Conditions asymptotiquement nécessaires et suffisantes pour des inégalités polynomiales matricielles du second ordre

Lucas A.L. Oliveira*,**, Kevin Guelton*, Koffi M.D. Motchon*, Valter J.S. Leite**
* CReSTIC EA3804 - Université de Reims Champagne-Ardenne, Reims, France lucas.oliveira,kevin.guelton, koffi.motchon@univ-reims.fr
** CEFET-MG, Belo Horizonte, MG, Brazil
valter@ieee.org

June 7, 2023

Summary

- Introduction and previous results
- Main Result
- Numerical Examples
- Conclusion and Perspectives

Introduction

The negativeness of second order matrix-valued polynomials:

$$
P(\tau)=\tau^{2} \Phi_{2}+\tau \Phi_{1}+\Phi_{0}<0
$$

where $\Phi_{i} \in \mathbb{R}^{n \times n}(i=0,1,2)$ and $\tau \in[\underline{\tau}, \bar{\tau}]$.

- Often occurs for stability analysis or synthesis in the Time-varying delay systems framework. For instance when considering Looped Lyapunov-Krasovskii Functionals (LKF) in Sampled-Data controller design (see e.g. [Gao et al., 2020]).
- Extensive recent studies are made to provide relaxed LMI conditions satisfying (1) (see e.g. the recent survey in [Zhang et al., 2022] or the recent results in [Liu et al., 2023]).

Goal of this paper:

- to provide further relaxed LMI-based conditions (or at least an efficient alternative),
- to show that such approach may also be useful for some standard robust control problem, going beyond the traditional context of Time-Varying delay systems.

Overview of usual and recent approaches

The negativeness of second order matrix-valued polynomials:

$$
P(\tau)=\tau^{2} \Phi_{2}+\tau \Phi_{1}+\Phi_{0}<0
$$

where $\Phi_{i} \in \mathbb{R}^{n \times n}(i=0,1,2)$ and $\tau \in[\underline{\tau}, \bar{\tau}]$.

How to get LMI-based conditions satisfying (1)?

Geometrical based methods

NS conditions inspired by robust control techniques

Overview of usual and recent approaches: Geometric methods

[Kim, 2011]: $\forall \tau \in[\tau, \bar{\tau}]$, the matrix-valued polynomial inequality (1) holds if $P(\underline{\tau})<0$, $P(\bar{\tau})<0$ and $\Phi_{2} \geq 0$.
[Park and Park, 2020]: $\forall \tau \in[\tau, \bar{\tau}]$, the matrix-valued polynomial inequality (1) holds if $P(\underline{\tau})<0, P(\bar{\tau})<0$ and $P(\underline{\tau})+P(\bar{\tau})-\Delta \tau^{2}<0$.

[Liu et al., 2023]: $\forall \tau \in[\underline{\tau}, \bar{\tau}]$ and a given integer $N \in \mathbb{N}^{*}$, the quadratic polynomial inequality (1) holds if $P(\underline{\tau})<0, P(\bar{\tau})<0$, and $P\left(\underline{\tau}+\frac{i-1}{N} \Delta \tau\right)+P\left(\underline{\tau}+\frac{i}{N} \Delta \tau\right)-\frac{1}{N^{2}} \Delta \tau^{2} \Phi_{2}<0, \forall i \in \mathbb{I}_{N}^{*}$.

Overview of usual and recent approaches: NS Conditions

[Chen et al., 2022, de Oliveira and Souza, 2020]: $\forall \tau \in[\tau, \bar{\tau}]$, the quadratic polynomial inequality (1) holds if and only if there exist $0<D=D^{\top} \in \mathbb{R}^{p \times p}$ and a skew-symmetric matrix $G \in \mathbb{R}^{p \times p}$ such that:

$$
\left[\begin{array}{cc}
P(\underline{\tau}) & \frac{1}{2} \Phi_{1}+\underline{\tau} \Phi_{2} \\
\star & \Phi_{2}
\end{array}\right]<\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]^{\top}\left[\begin{array}{cc}
-D & G \\
\star & D
\end{array}\right]\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]
$$

where $H_{1}=\left[\begin{array}{ll}\Delta \tau I & 0\end{array}\right]$ and $H_{2}=\left[\begin{array}{ll}\Delta \tau I & -2 I\end{array}\right]$
[Park and Park, 2020]: $\forall \tau \in[\underline{\tau}, \bar{\tau}]$, the quadratic polynomial inequality (1) holds if and only if if there exists $0 \leq M+M^{\top} \in \mathbb{R}^{p \times p}$ such that:

$$
\left[\begin{array}{cc}
P(\underline{\tau}) & \frac{1}{2} \Phi_{1}+\underline{\tau} \Phi_{2}+\Delta \tau M \tag{2}\\
\star & \Phi_{2}-M-M^{\top}
\end{array}\right]<0
$$

Main Result

Summarized by the following Theorem, we provides new LMI conditions based on:

- partitioning the polynomial parameter range,
- rewriting (1) as an homogeneous polynomial constraint,
- applying Young's inequality for more relaxed conditions.

