frac{d}{V}\right) C_{m_{\mathrm{D}}} q+C_{\mathrm{m}_{\delta_{q}} \delta_{q}}\right)
\end{array}\right.
$$

(a)

$$
\delta_{q}=\frac{\delta_{r}+\delta_{l}}{2}
$$

(b)

Figure 2. Canards deflection: (a) local right deflection, δ_{r};
(b) virtual pitch deflection, δ_{q}.

NOTE: First-order aerodynamics approximation ${ }^{[2]}$ to obtain an affine model-input dependence (δ_{q}).
${ }^{[1]}$ Vinco, G.M., Theodoulis, S., and Sename, O. (2022). "Flight dynamics modeling and simulator design for a new class of long-range guided projectiles". ${ }^{[2]}$ Vinco, G.M., Theodoulis, S., Sename, O., and Strub, G. (2022). "Quasi-LPV Modeling of Guided Projectile Pitch Dynamics through State Transformation Technique".

LPV State Transformation Approach ${ }^{[1]}$

* Select the set of scheduling variables: $\rho(t)=[\alpha, V, h]^{T}$;
* Reformulate the nonlinear system (1)-(2) as an output nonlinear model;
* Define the off-equilibrium state, input, and output ($q_{\mathrm{dev}}, \delta_{q, \mathrm{dev}}, \eta_{z, \mathrm{dev}}$), to hide the nonlinearities:
* Integrate the input to avoid any parameter dependence:

$$
\left\{\begin{aligned}
q_{\mathrm{dev}} & =q-q_{e q}(\alpha) \\
\delta_{q, \mathrm{dev}} & =\delta_{q}-\delta_{q, e q}(\alpha) \\
\eta_{z, \mathrm{dev}} & =\eta_{z}-\eta_{z, e q}(\alpha)
\end{aligned}\right.
$$

$$
\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q}_{\mathrm{dev}}(\alpha) \\
\dot{\delta}_{q, \mathrm{dev}}(\alpha)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1+\frac{\bar{q} S d C_{Z_{\mathrm{D}}} \cos \alpha}{2 m V^{2}} & \frac{\bar{q} S C_{Z_{\delta q}} \cos \alpha}{m V} \\
0 & \frac{\bar{q} S d^{2} C_{m_{\mathrm{D}}}}{2 I_{y y} V}-\frac{\partial q_{e q}}{\partial \alpha}\left(1+\frac{\bar{q} S d C_{Z_{\mathrm{D}}} \cos \alpha}{2 m V^{2}}\right) & \frac{\bar{q} S d C_{m_{\delta q}}}{I_{y y}}-\frac{\partial q_{e q}}{\partial \alpha}\left(\frac{\bar{q} S C_{Z_{\delta q}} \cos \alpha}{m V}\right) \\
0 & -\frac{\partial \delta_{q, e q}}{\partial \alpha}\left(1+\frac{\bar{q} S d C_{Z_{\mathrm{D}}} \cos \alpha}{2 m V^{2}}\right) & -\frac{\partial \delta_{q, e q}}{\partial \alpha}\left(\frac{\bar{q} S C_{Z_{\delta q}} \cos \alpha}{m V}\right)
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q_{\mathrm{dev}}(\alpha) \\
\delta_{q, \mathrm{dev}}(\alpha)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
I
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\alpha \tag{3}\\
q_{\mathrm{dev}}(\alpha) \\
\eta_{z, \mathrm{dev}}(\alpha)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{\bar{q} S d C_{Z_{\mathrm{D}}}}{m g V} & \frac{\bar{q} S C_{Z_{\delta q}}}{m g}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q_{\mathrm{dev}}(\alpha) \\
\delta_{q, \mathrm{dev}}(\alpha)
\end{array}\right]
$$

