Structural properties of linear switched systems: observability, controllability, minimality

Mihály Petreczky

CNRS CRIStAL Lille

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Outline of the course

- Reminder: structural properties of linear systems.
- Observability of linear switched systems.
- Reachability/controllability of linear switched systems.

- Minimality of linear switched systems.
- Kalman-Ho realization algorithm

Linear Time Invariant (LTI) state-space representation

$$\Sigma : \begin{cases} \sigma x(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}.$ 

$$\sigma x(t) = \left\{ egin{array}{cc} \dot{x}(t) & ext{continuous time} \ x(t+1) & ext{discrete time} \end{array} 
ight.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(A, B, C): shorthand notation.

# Observability: general definition

General non-linear system

$$\sigma x(t) = f(x(t), u(t)), \ y = h(x(t), u(t)).$$

u - input, y - output.

y(z, u) – output signal from initial state z under input u. called observable (in the sense of indistinguishability), if

$$\forall z_1 \neq z_2 : \exists u : y(z_1, u) \neq y(z_2, u)$$

i.e. for any two initial states z, z' there exists an input u(.) such that the corresponding outputs y, y' are different.

called observable (in the sense of state reconstruction), if

$$\forall z_1 \neq z_2 : \forall u : y(z_1, u) \neq y(z_2, u)$$

i.e. for any two initial states z, z' for all inputs u(.) such that the corresponding outputs y, y' are different.

# Observability: general definition

Observability in the sense of state reconstruction  $\implies$  observability in the sense indistinguishability.

Observability in the sense of state reconstruction is necessary for observer design.

Observability in the sense of indistinguishability is necessary for minimal dimesional state-space representations.

#### Observability: linear case

$$f(x, u) = Ax + Bu, \ h(x, u) = Cx$$

Observability in the sense of state reconstruction  $\iff$  observability in the sense indistinguishability.

For linear systems

$$y(z, u) = y(z, 0) + y(0, u)$$
  

$$y(z', u) = y(z', 0) + y(0, u)$$
  

$$y(z, u) \neq y(z', u) \iff y(z, 0) + y(0, u) \neq y(z', 0) + y(0, u)$$
  

$$\iff y(z, 0) \neq y(z', 0)$$
  

$$\exists u : y(z, u) \neq y(z', u) \iff y(z, 0) \neq y(z', 0) \iff$$
  

$$\forall u : y(z, u) \neq y(z', u)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Observability rank condition

$$(A, B, C)$$
 observable,

 $\Leftrightarrow$ 

rank 
$$\begin{bmatrix} C^T & A^T C^T & \cdots & (A^{n-1})^T C^T \end{bmatrix}^T = n$$
$$\bigcap_{k=0}^{\infty} \ker CA^k = \{0\}$$

$$\forall z \neq 0, \exists k \ge 0 : 0 \neq CA^k z = \begin{cases} \frac{d^k}{dt^k} y(z,0)(t)|_{t=0} & \text{cont. time} \\ y(z,0)(t) & \text{disc. time} \end{cases}$$

 $\Leftrightarrow \\ \forall z \neq 0 : y(z,0) \neq 0 \iff \forall z_1 \neq z_2 : y(z_1 - z_2, 0) \neq 0 \iff \\ \forall z_1 \neq z_2 : y(z_1, 0) \neq y(z_2, 0).$ 

# Observability: application

Observability  $\implies$  existence of a Luenberger-observer

Observability reduction: replace a system (A, B, C) with another one with the same input-output behavior.

Basis  $b_1, \ldots, b_n$  such that  $b_{o+1}, \ldots, b_n$  spans

$$\ker \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

In the new basis

$$A = \begin{bmatrix} A_o & 0 \\ \star & A_{uo} \end{bmatrix}, \ B = \begin{bmatrix} B_o \\ \star \end{bmatrix}, \ C = \begin{bmatrix} C_o, & 0 \end{bmatrix}$$

 $(A_o, B_o, C_o)$  is observable, has the same input-output behavior as (A, B, C).

#### Detour: input-output behaviors

Two different ways to view a system:

- System of equations:  $\sigma x(t) = f(x(t), u(t)), y = h(x(t))$
- Set of observed input-output pairs (y, u) (see 'Behavioral approach' by Jan C. Willems).

Input-output behavior of  $\sigma x(t) = f(x(t), u(t)), y = h(x(t))$ 

$$\mathcal{B}_{f,h} = \{(u, y) \mid \exists x : \sigma x(t) = f(x(t), u(t)), \ y = h(x(t))\}$$

Input-output behavior is what we want to control, state-space representation is a tool for control synthesis.

Input-output behavior, input-output function, observability

Input-output function from initial state  $x_0$ :

$$I_{f,h,x_0}: u \mapsto y \text{ s.t.} \sigma x(t) = f(x(t), u(t)), \ y = h(x(t)), x(0) = x_0.$$

Relationship between the two:

$$\mathcal{B}_{f,h} = \bigcup_{x_0,u} \{ (I_{x_0,f,h}(u), u) \}$$

Observability (in th sense of indistinguishability)  $\iff$  the function  $x_0 \mapsto l_{f,h,x_0}$  is one-to-one

Observability (in the sense of state reconstruction)  $\iff$  for every (u, y) there exists unique  $x_0$  s.t.  $I_{f,h,x_0}(u) = y$ .

#### Input-output behavior of linear systems

 $I_{A,B,C,x_0}$ ,  $\mathcal{B}_{A,B,C}$  - input-output function  $I_{f,h,x_0}$ /input-output behavior  $\mathcal{B}_{f,h}$ , f(x, u) = Ax + Bu, h(x, u) = Cx.