Theorem

For a pre-fixed number of partitioning intervals $N \in \mathbb{N}^{*}$, the quadratic polynomial inequality (1) holds $\forall \tau \in[\underline{\tau}, \bar{\tau}]$ such that the inequalities:
I) $P(\underline{\tau})<0$,
iI) $P\left(\bar{\tau}_{i}\right)<0$,
III) $2 P\left(\tau_{i}\right)+T\left(\tau_{i}, \bar{\tau}_{i}\right)<0$,
IV) $2 P\left(\bar{\tau}_{i}\right)+T\left(\tau_{i}, \bar{\tau}_{i}\right)<0$,
are satisfied with $T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)=2 \underline{\tau}_{i} \bar{\tau}_{i} \Phi_{2}+\left(\bar{\tau}_{i}-\underline{\tau}_{i}\right) \Phi_{1}+2 \Phi_{0}, \underline{\tau}_{i}=\underline{\tau}+\frac{(i-1)(\bar{\tau}-\underline{\tau})}{N}$ and $\bar{\tau}_{i}=\underline{\tau}+\frac{i(\bar{\tau}-\underline{\tau})}{N}$.

Main Result - Proof

- For any given $N \in \mathbb{N}^{*}$, consider the partition of the interval range of the parameter τ as $[\underline{\tau}, \bar{\tau}]=\cup_{i=1}^{N}\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$.
- $\forall i \in \mathbb{I}_{N}^{*}$ and $\forall \tau \in\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$, we define:

where $\alpha_{1 i} \in[0,1], \alpha_{2 i} \in[0,1]$ and $\alpha_{1 i}+\alpha_{2 i}=1$
- We have that $\tau=\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} \tau_{i}$, therefore the matrix-valued polynomial (1) can be rewritten as:

$$
\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} I_{i}\right)^{2} \phi_{2}+\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} I_{i}\right) \phi_{1}+\phi_{0}<0
$$

Main Result - Proof

- For any given $N \in \mathbb{N}^{*}$, consider the partition of the interval range of the parameter τ as $[\underline{\tau}, \bar{\tau}]=\cup_{i=1}^{N}\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$.
- $\forall i \in \mathbb{I}_{N}^{*}$ and $\forall \tau \in\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$, we define:

$$
\begin{equation*}
\alpha_{1 i}=\frac{\left(\tau-\underline{\tau}_{i}\right) N}{\Delta \tau} \text { and } \alpha_{2 i}=\frac{\left(\bar{\tau}_{i}-\tau\right) N}{\Delta \tau} \tag{4}
\end{equation*}
$$

where $\alpha_{1 i} \in[0,1], \alpha_{2 i} \in[0,1]$ and $\alpha_{1 i}+\alpha_{2 i}=1$

- We have that $\tau=\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} \mathcal{I}_{i}$, therefore the matrix-valued polynomial (1) can be rewritten as:

$$
\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} I_{i}\right)^{2} \phi_{2}+\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} I_{i}\right) \phi_{1}+\phi_{0}<0
$$

Main Result - Proof

- For any given $N \in \mathbb{N}^{*}$, consider the partition of the interval range of the parameter τ as $[\underline{\tau}, \bar{\tau}]=\cup_{i=1}^{N}\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$.
- $\forall i \in \mathbb{I}_{N}^{*}$ and $\forall \tau \in\left[\underline{\tau}_{i}, \bar{\tau}_{i}\right]$, we define:

$$
\begin{equation*}
\alpha_{1 i}=\frac{\left(\tau-\underline{\tau}_{i}\right) N}{\Delta \tau} \text { and } \alpha_{2 i}=\frac{\left(\bar{\tau}_{i}-\tau\right) N}{\Delta \tau} \tag{4}
\end{equation*}
$$

where $\alpha_{1 i} \in[0,1], \alpha_{2 i} \in[0,1]$ and $\alpha_{1 i}+\alpha_{2 i}=1$