Grid-based Model

* Arbitrary model-parameter dependency;
* Interpolation of a set of LTI local realizations $\left(A_{i}, B_{i}, C_{i}, D_{i}\right)$;
* No restrictions on the interpolation method, a_{i} :
$\left[\begin{array}{c|c}A_{G r}(\rho) & B_{G r}(\rho) \\ \hline C_{G r}(\rho) & D_{G r}(\rho)\end{array}\right]=\sum_{i=j}^{j+1} a_{i}(\rho)\left[\begin{array}{c|c}A_{i} & B_{i} \\ \hline C_{i} & D_{i}\end{array}\right] ; \quad j=\left[1, \ldots, n_{g}\right]$

Grid-based Control Design

Resolution of a set of LMIs evaluated at all n_{g} grid points;

* Identification of a set of parameter-dependent Lyapunov functions ($X(\rho), Y(\rho)$);
* Fixed parameter dependency expressed through the selection of differentiable scalar functions $\left(f_{i}, g_{i}\right)$:

$$
\begin{equation*}
X(\rho)=X_{0}+\sum_{i=1}^{N} f_{i}(\rho) X_{i} \quad ; \quad Y(\rho)=Y_{0}+\sum_{i=1}^{N} g_{i}(\rho) Y_{i} \tag{5}
\end{equation*}
$$

* LPV controller defined by the interpolation of the obtained LTI local controllers on the grid.

Critical aspects:

* Design grid points selection;
* Basis functions selection.

Trade-off
Performance/Complexity.

Figure 3. 3D grid-based LPV system definition.

Objectives

* Verify the projectile dynamics across the flight envelope;
* Identify the most critical conditions;
* Allocate more design points of the grid in the most critical areas.

Observations

* System dynamics more unstable for :
$>$ Low AoA (stable $\forall \alpha \geq 10 \mathrm{deg}$);
> Low Airspeed;
> Low Altitude.
* Stall conditions for $\alpha \geq 25$ deg.

(a)

(b)

Figure 4. Pole-zero maps: (a) stable flight conditions; (b) stable/unstable flight conditions.

Figure 5. Stability analysis results:
3D stability grid.

Objectives

Baseline gliding phase Altitude/Airspeed trajectory relation;

* Identify the feasible areas of the flight envelope, based on the variation of the initial firing conditions;
* Select the design grid points inside those areas.

Observations

* Neglect the unfeasible areas from the design:
$>$ A: High h - low V;
\rightarrow B: Low h - high V.
* Improve the accuracy of the grid points selection.

Figure 6. Reference h / V gliding trajectory constraints.

Figure 7. Analysis results: stability/reachable flight areas superposition.

Objectives

* Assess the relevance of the n_{g} selection for each individual parameter range;
* Identify the best basis functions $\left(f_{i}, g_{i}\right)$ for each parameter Analysis
\longrightarrow

Design Scheme

* LPV \mathcal{H}_{∞} mixed sensitivity design (output feedback architecture);
* Reliable tracking capability $\left(W_{e}\right)$;
- Limited control effort (W_{u});
* Reasonable input/output disturbance rejection $\left(W_{d_{i}}, W_{d_{o}}\right)$.

```
select one parameter }\rho\in(\alpha,V,h
```

select one parameter }\rho\in(\alpha,V,h
range = [}\mp@subsup{\rho}{\mathrm{ min }}{},\mp@subsup{\rho}{\mathrm{ max }}{}
range = [}\mp@subsup{\rho}{\mathrm{ min }}{},\mp@subsup{\rho}{\mathrm{ max }}{}
for i\in(3, ... , max ng}
for i\in(3, ... , max ng}
range =[range,randi(range)]
range =[range,randi(range)]
for j\in investigated basis functions
for j\in investigated basis functions
\gamma\infty}=\mathrm{ LPV controller synthesis (i,j,range)
\gamma\infty}=\mathrm{ LPV controller synthesis (i,j,range)
end
end
end

```
end
```


Figure 8. Mixed sensitivity design scheme.