Nice properties:

$$I_{A,B,C,x_0}(u) = I_{A,B,C,x_0}(0) + I_{A,B,C,0}(u)$$

• 
$$I_{A,B,C,x_0}(0) = \begin{cases} Ce^{At}x_0 & \text{cont. time} \\ CA^tx_0 & \text{disc. time} \end{cases}$$
 - depends (linearly) on  
the initial state, independent of input  
•  $I_{A,B,C,0}(u) = \begin{cases} \int_0^t Ce^{A(t-s)}Bu(s)ds \\ \sum_{s=0}^{t-1}CA^{(t-s-1)}Bu(s) \end{cases}$  - depends  
(linearly) on the input, not on initial state.  
 $I_{A,B,C,0} \iff$  transfer function  $H(s) = C(sI - A)^{-1}B$ .

## Input-output behavior of linear systems

- Transfer function are often identified with input-output behavior.
- But: Transfer functions do not capture all the input-output behavior.
- Transfer functions capture the input-output behavior which we can control and observe.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Motivating example

Consider two linear systems

$$\sigma x = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} x$$

$$\sigma x = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -2 & 1 \end{bmatrix} x$$

They have the same input-output behavior from zero initial state (transfer functions are the same).

Yet, u = -2y stabilizes the first system, and not the second. What is the problem ? Which model is the wrong one ?

## Observability: exercise

Is (A, B, C) below observable ?

$$A = \begin{bmatrix} -3 & 0 & -1 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}^{T}$$

Use the definition and the rank condition to motivate your answer. If it is not observable, find two states z, z' s.t.  $I_{A,B,C,z} = I_{A,B,C,z'}$ . Perform observability reduction.

#### Input-output behavior: exercise

Consider two linear systems

$$\sigma x = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} x$$

$$\sigma x = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -2 & 1 \end{bmatrix} x$$

Do they have the same input-output function from the zero initial sate ?

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Do they have the same input-output behavior ?

# Observability reduction $(A_o, B_o, C_o)$ revisited

Correspondence between input-output functions

$$I_{A_o,B_o,C_o,Px_0} = I_{A,B,C,x_0}, P = \begin{bmatrix} I_o \\ 0 \end{bmatrix}$$

Transfer functions of  $(A_o, B_o, C_o)$  and (A, B, C) are equal:

$$I_{A_o,B_o,C_o,0}=I_{A,B,C,0}$$

The set of input-output functions (hence the input-output behavior) are preserved by observability reduction:

$$\bigcup_{x_o} I_{A_o,B_o,C_o} = \bigcup_{x_0} I_{A,B,C,x_0}, \ \mathcal{B}_{A,B,C} = \mathcal{B}_{A_o,B_o,C_o}.$$

Control synthesis can be done on  $(A_o, B_o, C_o)$  instead of (A, B, C) (attention, unstable unobserved modes !).

# Reachability & controllability

x(z, u)(t) - state of (A, B, C) at time t, under input u, initial state z.

A state z, is reachable from  $x_0$ , if  $z = x(x_0, u)(T)$  for some u and T.

(A, B, C) is reachable, if all states are reachable from 0.

(A, B, C) is controllable, if for any z, z', there exists u and T s.t. x(z, u)(T) = z'.

# Conditions for reachabilit

$$(A, B, C) \text{ reachable,} \iff$$
$$\operatorname{rank} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$
$$\Leftrightarrow \\\operatorname{Span} \{A^k Bu \mid k \ge 0, u \in \mathbb{R}^m\} = n$$
$$\Leftrightarrow \\(A^T, C^T, B^T) \text{ is observable.}$$

Controllability (in cont. time or in disc. time if A is invertible)  $\iff$  reachability.

 $\operatorname{Span}\{A^k Bu \mid k \ge 0, u \in \mathbb{R}^m\}$  set of reachable states x(0, u)(t) from zero.

# Conditions for reachability

Main idea:

- ▶ Span{ $A^k Bu \mid k \ge 0, u \in \mathbb{R}^m$ } is the smallest vector space which contains states reachable from zero.
- The set of states reachable from zero is a vector space.

The proof of the equivalence of controllability and reachability is difficult: if a state can be reached from zero, then zero can be reached from that state.

## Reachability reduction

Basis  $b_1, \ldots, b_n$  such that  $b_1, \ldots, b_r$  spans

$$\operatorname{Im} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

In the new basis

$$A = \begin{bmatrix} A_r & \star \\ 0 & A_{uc} \end{bmatrix}, \ B = \begin{bmatrix} B_r \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} C_r & \star \end{bmatrix}$$

 $(A_r, B_r, C_r)$  is reachable, and has the same input-output function from the zero initial state as (A, B, C)

$$I_{A_r,B_r,C_r,0}=I_{A,B,C,0}$$

A state which is not reachable from zero cannot be influenced by inputs.

Reachability reduction preserves the input-output function generated by initial state 0.

It is not true that (A, B, C) has the same input-output behavior as  $(A_r, B_r, C_r)$ .

When replacing (A, B, C) by  $(A_r, B_r, C_r)$ , we lose behavior which cannot be controlled.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Reachability & controllability

Perform reachability reduction on

$$\dot{x} = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix} x + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

and

$$\dot{x} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Calculate the input-output functions of the reduced systems from 0 Calculate the inpt-output functions of the original systems from  $[0, 1]^{T}$ .

# Transforming an LTI to a minimal one

#### Minimization procedure

- 1. Transform (A, B, C) to a reachable  $(A_r, B_r, C_r)$  with the same input-output function from the initial state zero.
- 2. Transform  $(A_r, B_{,r}, C_r)$  to an observable  $(A_m, B_m, C_m)$  with the same input-output function from the initial state zero.

► (A<sub>m</sub>, B<sub>m</sub>, C<sub>m</sub>) is reachable and observable, its input-output function from zero is the same as (A, B, C).

$$I_{A_m,B_m,C_m,0}=I_{A,B,C,0}$$

Dimension of (A<sub>m</sub>, B<sub>m</sub>, C<sub>m</sub>) is the smallest among all (A', B', C') s.t.

$$I_{A',B',C',0} = I_{A,B,C,0}$$

## Minimality

Let *I* be an input-output function.