- We have that $\tau=\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} \tau_{i}$, therefore the matrix-valued polynomial (1) can be rewritten as:

$$
\begin{equation*}
\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} \tau_{i}\right)^{2} \Phi_{2}+\left(\alpha_{1 i} \bar{\tau}_{i}+\alpha_{2 i} \tau_{i}\right) \Phi_{1}+\Phi_{0}<0 \tag{5}
\end{equation*}
$$

Main Result - Proof

- That is to say, by homogenization, since $\left(\alpha_{1 i}+\alpha_{2 i}\right)^{2}=\alpha_{1 i}+\alpha_{2 i}=1$:

$$
\begin{equation*}
\alpha_{1 i}^{2} P\left(\bar{\tau}_{i}\right)+\alpha_{1 i} \alpha_{2 i} T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)+\alpha_{2 i}^{2} P\left(\underline{\tau}_{i}\right)<0 \tag{6}
\end{equation*}
$$

which is now an second-order homogeneous polynomial in $\alpha_{1 i}$ and $\alpha_{2 i}$.

- If $T\left(\tau_{i}, \bar{\tau}_{i}\right)<0$, (6) is satisfied:

- If $T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right) \geq 0$, the Young inequality $\alpha_{1 i} \alpha_{2 i} \leq \frac{1}{2}\left(\alpha_{1 i}^{2}+\alpha_{2 i}^{2}\right)$: applies and (6) is satisfied:
\square

Main Result - Proof

- That is to say, by homogenization, since $\left(\alpha_{1 i}+\alpha_{2 i}\right)^{2}=\alpha_{1 i}+\alpha_{2 i}=1$:

$$
\begin{equation*}
\alpha_{1 i}^{2} P\left(\bar{\tau}_{i}\right)+\alpha_{1 i} \alpha_{2 i} T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)+\alpha_{2 i}^{2} P\left(\underline{\tau}_{i}\right)<0 \tag{6}
\end{equation*}
$$

which is now an second-order homogeneous polynomial in $\alpha_{1 i}$ and $\alpha_{2 i}$.

- If $T\left(\tau_{i}, \bar{\tau}_{i}\right)<0$, (6) is satisfied:

$$
\text { I) } P(\underline{\tau})<0, \quad \text { II) } P\left(\bar{\tau}_{i}\right)<0
$$

- If $T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right) \geq 0$, the Young inequality $\alpha_{1 i} \alpha_{2 i} \leq \frac{1}{2}\left(\alpha_{1 i}^{2}+\alpha_{2 i}^{2}\right)$: applies and (6) is satisfied
\square

Main Result - Proof

- That is to say, by homogenization, since $\left(\alpha_{1 i}+\alpha_{2 i}\right)^{2}=\alpha_{1 i}+\alpha_{2 i}=1$:

$$
\begin{equation*}
\alpha_{1 i}^{2} P\left(\bar{\tau}_{i}\right)+\alpha_{1 i} \alpha_{2 i} T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)+\alpha_{2 i}^{2} P\left(\underline{\tau}_{i}\right)<0 \tag{6}
\end{equation*}
$$

which is now an second-order homogeneous polynomial in $\alpha_{1 i}$ and $\alpha_{2 i}$.

- If $T\left(\tau_{i}, \bar{\tau}_{i}\right)<0,(6)$ is satisfied:

$$
\text { I) } P(\underline{\tau})<0, \quad \text { II) } P\left(\bar{\tau}_{i}\right)<0
$$

- If $T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right) \geq 0$, the Young inequality $\alpha_{1 i} \alpha_{2 i} \leq \frac{1}{2}\left(\alpha_{1 i}^{2}+\alpha_{2 i}^{2}\right)$: applies and (6) is satisfied:

$$
\begin{aligned}
& \alpha_{1 i}^{2}\left(P\left(\bar{\tau}_{i}\right)+\frac{1}{2} T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)\right)+\alpha_{2 i}^{2}\left(P\left(\underline{\tau}_{i}\right)+\frac{1}{2} T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)\right)<0 \\
& \Leftrightarrow \text { III) } 2 P\left(\underline{\tau}_{i}\right)+T\left(\underline{\tau}_{i}, \bar{\tau}_{i}\right)<0, \text { IV) } 2 P\left(\bar{\tau}_{i}\right)+T\left(\tau_{i}, \bar{\tau}_{i}\right)<0
\end{aligned}
$$

Example 1: Scalar-valued polynomial (particular case)

- For this first example, let us consider the particular case of a scalar-valued polynomial inequality:

$$
\begin{equation*}
P(\tau)=\tau^{2} 10 a+\tau 10+b-a<0, \quad \tau \in[0,1] \tag{7}
\end{equation*}
$$

where a and b are two real parameters dedicated to compare the feasibility fields of the considered conditions.