Analysis

* Basis functions selected based on the "mimic" principle:
$\alpha\left\{\begin{array}{l}f_{a 1}=a \\ f_{a 2}=\sin (a) \\ f_{a 3}=\cos (a)\end{array}\right.$
$V\left\{\begin{array}{l}f_{V 1}=V \\ f_{V 2}=1 / V \\ f_{V 3}=V^{2}\end{array}\right.$
$h\left\{\begin{array}{l}f_{h 1}=h \\ f_{h 2}=1 / h \\ f_{h 3}=h^{2}\end{array}\right.$
* Considered rages of variations:
$\alpha \in[0,15]$ deg ;
$V \in[150,280] \mathrm{m} / \mathrm{s} ; \quad h \in[1,13] \mathrm{km} ;$
$\dot{\alpha} \in[-10,10] \mathrm{deg} / \mathrm{s}$;
$\dot{V} \in[-5,5] \mathrm{m} / \mathrm{s}^{2} ; \quad \dot{h} \in[-50,50] \mathrm{m} / \mathrm{s} ;$

Observations

* Linear parameter-dependence: uniform trend, lower performance;
* Nonlinear dependence: incoherent trend, average higher performance;
* Generally negligible relevance of n_{g} on the design performance.

Figure 9. Grid analysis: γ_{∞} index for $f_{h 1}=h$.

Figure 10. Grid analysis: γ_{∞} index for $f_{h 1}=h, f_{h 2}=1 / h$.

Analysis Results

* Superpose the reachable flight points with the stability information.
* Select the flight points to cover the most critically feasible conditions.

Frequency Design Results

$$
\begin{array}{ll}
\quad \text { Grid } \\
n_{g}=80
\end{array} \begin{cases}\alpha=[3,7,9,12] \mathrm{deg} & \dot{\alpha} \in[-10,10] \mathrm{deg} / \mathrm{s} \\
V=[180,200,230,270] \mathrm{m} / \mathrm{s} & \dot{V} \in[-5,5] \mathrm{m} / \mathrm{s}^{2} \\
h=[1,3,6,9,13] \mathrm{km} & \dot{h} \in[-50,50] \mathrm{m} / \mathrm{s}\end{cases}
$$

Lyapunov Functions

$$
X(\rho)=Y(\rho)=X_{0}+\sin (\alpha) X_{\alpha 1}+\cos (\alpha) X_{\alpha 2}+V X_{V 1}+h X_{h 1}
$$

(a)

(b)

(c)

(d)

Figure 11. Design results: (a) sensitivity functions; (b) complementary sensitivity; (c) plant sensitivity; (d) controller sensitivity.

Simulation Objectives

Tracking of a reference angle-of-attack guidance trajectory;

* Limit the control effort to avoid the saturation of the canards.

Simulation Environment

* Guidance: angle-of-attack reference signal based on a Lift-to-Drag optimization law ${ }^{[1]}$;
* Atmosphere model: International Standard Atmosphere (ISA) 1975, ISO 2533;
* Aerodynamic model: multivariable regression model based on CFD dataset ${ }^{[2]}$;
* Output deviation: measurements adjustment to comply with the State Transformation formulation.

Model Dynamics

Figure 12. 6-DoF nonlinear simulator environment.

Figure 13. 6-DoF simulator: Airframe architecture.

Simulation Results

\checkmark Reliable tracking performances affected by a reasonable steady state error (< 1\%);
\checkmark Total canards pitch deflection far below from the saturation limits (<25 deg);
\checkmark Stability ensured at all the flight conditions across the investigated gliding phase trajectory.

Simulation Trajectories

Figure 14. Simulation results: projectile gliding trajectory.

(a)

(b)

(c)

(d)

Figure 15. Simulation trajectories: (a) angle-of-attack; (b) total pitch deflection; (c) h/V relation; (d) Mach number.

[^0]
Conclusions

Achievements

* Suitable LPV grid-based model formulation of the projectile dynamics;
* Reduction of the grid-based design computational complexity;
* Reliable controller design performances.

Future works

- Controller robustness assessment on a dense grid of flight conditions;
* Performance comparison with alternative LPV design methods.

Thank you for your kind attention!

Any questions?

ISL - French-German Research Institute of Saint-Louis University Grenoble Alpes, Grenoble INP, GIPSA-lab
Ph.D. student Gian Marco VINCO
Gian-Marco.Vinco@isl.eu

[^0]: French German Research Institute of Saint-Louis