- 1. (A, B, C) is a minimal dimensional system such that  $I_{A,B,C,0} = I \iff (A, B, C)$  is reachable from zero, and (A, B, C) is observable.
- 2. If (A, B, C) and  $(\hat{A}, \hat{B}, \hat{C})$  are minimal dimensional s.t.  $I_{A,B,C,0} = I_{\hat{A},\hat{B},\hat{C},0} = I$  then they are isomorphic: there exists a nonsingular matrix T s.t.:

$$TAT^{-1} = \hat{A}, \ TB = \hat{B}, \ CT^{-1} = \hat{C}.$$

# Consequences of minimality for control

If two reachable and observable LTI systems have the same transfer function, then they are isomorphic and have the same input-output behavior.

Transfer functions capture the input-output behavior of reachable and observable systems.

 Minimal LTI system which with the same transfer function isomorphic => control design does not depend on the choice of the LTI

state-space representation.

- Minimal LTI representations are observable & controllable: observer design and stabilization is always possible.
- Unobservable/uncontrollable eigenvalues are the only potential source of problems.
- Try to use minimal systems for control.
- ► Further applications: system identification, model reduction.

# Definition of linear switched systems

$$\sigma x(t) = f(x(t), u(t)), \ y(t) = h(x(t), u(t))$$
  

$$f(x, u) = A_q x + B_q v, \ u = (q, v)$$
  

$$h(x, u) = C_q x, \ u = (q, v)$$

Inputs u = (q, v) $q \in Q = \{1, 2, ..., d\}$  – discrete mode, v – continuous input

#### Outputs

y - continuous output

Dimension -n, the dimension of the state x(t).

Linear switched systems: simplest class of hybrid systems.

 $\{A_q, B_q, C_q\}_{q \in Q}$  – shorthand notation.

Expressions for the state and output

#### Discrete-time

$$\begin{aligned} x(x_0, (q, v))(t) &= A_{q(t-1)} \cdots A_{q(0)} x_0 + \sum_{k=0}^{t-1} A_{q(t-1)} \cdots A_{q(k+1)} B_{q(k)} v(k) \\ y(x_0, (q, v))(t) &= C_{q(t)} A_{q(t-1)} \cdots A_{q(0)} x_0 + \\ \sum_{k=0}^{t-1} C_{q(t)} A_{q(t-1)} \cdots A_{q(k+1)} B_{q(k)} v(k) \end{aligned}$$

#### Expressions for the state and output

Continuous-time:  $q(s) = q_i$  for  $s \in [\sum_{j=1}^{i-1} t_j, \sum_{j=1}^{i} t_j), t_j \ge 0$ ,  $t = \sum_{i=1}^{k} t_i$ .  $x(x_0,(q,v))(t) = e^{A_{q_k}t_k} \cdots e^{A_{q_1}t_1}x_0 +$  $\sum_{i=1}^{k} \int_{0}^{t_{i}} e^{A_{q_{k}}t_{k}} \cdots e^{A_{q_{i}}(t_{i}-s)} B_{q_{i}}u(s+\sum_{j=1}^{i-1}t_{j})$  $y(x_0, (q, v))(t) = C_{q_k} e^{A_{q_k} t_k} \cdots e^{A_{q_1} t_1} x_0 +$  $\sum_{i=1}^{k} \int_{0}^{t_{i}} C_{q_{k}} e^{A_{q_{k}}t_{k}} \cdots e^{A_{q_{i}}(t_{i}-s)} B_{q_{i}} u(s + \sum_{i=1}^{i-1} t_{j})$ 

・ロト・ 日本・ モー・ モー・ しょう

Expressions for state and output trajectories

 $Q = \{1, 2, 3\}$ Discrete-time: q(0) = 1, q(1) = 2, q(2) = 1, q(3) = 2. Write x(t), y(t) for t = 0, 1, 2, 3. Continuous-time: k = 4,  $q_1 = 1$ ,  $q_2 = 2$ ,  $q_3 = 1$ ,  $q_4 = 2$ . Write x(t), y(t).

Why structure theory of linear switched systems difficult

Local structure of LTI models does not determine the structure of the switched system.

Two modes:  $Q = \{1, 2\}$ 

$$A_{1} = \begin{bmatrix} -3 & 0 & -1 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{bmatrix}, B_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C_{1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}^{T}$$
$$A_{2} = \begin{bmatrix} -4 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, C_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}^{T}$$

The local subsystems are not observable, but the switched system is (we will see it later).

#### Observability of linear switched systems

$$\begin{split} &I_{\{A_q,B_q,C_q\}_{q\in Q},x_0} \text{ - input-output function } I_{f,h,x_0}, \\ &f(x,(q,v)) = A_q x + B_q u, \ h(x,(q,v)) = C_q x. \\ &\{A_q,B_q,C_q\}_{q\in Q} \text{ is observable, if the function } \\ &x_0 \mapsto I_{\{A_q,B_q,C_q,\}_{q\in Q},x_0} \text{ is one-to-one.} \end{split}$$

Decomposition into autonomus and continuous input-dependent part:

$$I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, v)) =$$
  
$$I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, 0)) + I_{\{A_q, B_q, C_q\}_{q \in Q}, 0}((q, v))$$

**Exercise:** Write down the analytic expressions for  $I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, 0))$  and  $I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, v))$  (discrete or cont. time)

#### Condition for observability

Theorem (Sun & Ge & Lee)  $\{A_q, B_q, C_q\}_{q \in Q}$  is observable,  $\iff$   $n = \operatorname{rank} [(C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1})^T | q, q_1, \dots, q_k \in Q, 0 \le k < n]$  $\iff$ 

$$\bigcap_{k=0} \bigcap_{q,q_1,\ldots,q_k \in Q} \ker C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1} = \{0\}$$

# Condition for observability

A non-obvious fact from [Sun & Ge & Lee]:

$$\bigcap_{k=0}^{\infty} \bigcap_{q,q_1,\ldots,q_k \in Q} \ker C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1} = \\\bigcap_{k=0}^{n-1} \bigcap_{q,q_1,\ldots,q_k \in Q} \ker C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1}.$$

#### Corollary

If for some q,  $(C_q, A_q)$  is an observable pair, then  $\{A_q, B_q, C_q\}_{q \in Q}$  is observable.

Proof: Exercise

#### Observability of linear switched systems

$$\{A_q, B_q, C_q\}_{q \in Q}$$
 is observable, if  $\forall x_0, x_0'$ :

$$\forall q: I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, 0)) = I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0'}((q, 0)) \implies x_0 = x_0',$$

i.e., different initial states can be distinguished by the outputs for zero continuous input and some switching signal.

$$I_{\{A_q,B_q,C_q\}_{q\in Q},x_0}((q,0))$$
 linear in  $x_0 \implies$ 

$$I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, 0)) = I_{\{A_q, B_q, C_q\}_{q \in Q}, x'_0}((q, 0)) \iff$$
$$I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0 - x'_0}((q, 0)) = 0$$

 $\{A_q, B_q, C_q\}_{q \in Q}$  is observable, if

$$(\forall q: I_{\{A_q, B_q, C_q\}_{q \in Q}, x_0}((q, 0)) = 0) \implies x_0 = 0.$$

Observability of linear switched systems

$$egin{aligned} &(orall q\in Q:I_{\{A_q,B_q,C_q\}_{q\in Q},\mathsf{x}_0}((q,0))=0) \iff & \ &C_qA_{q_k}A_{q_{k-1}}\cdots A_{q_1}\mathsf{x}_0=0, \ orall k\geq 0,q,q_1,\ldots,q_k\in Q \end{aligned}$$

#### Observability: exercise

Two modes:  $Q = \{1, 2\}$ 

$$A_{1} = \begin{bmatrix} -3 & 0 & -1 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{bmatrix}, B_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C_{1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}^{T}$$
$$A_{2} = \begin{bmatrix} -4 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, C_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}^{T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Check observability

Observability: exercise

 $Q=\{1,2\}$ 

$$\begin{aligned} A_1 &= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ A_2 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \\ B_1 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ B_2 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \\ C_1 &= C_2 &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \end{aligned}$$

Check observability.

## Observability reduction

$$\mathcal{W}^* = \bigcap_{k=0}^{n-1} \bigcap_{q,q_1,\dots,q_k \in Q} \ker C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1} = \bigcap_{k=0}^{\infty} \bigcap_{q,q_1,\dots,q_k \in Q} \ker C_q A_{q_k} A_{q_{k-1}} \cdots A_{q_1}.$$

 $b_1,\ldots,b_n$  basis s.t.  $b_{o+1},\ldots,b_n$  span  $\mathcal{W}^*$ . In this new basis,

$$A_q = \begin{bmatrix} A_q^{\mathrm{O}} & 0\\ A_q' & A_q'' \end{bmatrix}, C_q = \begin{bmatrix} C_q^{\mathrm{O}}, & 0 \end{bmatrix}, B_q = \begin{bmatrix} B_q^{\mathrm{O}}\\ B_q' \end{bmatrix},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Observability reduction

 $\{A_q^{O}, B_q^{O}, C_q^{O}\}_{q \in Q}$  is observable.

The input-output behavior of  $\{A_q^O, B_q^O, C_q^O\}_{q \in Q}$  and  $\{A_q, B_q, C_q\}_{q \in Q}$  are the same.

$$I_{\{A_q^{\circ}, B_q^{\circ}, C_q^{\circ}\}_{q \in Q}, P \times_0} = I_{\{A_q, B_q, C_q\}_{q \in Q}, \times_0}.$$
$$P = \begin{bmatrix} I_o & 0\\ 0 & 0 \end{bmatrix}$$

Last n - o coordinates: unobservable part, does not influence the output, cannot be estimated from the output.

# Observability: exercise

$$A_{q_1} = \begin{bmatrix} -3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, B_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} C_{q_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^T$$
$$A_{q_2} = \begin{bmatrix} -4 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} B_{q_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} C_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}^T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Perform observability reduction.

x(z,q,v)(t) – state of  $\{A_q, B_q, C_q\}_{q \in Q}$  at time t, under input v, switching signal q, and initial state z.

A state z, is called reachable from  $x_0$ , if  $z = x(x_0, u)(T)$  for some u and T.

 $\{A_q, B_q, C_q\}_{q \in Q}$  is called reachable from  $x_0$ , if all states are reachable from  $x_0$ .

 $\{A_q, B_q, C_q\}_{q \in Q}$  is called span-reachable from  $x_0$ , if the linear span of all states reachable from zero is the whole state-space.

 $\{A_q, B_q, C_q\}_{q \in Q}$  is called controllable, if for any z, z', there exists u and T s.t. x(z, u)(T) = z'.

Theorem (Sun & Ge & Lee)  $\{A_q, B_q, C_q\}_{q \in Q}$  is span-reachable from 0,  $\iff$ 

$$n = \operatorname{rank} \left[ A_{q_k} A_{q_{k-1}} \cdots A_{q_1} B_{q_0} \mid q_0, q_1, \dots, q_k \in Q, k < n 
ight]$$

$$n = \dim \operatorname{Span} \{ A_{q_k} A_{q_{k-1}} \cdots A_{q_1} B_{q_0} v \mid q_0, q_1, \dots, q_k \in Q, k \ge 0, v \}$$

In continuous time or in discrete-time if  $A_a$  are invertible, then

- span reachability from 0 is equivalent to reachability from 0,
- reachability from 0 is equivalent to controllability.

A non-obvious fact from [Sun & Ge & Lee]:

 $\begin{aligned} & \operatorname{Span}\{A_{q_{k}}A_{q_{k-1}}\cdots A_{q_{1}}B_{q_{0}}v \mid q_{0}, q_{1}, \dots, q_{k} \in Q, k \geq 0, v \in \mathbb{R}^{m}\} = \\ & \operatorname{Span}\{A_{q_{k}}A_{q_{k-1}}\cdots A_{q_{1}}B_{q_{0}}v \mid q_{0}, q_{1}, \dots, q_{k} \in Q, n > k \geq 0, v \in \mathbb{R}^{m}\} \end{aligned}$ 

#### Corollary

If for some q,  $(A_q, B_q)$  is a controllable pair, then  $\{A_q, B_q, C_q\}_{q \in Q}$  is span-reachable from 0.

Proof: Exercise

Main idea:

► Span{ $A_{q_k}A_{q_{k-1}}\cdots A_{q_1}B_{q_0}v \mid q_0, q_1, \dots, q_k \in Q, k \ge 0, v \in \mathbb{R}^m$ }

is the smallest vector space which contains states reachable from zero.

In continuous time or in discrete-time if  $A_q$  are invertible, then there exists a switching signal q and an interval [0, T] s.t.

The linear span of

 $\{x(0, (q, v))(t) \mid v \text{ continuous input}, t \in [0, T]\}$ 

contains the set of all states which are reachable from zero.

The set

 $\{x(0, (q, v))(t) \mid v \text{ continuous input}, t \in [0, T]\}$ 

is a vector space.

## Reachability: exercise

Two modes:  $Q = \{1, 2\}$ 

$$A_{1} = \begin{bmatrix} -3 & 0 & -1 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{bmatrix}, B_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C_{1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}^{T}$$
$$A_{2} = \begin{bmatrix} -4 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, C_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}^{T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Check reachability

Reachability: exercise

 $Q=\{1,2\}$ 

$$\begin{aligned} A_1 &= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ A_2 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \\ B_1 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ B_2 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \\ C_1 &= C_2 &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \end{aligned}$$

Check reachability.

## Reachability reduction

 $\begin{aligned} \mathcal{V}^* &= \\ &\operatorname{Span}\{A_{q_k}A_{q_{k-1}}\cdots A_{q_1}B_{q_0}v \mid q_0, q_1, \dots, q_k \in Q, k \ge 0, v \in \mathbb{R}^m \} \\ &\operatorname{Choose \ a \ basis \ } b_1, \dots, b_n \ \text{s.t.} \ b_1, \dots, b_r \ \text{span} \ \mathcal{V}^*. \end{aligned}$  In this new basis.

$$A_{q} = \begin{bmatrix} A_{q}^{\mathrm{R}} & A_{q}' \\ 0 & A_{q}'' \end{bmatrix}, C_{q} = \begin{bmatrix} C_{q}^{\mathrm{R}}, & C_{q}' \end{bmatrix}, B_{q} = \begin{bmatrix} B_{q}^{\mathrm{R}} \\ 0 \end{bmatrix}, \qquad (1)$$

 $\{A_q^{\mathrm{R}}, B_q^{\mathrm{R}}, C_q^{\mathrm{R}}\}_{q \in Q}$  is span-reachable from 0.

The input-output function from zero of  $\{A_q^R, B_q^R, C_q^R\}_{q \in Q}$  and  $\{A_q, B_q, C_q\}_{q \in Q}$  are the same.

$$I_{\{A_q^{\rm R}, B_q^{\rm R}, C_q^{\rm R}\}_{q \in Q}, 0} = I_{\{A_q, B_q, C_q\}_{q \in Q}, 0}.$$

Last n - r coordinates: uncontrollable part, cannot be influenced by continuous inputs.

## Reachability: exercise

$$A_{q_1} = \begin{bmatrix} -3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, B_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} C_{q_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}^T$$
$$A_{q_2} = \begin{bmatrix} -4 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} B_{q_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} C_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}^T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Apply reachability reduction.

## Minimization

- Apply reachability reduction to  $\{A_q, B_q, C_q\}_{q \in Q}$  to get  $\{A_q^{\mathrm{R}}, B_q^{\mathrm{R}}, C_q^{\mathrm{R}}\}_{q \in Q}$ .
- ▶ Apply observability reduction to  $\{A_q^R, B_q^R, C_q^R\}_{q \in Q}$  to get  $\{A_q^m, B_q^m, C_q^m\}_{q \in Q}$ .

 $\{A_q^m, B_q^m, C_q^m\}_{q\in Q}$  is span-reachable from 0, observable, and its input-output function from 0 is the same as that of  $\{A_q, B_q, C_q\}_{q\in Q}$ , i.e.,

$$I_{\{A_q^m, B_q^m, C_q^m\}_{q \in Q}, 0} = I_{\{A_q, B_q, C_q\}_{q \in Q}, 0}.$$

State-space dimension of  $\{A_q^m, B_q^m, C_q^m\}_{q \in Q}$  is  $\leq$  state-space dimension of  $\{A_q, B_q, C_q\}_{q \in Q}$ .

# Minimality

Let *I* be an input-output function.

Theorem (Pet06,Pet07,Pet11a,Pet13)

{A<sub>q</sub>, B<sub>q</sub>, C<sub>q</sub>}<sub>q∈Q</sub> is a minimal dimensional among all linear switched systems whose input-output function from 0 is 1,
 (A ⊃ ⊂ ⊂)

 $\{A_q, B_q, C_q\}_{q \in Q}$  is observable and span-reachable from 0.

- ► {A<sup>m</sup><sub>q</sub>, B<sup>m</sup><sub>q</sub>, C<sup>m</sup><sub>q</sub>}<sub>q∈Q</sub> is minimal dimensional among all linear switched systems with the same input-output function from 0.
- If {A<sub>q</sub>, B<sub>q</sub>, C<sub>q</sub>}<sub>q∈Q</sub> and {Â<sub>q</sub>, Â<sub>q</sub>, Ĉ<sub>q</sub>}<sub>q∈Q</sub> are minimal dimensional s.t. I<sub>{A<sub>q</sub>,B<sub>q</sub>,C<sub>q</sub>}<sub>q∈Q</sub>,0 = I<sub>{Â<sub>q</sub>,Â<sub>q</sub>,Â<sub>q</sub>,Ĉ<sub>q</sub>}<sub>q∈Q</sub>,0 = I then they are isomorphic:
  </sub></sub>

there exists a nonsingular matrix T s.t.:

$$\forall q: TA_q T^{-1} = \hat{A}_q, \ TB_q = \hat{B}_q, \ CT_q^{-1} = \hat{C}_q.$$

## Counter-examples

- If at least one of the continuous subsystems are minimal, then the switched system is minimal.
- A switched system can be minimal (resp. observable, reachable), without any of the subsystems being minimal (resp. observable, reachable).
- Certain linear switched systems can never be brought to a form where all the continuous subsystems are minimal.

## Example

$$A_{q_1} = \begin{bmatrix} -3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, B_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} C_{q_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^T$$
$$A_{q_2} = \begin{bmatrix} -4 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} B_{q_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} C_{q_1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}^T$$

This system is neither observable nor reachable, hence it is not minimal.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Example: cont

After minimization, we obtain

$$A_{q_1} = \begin{bmatrix} -3 & 0 & -0.02 \\ 0 & -3 & 0 \\ 0.98 & 0 & 0.006 \end{bmatrix}, B_{q_1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} C_{q_1} = \begin{bmatrix} 0.95 \\ 0 \\ -0.31 \end{bmatrix}^T$$
$$A_{q_2} = \begin{bmatrix} -4 & 0 & -0.02 \\ 0 & -2 & 0 \\ 0.98 & 0 & -0.99 \end{bmatrix} B_{q_2} = \begin{bmatrix} 0.31 \\ 0 \\ 0.95 \end{bmatrix} C_{q_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}^T$$

The system above is minimal, but none of the subsystems is minimal

## Example: cont

If we simulate the two systems for white noise input and switching sequence  $(q_2, 1)(q_1, 2)(q_1, 3)(q_2, 1)$ .



## Further consequences

- For linear switched systems which are observable and span-reachable from zero, the input-output function from 0 captures all the input-output behavior.
- It is impossible to estimate the state for non-observable linear switched systems. The converse need not be true.
- It is impossible to control (stabilize) a linear switched system with continuous inputs, if it is not span-reachable from zero. The converse need not be true.
- Minimal switched systems isomorphic only on the input-output behavior not on the choice of the state-space representation.
- Existence of quadratic (control) Lyapunov functions, storage functions is a property of input-output behavior.

Linear Time Invariant (LTI) state-space representation

$$\Sigma = (A, B, C).$$

Input-output map  $Y_{\Sigma} = I_{A,B,C,0}$  maps input u(.) to output y(.), initial state x(0) = 0.

$$Y_{\Sigma}(u)(t) = \begin{cases} \int_0^t Ce^{A(t-s)} Bu(s) ds \\ \sum_{s=0}^{t-1} CA^{(t-s)} Bu(s) \end{cases}$$

 $\Sigma$  is a realization of  $Y : u(.) \mapsto y(.)$ , iff  $Y_{\Sigma} = Y$ .

#### Realization problem

For the specified input-output map Y find a (preferably minimal) linear system  $\Sigma$  such that  $\Sigma$  realizes Y.

### Impulse response

A potential input-output map of a linear system is determined by its impulse response:

Impulse response G(t)

$$Y(u(.),t) = \begin{cases} \int_0^t G(t-s)u(s)ds & \text{continuous time} \\ \\ \sum_{s=0}^{t-1} G(t-s)u(s) & \text{discrete time} \end{cases}$$

 $\boldsymbol{\Sigma}$  is a realization, iff

 $G(t) = Ce^{At}B$  (cont.time)  $G(t) = CA^{t}B$  (disc.-time)

## Markov parameters

#### Markov parameters

$$M_k = \left\{egin{array}{cc} rac{d^k}{dt^k}G(t)ert_{t=0} & ext{ continuous time, or} \ & G(k+1) & ext{ discrete time} \end{array}
ight.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical step.  $\Sigma$  is a realization of  $Y \iff M_k = CA^k B$ 

## Existence of a realization

Recall  $M_k$  – Markov parameters\*

Hankel matrix of 
$$Y$$
  $H_Y = \begin{bmatrix} M_0 & M_1 & M_2 & \cdots \\ M_1 & M_2 & M_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$ 

#### Theorem

- Y has a realization by an LTI  $\iff$  rank  $H_Y < +\infty$ .
- ▶ rank *H<sub>Y</sub>* is the dimension of a minimal LTI realization of *Y*.

# Ho-Kalman algorithm

1. Find a factorization

$$H_{N,N+1} = \begin{bmatrix} M_0 & M_1 & \cdots & M_N \\ M_1 & M_2 & \cdots & M_{N+1} \\ \vdots & \vdots & \vdots & \vdots \\ M_{N-1} & M_N & \cdots & M_{2N-1} \end{bmatrix} = OR$$

s.t. *O* full column rank, *R* full row rank.  
(e.g, SVD: 
$$H_{N,N+1} = U\Sigma V^T$$
,  $O = U\Sigma^{1/2}$ ,  $R = \Sigma^{1/2} V^T$ ).  
2.  $R = \begin{bmatrix} R_1 & R_2, & \cdots, & R_{N+1} \end{bmatrix}$ ,  $O = \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_N \end{bmatrix}$ .

3.  $B = R_1$ ,  $C = O_1$ , and A solves

$$A\begin{bmatrix} R_1, & R_2, & \cdots, & R_N \end{bmatrix} = \begin{bmatrix} R_2, & R_3, & \cdots, & R_{N+1} \end{bmatrix}$$

# Correctness of Ho-Kalman algorithm and partial realization

$$H_{N,N} = \begin{bmatrix} M_0 & M_1 & \cdots & M_{N-1} \\ M_1 & M_2 & \cdots & M_N \\ \vdots & \vdots & \vdots & \vdots \\ M_{N-1} & M_N & \cdots & M_{2N-2} \end{bmatrix},$$
$$H_{N+1,N} = \begin{bmatrix} M_0 & M_1 & \cdots & M_{N-1} \\ M_1 & M_2 & \cdots & M_N \\ \vdots & \vdots & \vdots & \vdots \\ M_N & M_{N+1} & \cdots & M_{2N-1} \end{bmatrix}$$

Correctness of Ho-Kalman algorithm and partial realization

Theorem (Ho-Kalman algorithm & partial realization)

- ▶ rank  $H_{N,N}$  = rank  $H_Y \implies (A, B, C)$  is a minimal realization of Y
- ▶ If Y has a realization of dimension less than N, then rank  $H_{N,N} = \operatorname{rank} H_Y$ .
- ▶ rank  $H_{N,N}$  = rank  $H_{N+1,N}$  = rank  $H_{N,N+1}$   $\implies$  (A, B, C) is a so called 2N realization of Y, i.e.

$$M_k = CA^k B, \ k = 0, 1, \dots, 2N - 1$$

## Impulse response of linear switched systems

- Potential input-output map Y of a linear switched system
  - 1. Maps switching signal q(.) and input u(.) to output y(.).
  - 2. Linear in continuous input u().
- Y is completely described by its impulse response Impulse response for switching q(.)

Switching q(): stay in discrete mode  $q_1, \ldots, q_k$  for times  $t_1, \ldots, t_k$ .

$$G_{q_1\ldots q_k}(t_1,\ldots,t_k)=Y(q(.),\sigma_0)$$

- $\sigma_0$  is the Dirac-delta for continuous-time
- $\sigma_0(0) = 1$ ,  $\sigma_0(t) = 0$ , t > 0 for discrete-time

#### Markov parameters for linear switched systems

Markov parameters,  $q_0, q \in Q$  – discrete modes,  $j = 1, 2, \ldots, m$ 

$$S_{q,q_0}(q_1q_2\cdots q_k) = \begin{cases} G_{q_0q_1\cdots q_kq}(1,1,\ldots,1) \\ \frac{d}{dt_1}\cdots \frac{d}{dt_k}G_{q_0q_1\cdots q_kq}(0,t_1,\ldots,t_k,0)|_{t_1=\cdots=t_k=0} \end{cases}$$

Markov parameters are indexed by sequences of discrete modes  $Q^*$ 

 $\Sigma$  is a realization of  $Y \iff$ 

$$S_{q,q_0}(q_1q_2\cdots q_k)=C_qA_{q_k}\cdots A_{q_1}B_{q_0}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Hankel matrix for linear switched systems

$$Q = \{1, 2, \dots, D\}$$
  
$$v_1 \prec \dots \prec v_k, \dots \text{ lexicographic ordering of all sequences.}$$

$$M(v) = \begin{bmatrix} S_{1,1}(v) & \dots & S_{1,D}(v) \\ \vdots & \dots & \vdots \\ S_{D,1}(v) & \dots & S_{D,D}(v) \end{bmatrix}$$

#### Hankel matrix: $H_Y$

$$H_{Y} = \begin{bmatrix} M(v_{1}v_{1}) & M(v_{2}v_{1}) & \cdots & M(v_{k}v_{1}) & \cdots \\ M(v_{1}v_{2}) & M(v_{2}v_{2}) & \cdots & M(v_{k}v_{2}) & \cdots \\ M(v_{1}v_{3}) & M(v_{2}v_{3}) & \cdots & M(v_{k}v_{3}) & \cdots \\ \vdots & \vdots & \cdots & \vdots & \cdots \end{bmatrix},$$

Realization theorem for linear switched systems

Theorem (Pet06,Pet07,Pet11a,Pet13)

• Y has a realization  $\iff$  rank  $H_Y < +\infty$ ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Realization algorithm [Pet06,Pet11,Pet13]

$$H_{Y,N+1,N} = \begin{bmatrix} M(v_1v_1) & \cdots & M(v_{M(N)}v_1) \\ \vdots & \cdots & \vdots \\ M(v_1v_{M(N)}) & \cdots & M(v_{M(N)}v_{M(N)}) \\ M(v_1v_{M(N+1)}) & \cdots & M(v_{M(N)}v_{M(N+1)}) \end{bmatrix}$$

M(N) – number of sequences over Q of length at most N

- 1:  $H_{f,N+1,N} = OR$ 2:  $B_q = m(q-1) + 1, \dots, mq$ th columns of R. 3:  $C_q = p(q-1) + 1, \dots, pq$ th rows of O. 4:  $A_q = \bar{O}^+ O_q$ 
  - $\overline{O}$  the block rows of O which are indexed by  $v_1, \ldots, v_N$ .
  - $\bar{O}^+$ -pseudo-inverse of  $\bar{O}$ .
  - ► O<sub>q</sub> shifted O
    : the row of O<sub>q</sub> indexed by sequence v is the row of O indexed by sequence qv.

# Partial realization theorem for linear switched systems

$$H_{Y,N,N} = \begin{bmatrix} M(v_{1}v_{1}) & \cdots & M(v_{M(N)}v_{1}) \\ \vdots & \cdots & \vdots \\ M(v_{1}v_{M(N)}) & \cdots & M(v_{M(N)}v_{M(N)}) \end{bmatrix}$$
$$H_{Y,N,N+1} = \begin{bmatrix} M(v_{1}v_{1}) & \cdots & M(v_{M(N)}v_{1}) & M(v_{M(N+1)}v_{1}) \\ \vdots & \cdots & \vdots & \vdots \\ M(v_{1}v_{M(N)}) & \cdots & M(v_{M(N)}v_{M(N)}) & M(v_{M(N+1)}v_{M(N)}) \end{bmatrix}$$

#### Theorem (Pet11b,Pet13)

- 1. If rank  $H_{Y,N,N} = \operatorname{rank} H_{Y,N,N+1} = \operatorname{rank} H_{Y,N+1,N}$  then the result of the algorithm recreates the Markov-parameters  $M(v_1), \ldots M(v_{\mathsf{M}(2N+1)}).$
- 2. If  $N \ge$  the dimension of a realization of Y, then the algorithm returns a minimal realization of Y.

## Example

Consider the switched system from the previous example and Y the input-output map of that system.

$$H_{Y,2,1} = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 & -1 \\ 1 & 0 & -3 & 0 & -2 & 0 \\ 0 & -1 & 0 & 3 & 0 & 4 \\ -3 & 0 & 9 & 0 & 6 & 0 \\ 0 & -1 & 0 & 4 & 0 & 5 \\ -2 & 0 & 6 & 0 & 4 & 0 \\ 0 & 3 & 0 & -9 & 0 & -12 \\ 9 & 0 & -27 & 0 & -18 & 0 \\ 0 & 4 & 0 & -12 & 0 & -16 \\ 6 & 0 & -18 & 0 & -12 & 0 \\ 0 & 4 & 0 & -12 & 0 & -16 \\ 6 & 0 & -18 & 0 & -12 & 0 \\ 0 & 5 & 0 & -16 & 0 & -21 \\ 4 & 0 & -12 & 0 & -8 & 0 \end{bmatrix}$$

## Example: cont.

Applying the realization algorithm to  $H_{Y,2,1}$  yields.

$$A_{q_1} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3.02 & 0.17 \\ 0 & -0.32 & 0.018 \end{bmatrix}, B_{q_1} = \begin{bmatrix} -1.9 \\ 0 \\ 0 \end{bmatrix}, C_{q_1} = \begin{bmatrix} 0 \\ 0.21 \\ 0.46 \end{bmatrix}^T$$
$$A_{q_2} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -4.02 & 0.17 \\ 0 & -0.32 & -0.98 \end{bmatrix}, B_{q_2} = \begin{bmatrix} 0 \\ 1.25 \\ -0.57 \end{bmatrix}, C_{q_2} = \begin{bmatrix} -0.53 \\ 0 \\ 0 \end{bmatrix}^T$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Example: cont

If we simulate the two systems for white noise input and switching sequence  $(q_2, 1)(q_1, 2)(q_1, 3)(q_2, 1)$ .



## Further work

- The results above can be extended to linear jumps and bilinear local equations.
- The results can be extended to LPV systems.
- Extension to stochastic jump-Markov linear systems.
- Application to model reduction, system identification.

#### 🔋 R. E. Kalman.

Advanced theory of linear systems.

In *Topics in Mathematical System Theory*, pages 237–339. McGraw-Hill, New York, 1969.

- T. Kailath, *Linear Systems*. Prentice Hall, 1980.
- 🚺 T. Katayama.

Subspace Methods for System Identification. Springer-Verlag, 2005.



#### M. Petreczky.

Realization theory of linear and bilinear switched systems: A formal power series approach: Part i.

*ESAIM Control, Optimization and Calculus of Variations*, 17:410–445, 2011.

- M. Petreczky, L. Bako, and van J.H. Schuppen. Realization theory for discrete-time linear switched systems. *Automatica*, 49(11):3337–3344, 2013.
  - M. Petreczky and J. H. Van Schuppen.

Partial-realization of linear switched systems: A formal power series approach.

Automatica, 47(10):2177–2184, 2011.

- M. Petreczky and J.H. van Schuppen.
   Realization theory for linear hybrid systems.
   *IEEE Trans. on Automatic Control*, 55:2282 2297, 2010.
- Mihaly Petreczky, Aneel Tanwani and Stephan Trenn. Observability of Switched Linear Systems.
   In Hybrid Dynamical Systems: Observation and control, Lecture Notes in Control and Information Sciences, vol. 457, M. Djemai, M. Defoort (eds), Springer Verlag, ISBN: 978-3-319-10795-0, 2015.

#### Mihaly Petreczky.

#### Realization theory of linear hybrid systems.

In Hybrid Dynamical Systems: Observation and control, Lecture Notes in Control and Information Sciences, vol. 457, M. Djemai, M. Defoort (eds), Springer Verlag, ISBN: 978-3-319-10795-0, 2015.

Zh. Sun and Sh. S. Ge. Switched linear systems : control and design. Springer, London, 2005.

S.S. Ge, Zhendong Sun, and T.H. Lee. Reachability and controllability of switched linear discrete-time systems.

*IEEE Trans. Automatic Control*, 46(9):1437 – 1441, 2001.

Zhendong Sun, S.S. Ge, and T.H. Lee. Controllability and reachability criteria for switched linear systems.

Automatica, 38:115 - 786, 2002.

Zhendong Sun and Dazhong Zheng.
 On reachability and stabilization of switched linear systems.
 *IEEE Trans. Automatic Control*, 46(2):291 – 295, 2001.