- Since (7) is a scalar quadratic inequality, from the roots of $P(\tau)$, we have $P(\tau)<0$ for all $(a, b) \in S$ such that:

$$
S=\left\{\begin{array}{l|l}
(a, b) \in \mathbb{R}^{2}: & \begin{array}{l}
P(0)=b-a<0, \\
P(1)=9 a+b+10<0, \\
b-a-\frac{5}{2 a}<0, \text { if }-\frac{1}{2 a} \in[0,1] .
\end{array} \tag{8}
\end{array}\right\}
$$

This exact characterization of S will be used to evaluate the conservatism of the different considered conditions.

Example 1: Scalar-valued polynomial (particular case)

Conservatism comparison w.r.t. feasibility fields

- From this figures, we see that the conditions of Theorem 1 are less conservative than the geometrical approaches from previous literature.
- Theorem 1 provides Asymptotically Necessary and Sufficient Conditions as far as N increases!

Example 2: Robust control of a discrete-time polytopic system

- Consider a discrete-time convex polytopic system given by [Guerra and Vermeiren, 2004]:

$$
\begin{equation*}
x(k+1)=\sum_{i=1}^{2} \rho_{i}(k)\left(A_{i} x(k)+B_{i} u(k)\right) \tag{9}
\end{equation*}
$$

where $A_{i}=\left[\begin{array}{cc}1 & (-1)^{i} \beta \\ -1 & -0.5\end{array}\right], B_{i}=\left[\begin{array}{c}5+(-1)^{i-1} \beta \\ 2 \beta\end{array}\right], \rho_{i}(k) \in[0,1]$ and $\rho_{1}(k)+\rho_{2}(k)=1$,

- and the PDC control law given by:

$$
\begin{equation*}
u(k)=\sum_{j=1}^{2} \rho_{j}(k) F_{j} P^{-1} x(k) \tag{10}
\end{equation*}
$$

where $F_{j} \in \mathbb{R}^{1 \times 2}$ and $P \in \mathbb{R}^{2 \times 2}$ are gain matrices to be synthesized.

Example 2: Robust control of a discrete-time polytopic system

- Assuming a quadratic Lyapunov candidate function $V(x(k))=x^{T}(k) P^{-1} x(k)$, with $P=P^{\top}>0$, the following parameterized LMI provides the design conditions:

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} \rho_{i}(k) \rho_{j}(k) \Gamma_{i j}<0, \text { with } \Gamma_{i j}=\left[\begin{array}{cc}
-P & -P A_{i}^{T}-F_{j}^{T} B_{i}^{T} \tag{11}\\
\star & -P
\end{array}\right]
$$

- Usual double-sums relaxation techniques can be found in the literature to solve (11), e.g.:
- from [Tanaka et al., 1998] solutions hold $\forall \beta \in[0,1.36]$,
- from [Tuan et al., 2001] solutions hold $\forall \beta \in[0,1.71]$.
- Let $\tau=\rho_{1}(k) \in[0,1]$, since $\rho_{2}(k)=1-\rho_{1}(k)$, the PLMI (11) can be rewritten as a matrix-valued polynomial inequality:

$$
P(\tau)=\tau^{2} \Phi_{2}+\tau \Phi_{1}+\Phi_{0}<0
$$

Example 2: Robust control of a discrete-time polytopic system

- Assuming a quadratic Lyapunov candidate function $V(x(k))=x^{T}(k) P^{-1} x(k)$, with $P=P^{\top}>0$, the following parameterized LMI provides the design conditions:

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} \rho_{i}(k) \rho_{j}(k) \Gamma_{i j}<0, \text { with } \Gamma_{i j}=\left[\begin{array}{cc}
-P & -P A_{i}^{T}-F_{j}^{T} B_{i}^{T} \tag{11}\\
\star & -P
\end{array}\right]
$$

- Usual double-sums relaxation techniques can be found in the literature to solve (11), e.g.:
- from [Tanaka et al., 1998] solutions hold $\forall \beta \in[0,1.36]$,
- from [Tuan et al., 2001] solutions hold $\forall \beta \in[0,1.71]$.
- Let $\tau=\rho_{1}(k) \in[0,1]$, since $\rho_{2}(k)=1-\rho_{1}(k)$, the PLMI (11) can be rewritten as a matrix-valued polynomial inequality:

$$
P(\tau)=\tau^{2} \Phi_{2}+\tau \Phi_{1}+\Phi_{0}<0
$$

with $\Phi_{2}=\Gamma_{11}+\Gamma_{22}-\Gamma_{12}-\Gamma_{21}, \Phi_{1}=\Gamma_{12}+\Gamma_{21}-2 \Gamma_{22}$ and $\Phi_{0}=\Gamma_{22}$.

Example 2: Robust control of a discrete-time polytopic system

Method / N	1	2	3	4	8	13	38
[Kim, 2011]	Unfeas	-	-	-	-	-	-
[Zhang et al., 2020]	1.282	-	-	-	-	-	-
[Liu et al., 2023]	1.360	-	-	-	-	-	-
[Chen et al., 2019]	1.282	1.360	1.618	1.668	1.742	1.757	$\mathbf{1 . 7 6 5}$
[He et al., 2022, Liu et al., 2023]	1.360	1.710	1.733	1.742	1.764	$\mathbf{1 . 7 6 5}$	$\mathbf{1 . 7 6 5}$
Theorem 1	1.710	1.742	1.756	1.764	$\mathbf{1 . 7 6 5}$	$\mathbf{1 . 7 6 5}$	$\mathbf{1 . 7 6 5}$

Table 1: Maximum values of $\beta \in[0, \bar{\beta}]$ obtained according to the number N of partitions considered.

- Theorem 1 provides the less conservative results regarding to the previous geometrical approaches, archiving the optimal value of $\bar{\beta}=1.765$ with a smaller number of partition N.
- Theorem 1 also overcome some usual relaxation Lemma from the convex polytopic literature (e.g. [Tanaka et al., 1998, Tuan et al., 2001]).

Conclusions and perspectives

- New Asymptotically Necessary and Sufficient conditions have been proposed for matrix-valued quadratic polynomial inequalities,
- Based on homogeneous polynomial constraints, these constitutes an alternative to usual geometrical approaches, which hasn't been investigated before,
- The conservatism reduction brought by our proposal, compared to previous results, has been illustrated through two numerical examples (leaving the usual context of time-varying delay systems).
- Extension of these conditions using Polya's Theorem and other examples for sampled-data control have already been developed but left out here for space reasons (to be submitted in a journal soon),
- We are now focusing on extending these results to higher order polynomials as well as to Multiple Polynomial LPV systems.

Chen, J., Park, J., and Xu, S. (2019).
Stability analysis of systems with time-varying delay: a quadratic-partitioning method.
IET Control Theory \& App., 13(18):3184-3189.
Chen, J., Park, J., and Xu, S. (2022)
Improvement on reciprocally convex combination lemma and quadratic function negative-definiteness lemma.
Journal of the Franklin Institute, 359(2):1347-1360.
de Oliveira, F. and Souza, F. (2020).
Further refinements in stability conditions for time-varying delay systems.
Applied Mathematics and Computation, 369:124866.
Gao, Z.-M., Liu, G.-P., He, Y., Wu, M., and Navaratne, R. (2020).
Novel stability criteria for aperiodic sampled-data systems via a time-squared-dependent augmented functional. International Journal of Systems Science, 52(8):1539-1550.

Guerra, T. and Vermeiren, L. (2004).
LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form.
Automatica, 40(5):823-829.
He, J., Liang, Y., Yang, F., and Wei, Z. (2022).
Novel negative-definiteness conditions on the quadratic polynomial function with application to stability analysis of continuous time-varying delay systems. ISA Transactions, in press, doi:10.1016/j.isatra.2022.10.007.

Kim, J. (2011)
Note on stability of linear systems with time-varying delay.
Automatica, 47(9):2118-2121.
Liu, F., Liu, H., Li, Y., and Sidorov, D. (2023).
Two relaxed quadratic function negative-determination lemmas: Application to time-delay systems.
Automatica, 147:110697.
Park, J. and Park, P. (2020).
Finite-intenval amadratir nolvnomial ineaualities and their annliration to time-delay svateme

Acknowledgments

We thank CEFET-MG, URCA, CAPES, and CNPq for the financial support. And you, for your attention. Merci! Obrigado! (:

