Structural properties of linear switched systems: observability, controllability, minimality

Mihály Petreczky

CNRS CRIStAL Lille

Outline of the course

- Reminder: structural properties of linear systems.
- Observability of linear switched systems.
- Reachability/controllability of linear switched systems.
- Minimality of linear switched systems.
- Kalman-Ho realization algorithm

Linear Time Invariant (LTI) state-space representation

$$
\Sigma:\left\{\begin{array}{l}
\sigma x(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array}\right.
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$.

$$
\sigma x(t)=\left\{\begin{aligned}
\dot{x}(t) & \text { continuous time } \\
x(t+1) & \text { discrete time }
\end{aligned}\right.
$$

(A, B, C) : shorthand notation.

Observability: general definition

General non-linear system

$$
\sigma x(t)=f(x(t), u(t)), y=h(x(t), u(t))
$$

u - input, y - output.
$y(z, u)$ - output signal from initial state z under input u.
called observable (in the sense of indistinguishability), if

$$
\forall z_{1} \neq z_{2}: \exists u: y\left(z_{1}, u\right) \neq y\left(z_{2}, u\right)
$$

i.e. for any two initial states z, z^{\prime} there exists an input $u($.$) such$ that the corresponding outputs y, y^{\prime} are different.
called observable (in the sense of state reconstruction), if

$$
\forall z_{1} \neq z_{2}: \forall u: y\left(z_{1}, u\right) \neq y\left(z_{2}, u\right)
$$

i.e. for any two initial states z, z^{\prime} for all inputs $u($.$) such that the$ corresponding outputs y, y^{\prime} are different.

Observability: general definition

Observability in the sense of state reconstruction \Longrightarrow observability in the sense indistinguishability.
Observability in the sense of state reconstruction is necessary for observer design.
Observability in the sense of indistinguishability is necessary for minimal dimesional state-space representations.

Observability: linear case

$$
f(x, u)=A x+B u, h(x, u)=C x
$$

Observability in the sense of state reconstruction observability in the sense indistinguishability.

For linear systems

$$
\begin{aligned}
& y(z, u)=y(z, 0)+y(0, u) \\
& y\left(z^{\prime}, u\right)=y\left(z^{\prime}, 0\right)+y(0, u) \\
& y(z, u) \neq y\left(z^{\prime}, u\right) \Longleftrightarrow y(z, 0)+y(0, u) \neq y\left(z^{\prime}, 0\right)+y(0, u) \\
& \Longleftrightarrow y(z, 0) \neq y\left(z^{\prime}, 0\right) \\
& \exists u: y(z, u) \neq y\left(z^{\prime}, u\right) \Longleftrightarrow y(z, 0) \neq y\left(z^{\prime}, 0\right) \Longleftrightarrow \\
& \forall u: y(z, u) \neq y\left(z^{\prime}, u\right)
\end{aligned}
$$

Observability rank condition

(A, B, C) observable,
\Longleftrightarrow
$\operatorname{rank}\left[\begin{array}{llll}C^{T} & A^{T} C^{T} & \cdots & \left(A^{n-1}\right)^{T} C^{T}\end{array}\right]^{T}=n$
\Longleftrightarrow

$$
\bigcap_{k=0}^{\infty} \operatorname{ker} C A^{k}=\{0\}
$$

$$
\forall z \neq 0, \exists k \geq 0: 0 \neq C A^{k} z=\left\{\begin{aligned}
\left.\frac{d^{k}}{d t^{k}} y(z, 0)(t)\right|_{t=0} & \text { cont. time } \\
y(z, 0)(t) & \text { disc. time }
\end{aligned}\right.
$$

$\forall z \neq 0: y(z, 0) \neq 0 \Longleftrightarrow \forall z_{1} \neq z_{2}: y\left(z_{1}-z_{2}, 0\right) \neq 0$

$\forall z_{1} \neq z_{2}: y\left(z_{1}, 0\right) \neq y\left(z_{2}, 0\right)$.

Observability: application

Observability \Longrightarrow existence of a Luenberger-observer
Observability reduction: replace a system (A, B, C) with another one with the same input-output behavior.
Basis b_{1}, \ldots, b_{n} such that b_{o+1}, \ldots, b_{n} spans

$$
\operatorname{ker}\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

In the new basis

$$
A=\left[\begin{array}{cc}
A_{0} & 0 \\
\star & A_{u 0}
\end{array}\right], B=\left[\begin{array}{c}
B_{0} \\
\star
\end{array}\right], C=\left[\begin{array}{ll}
C_{o}, & 0
\end{array}\right]
$$

(A_{o}, B_{o}, C_{o}) is observable, has the same input-output behavior as (A, B, C).

Detour: input-output behaviors

Two different ways to view a system:

- System of equations: $\sigma x(t)=f(x(t), u(t)), y=h(x(t))$
- Set of observed input-output pairs (y, u) (see 'Behavioral approach' by Jan C. Willems).
Input-output behavior of $\sigma x(t)=f(x(t), u(t)), y=h(x(t))$

$$
\mathcal{B}_{f, h}=\{(u, y) \mid \exists x: \sigma x(t)=f(x(t), u(t)), y=h(x(t))\}
$$

Input-output behavior is what we want to control, state-space representation is a tool for control synthesis.

Input-output behavior, input-output function, observability

Input-output function from initial state x_{0} :

$$
I_{f, h, x_{0}}: u \mapsto y \text { s.t. } \sigma x(t)=f(x(t), u(t)), y=h(x(t)), x(0)=x_{0}
$$

Relationship between the two:

$$
\mathcal{B}_{f, h}=\bigcup_{x_{0}, u}\left\{\left(I_{x_{0}, f, h}(u), u\right)\right\}
$$

Observability (in th sense of indistinguishability) \Longleftrightarrow the function $x_{0} \mapsto I_{f, h, x_{0}}$ is one-to-one

Observability (in the sense of state reconstruction) \Longleftrightarrow for every (u, y) there exists unique x_{0} s.t. $I_{f, h, x_{0}}(u)=y$.

Input-output behavior of linear systems

$I_{A, B, C, x_{0}}, \mathcal{B}_{A, B, C}$ - input-output function $I_{f, h, x_{0}} /$ input-output behavior $\mathcal{B}_{f, h}, f(x, u)=A x+B u, h(x, u)=C x$.
Nice properties:

$$
I_{A, B, C, x_{0}}(u)=I_{A, B, C, x_{0}}(0)+I_{A, B, C, 0}(u)
$$

- $I_{A, B, C, x_{0}}(0)=\left\{\begin{array}{rr}C e^{A t} x_{0} & \text { cont. time } \\ C A^{t} x_{0} & \text { disc. time }\end{array}-\right.$ depends (linearly) on the initial state, independent of input
- $I_{A, B, C, 0}(u)=\left\{\begin{array}{r}\int_{0}^{t} C e^{A(t-s)} B u(s) d s \\ \sum_{s=0}^{t-1} C A^{(t-s-1)} B u(s)\end{array}\right.$-depends (linearly) on the input, not on initial state.
$I_{A, B, C, 0} \Longleftrightarrow$ transfer function $H(s)=C(s I-A)^{-1} B$.

Input-output behavior of linear systems

- Transfer function are often identified with input-output behavior.
- But: Transfer functions do not capture all the input-output behavior.
- Transfer functions capture the input-output behavior which we can control and observe.

Motivating example

Consider two linear systems

$$
\begin{aligned}
& \sigma x=\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
2 & 1
\end{array}\right] x \\
& \sigma x=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{cc}
-2 & 1
\end{array}\right] x
\end{aligned}
$$

They have the same input-output behavior from zero initial state (transfer functions are the same).

Yet, $u=-2 y$ stabilizes the first system, and not the second.
What is the problem ? Which model is the wrong one ?

Observability: exercise

Is (A, B, C) below observable?

$$
A=\left[\begin{array}{ccc}
-3 & 0 & -1 \\
0 & -3 & 0 \\
1 & 0 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]^{T}
$$

Use the definition and the rank condition to motivate your answer.
If it is not observable, find two states z, z^{\prime} s.t. $I_{A, B, C, z}=I_{A, B, C, z^{\prime}}$.
Perform observability reduction.

Input-output behavior: exercise

Consider two linear systems

$$
\begin{aligned}
& \sigma x=\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
2 & 1
\end{array}\right] x \\
& \sigma x=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
-2 & 1
\end{array}\right] x
\end{aligned}
$$

Do they have the same input-output function from the zero initial sate?

Do they have the same input-output behavior?

Observability reduction $\left(A_{o}, B_{0}, C_{o}\right)$ revisited

Correspondence between input-output functions

$$
I_{A_{o}, B_{0}, C_{0}, P x_{0}}=I_{A, B, C, x_{0}}, P=\left[\begin{array}{c}
I_{0} \\
0
\end{array}\right] .
$$

Transfer functions of $\left(A_{o}, B_{o}, C_{o}\right)$ and (A, B, C) are equal:

$$
I_{A_{o}, B_{o}, C_{o}, 0}=I_{A, B, C, 0}
$$

The set of input-output functions (hence the input-output behavior) are preserved by observability reduction:

$$
\bigcup_{x_{0}} I_{A_{o}, B_{o}, C_{o}}=\bigcup_{x_{0}} I_{A, B, C, x_{0}}, \mathcal{B}_{A, B, C}=\mathcal{B}_{A_{o}, B_{o}, C_{o}}
$$

Control synthesis can be done on $\left(A_{o}, B_{o}, C_{o}\right)$ instead of (A, B, C) (attention, unstable unobserved modes !).

Reachability \& controllability

$x(z, u)(t)$ - state of (A, B, C) at time t, under input u, initial state z.

A state z, is reachable from x_{0}, if $z=x\left(x_{0}, u\right)(T)$ for some u and T.
(A, B, C) is reachable, if all states are reachable from 0 .
(A, B, C) is controllable, if for any z, z^{\prime}, there exists u and T s.t. $x(z, u)(T)=z^{\prime}$.

Conditions for reachabilit

(A, B, C) reachable,

$$
\operatorname{rank}\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]=n
$$

$\operatorname{Span}\left\{A^{k} B u \mid k \geq 0, u \in \mathbb{R}^{m}\right\}=n$
$\left(A^{T}, C^{T}, B^{T}\right)$ is observable.
Controllability (in cont. time or in disc. time if A is invertible) \Longleftrightarrow reachability.
$\operatorname{Span}\left\{A^{k} B u \mid k \geq 0, u \in \mathbb{R}^{m}\right\}$ set of reachable states $x(0, u)(t)$ from zero.

Conditions for reachability

Main idea:

- $\operatorname{Span}\left\{A^{k} B u \mid k \geq 0, u \in \mathbb{R}^{m}\right\}$ is the smallest vector space which contains states reachable from zero.
- The set of states reachable from zero is a vector space.

The proof of the equivalence of controllability and reachability is difficult: if a state can be reached from zero, then zero can be reached from that state.

Reachability reduction

Basis b_{1}, \ldots, b_{n} such that b_{1}, \ldots, b_{r} spans

$$
\operatorname{Im}\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

In the new basis

$$
A=\left[\begin{array}{cc}
A_{r} & \star \\
0 & A_{u c}
\end{array}\right], B=\left[\begin{array}{c}
B_{r} \\
0
\end{array}\right], C=\left[\begin{array}{ll}
C_{r} & \star
\end{array}\right]
$$

$\left(A_{r}, B_{r}, C_{r}\right)$ is reachable, and has the same input-output function from the zero initial state as (A, B, C)

$$
I_{A_{r}, B_{r}, C_{r}, 0}=I_{A, B, C, 0}
$$

A state which is not reachable from zero cannot be influenced by inputs.

Reachability reduction

Reachability reduction preserves the input-output function generated by initial state 0 .
It is not true that (A, B, C) has the same input-output behavior as $\left(A_{r}, B_{r}, C_{r}\right)$.
When replacing (A, B, C) by $\left(A_{r}, B_{r}, C_{r}\right)$, we lose behavior which cannot be controlled.

Reachability \& controllability

Perform reachability reduction on

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right] x+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
0 & 2 \\
1 & -1
\end{array}\right] x+\left[\begin{array}{l}
2 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x
\end{aligned}
$$

Calculate the input-output functions of the reduced systems from 0
Calculate the inpt-output functions of the original systems from $[0,1]^{T}$.

Transforming an LTI to a minimal one

Minimization procedure

1. Transform (A, B, C) to a reachable $\left(A_{r}, B_{r}, C_{r}\right)$ with the same input-output function from the initial state zero.
2. Transform $\left(A_{r}, B_{, r}, C_{r}\right)$ to an observable $\left(A_{m}, B_{m}, C_{m}\right)$ with the same input-output function from the initial state zero.

- $\left(A_{m}, B_{m}, C_{m}\right)$ is reachable and observable, its input-output function from zero is the same as (A, B, C).

$$
I_{A_{m}, B_{m}, C_{m}, 0}=I_{A, B, C, 0}
$$

- Dimension of $\left(A_{m}, B_{m}, C_{m}\right)$ is the smallest among all $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ s.t.

$$
I_{A^{\prime}, B^{\prime}, C^{\prime}, 0}=I_{A, B, C, 0}
$$

Minimality

Let $/$ be an input-output function.

1. (A, B, C) is a minimal dimensional system such that $I_{A, B, C, 0}=I \Longleftrightarrow(A, B, C)$ is reachable from zero, and (A, B, C) is observable.
2. If (A, B, C) and $(\hat{A}, \hat{B}, \hat{C})$ are minimal dimensional s.t. $I_{A, B, C, 0}=I_{\hat{A}, \hat{B}, \hat{C}, 0}=I$ then they are isomorphic: there exists a nonsingular matrix T s.t.:

$$
T A T^{-1}=\hat{A}, T B=\hat{B}, C T^{-1}=\hat{C}
$$

Consequences of minimality for control

- If two reachable and observable LTI systems have the same transfer function, then they are isomorphic and have the same input-output behavior.

Transfer functions capture the input-output behavior of reachable and observable systems.

- Minimal LTI system which with the same transfer function isomorphic \Longrightarrow
control design does not depend on the choice of the LTI state-space representation.
- Minimal LTI representations are observable \& controllable: observer design and stabilization is always possible.
- Unobservable/uncontrollable eigenvalues are the only potential source of problems.
- Try to use minimal systems for control.
- Further applications: system identification, model reduction.

Definition of linear switched systems

$$
\begin{aligned}
& \sigma x(t)=f(x(t), u(t)), y(t)=h(x(t), u(t)) \\
& f(x, u)=A_{q} x+B_{q} v, u=(q, v) \\
& h(x, u)=C_{q} x, u=(q, v)
\end{aligned}
$$

Inputs $u=(q, v)$
$q \in Q=\{1,2, \ldots, d\}$ - discrete mode, v - continuous input
Outputs
y - continuous output
Dimension $-n$, the dimension of the state $x(t)$.
Linear switched systems: simplest class of hybrid systems.
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ - shorthand notation.

Expressions for the state and output

Discrete-time

$$
\begin{aligned}
& x\left(x_{0},(q, v)\right)(t)=A_{q(t-1)} \cdots A_{q(0)} x_{0}+\sum_{k=0}^{t-1} A_{q(t-1)} \cdots A_{q(k+1)} B_{q(k)} v(k) \\
& y\left(x_{0},(q, v)\right)(t)=C_{q(t)} A_{q(t-1)} \cdots A_{q(0)} x_{0}+ \\
& \sum_{k=0}^{t-1} C_{q(t)} A_{q(t-1)} \cdots A_{q(k+1)} B_{q(k)} v(k)
\end{aligned}
$$

Expressions for the state and output

Continuous-time: $q(s)=q_{i}$ for $s \in\left[\sum_{j=1}^{i-1} t_{j}, \sum_{j=1}^{i} t_{j}\right), t_{j} \geq 0$, $t=\sum_{j=1}^{k} t_{j}$.

$$
\begin{aligned}
& x\left(x_{0},(q, v)\right)(t)=e^{A_{q_{k}} t_{k}} \cdots e^{A_{q_{1}} t_{1}} x_{0}+ \\
& \sum_{i=1}^{k} \int_{0}^{t_{i}} e^{A_{q_{k}} t_{k}} \cdots e^{A_{q_{i}}\left(t_{i}-s\right)} B_{q_{i}} u\left(s+\sum_{j=1}^{i-1} t_{j}\right) \\
& y\left(x_{0},(q, v)\right)(t)=C_{q_{k}} e^{A_{q_{k}} t_{k}} \cdots e^{A_{q_{1}} t_{1}} x_{0}+ \\
& \sum_{i=1}^{k} \int_{0}^{t_{i}} C_{q_{k}} e^{A_{q_{k}} t_{k}} \cdots e^{A_{q_{i}}\left(t_{i}-s\right)} B_{q_{i}} u\left(s+\sum_{j=1}^{i-1} t_{j}\right)
\end{aligned}
$$

Expressions for state and output trajectories

$Q=\{1,2,3\}$
Discrete-time: $q(0)=1, q(1)=2, q(2)=1, q(3)=2$. Write $x(t), y(t)$ for $t=0,1,2,3$.
Continuous-time: $k=4, q_{1}=1, q_{2}=2, q_{3}=1, q_{4}=2$. Write $x(t), y(t)$.

Why structure theory of linear switched systems difficult

Local structure of LTI models does not determine the structure of the switched system.
Two modes: $Q=\{1,2\}$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ccc}
-3 & 0 & -1 \\
0 & -3 & 0 \\
1 & 0 & 1
\end{array}\right], B_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], C_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]^{T} \\
& A_{2}=\left[\begin{array}{ccc}
-4 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & -1
\end{array}\right], B_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]^{T}
\end{aligned}
$$

The local subsystems are not observable, but the switched system is (we will see it later).

Observability of linear switched systems

$I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}$-input-output function $I_{f, h, x_{0}}$, $f(x,(q, v))=A_{q} x+B_{q} u, h(x,(q, v))=C_{q} x$.
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable, if the function $x_{0} \mapsto I_{\left\{A_{q}, B_{q}, C_{q},\right\}_{q \in Q, x_{0}}}$ is one-to-one.
Decomposition into autonomus and continuous input-dependent part:

$$
\begin{aligned}
& I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, v))= \\
& I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))+I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, 0}((q, v))
\end{aligned}
$$

Exercise: Write down the analytic expressions for $I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))$ and $I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, v))$ (discrete or cont. time)

Condition for observability

Theorem (Sun \& Ge \& Lee)
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable,

$$
n=\operatorname{rank}\left[\left(C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}}\right)^{T} \mid q, q_{1}, \ldots, q_{k} \in Q, 0 \leq k<n\right]
$$

$$
\bigcap_{k=0}^{\infty} \bigcap_{q, q_{1}, \ldots, q_{k} \in Q} \operatorname{ker} C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}}=\{0\}
$$

Condition for observability

A non-obvious fact from [Sun \& Ge \& Lee]:

$$
\begin{aligned}
& \bigcap_{k=0}^{\infty} \bigcap_{q, q_{1}, \ldots, q_{k} \in Q} \operatorname{ker} C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}}= \\
& \bigcap_{k=0}^{n-1} \bigcap_{q, q_{1}, \ldots, q_{k} \in Q} \operatorname{ker} C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} .
\end{aligned}
$$

Corollary
If for some $q,\left(C_{q}, A_{q}\right)$ is an observable pair, then $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable.

Proof: Exercise

Observability of linear switched systems

$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable, if $\forall x_{0}, x_{0}^{\prime}$:
$\forall q: I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))=I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}^{\prime}}((q, 0)) \Longrightarrow x_{0}=x_{0}^{\prime}$,
i.e., different initial states can be distinguished by the outputs for zero continuous input and some switching signal.
$I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))$ linear in $x_{0} \Longrightarrow$

$$
\begin{aligned}
& I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))=I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q,}, x_{0}}((q, 0)) \Longleftrightarrow \\
& I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}-x_{0}^{\prime}}((q, 0))=0
\end{aligned}
$$

$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable, if

$$
\left(\forall q: I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}}((q, 0))=0\right) \Longrightarrow x_{0}=0 .
$$

Observability of linear switched systems

$$
\begin{aligned}
& \left(\forall q \in Q: I_{\left\{A_{q}, B_{q}, c_{q}\right\}_{q \in Q}, x_{0}}((q, 0))=0\right) \Longleftrightarrow \\
& C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1} x_{0}}=0, \forall k \geq 0, q, q_{1}, \ldots, q_{k} \in Q
\end{aligned}
$$

Observability: exercise

Two modes: $Q=\{1,2\}$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ccc}
-3 & 0 & -1 \\
0 & -3 & 0 \\
1 & 0 & 1
\end{array}\right], B_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], C_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]^{T} \\
& A_{2}=\left[\begin{array}{ccc}
-4 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & -1
\end{array}\right], B_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]^{T}
\end{aligned}
$$

Check observability

Observability: exercise

$$
Q=\{1,2\}
$$

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \\
B_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], B_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
C_{1}=C_{2}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right],
\end{gathered}
$$

Check observability.

Observability reduction

$$
\begin{aligned}
& \mathcal{W}^{*}=\bigcap_{k=0}^{n-1} \bigcap_{q, q_{1}, \ldots, q_{k} \in Q} \operatorname{ker} C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}}= \\
& \bigcap_{k=0}^{\infty} \bigcap_{q, q_{1}, \ldots, q_{k} \in Q} \operatorname{ker} C_{q} A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}}
\end{aligned}
$$

b_{1}, \ldots, b_{n} basis s.t. b_{o+1}, \ldots, b_{n} span \mathcal{W}^{*}.
In this new basis,

$$
A_{q}=\left[\begin{array}{cc}
A_{q}^{\mathrm{O}} & 0 \\
A_{q}^{\prime} & A_{q}^{\prime \prime}
\end{array}\right], C_{q}=\left[\begin{array}{ll}
C_{q}^{\mathrm{O}}, & 0
\end{array}\right], B_{q}=\left[\begin{array}{c}
B_{q}^{\mathrm{O}} \\
B_{q}^{\prime}
\end{array}\right]
$$

Observability reduction

$\left\{A_{q}^{\mathrm{O}}, B_{q}^{\mathrm{O}}, C_{q}^{\mathrm{O}}\right\}_{q \in Q}$ is observable.
The input-output behavior of $\left\{A_{q}^{\mathrm{O}}, B_{q}^{\mathrm{O}}, C_{q}^{\mathrm{O}}\right\}_{q \in Q}$ and $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ are the same.

$$
\begin{gathered}
I_{\left\{A_{q}^{\mathrm{O}}, B_{q}^{\mathrm{O}}, C_{q}^{\mathrm{O}}\right\}_{q \in Q}, P x_{0}}=I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, x_{0}} . \\
P=\left[\begin{array}{cc}
I_{0} & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Last n - o coordinates: unobservable part, does not influence the output, cannot be estimated from the output.

Observability: exercise

$$
\begin{aligned}
& A_{q_{1}}=\left[\begin{array}{cccc}
-3 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right], B_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]^{T} \\
& A_{q_{2}}=\left[\begin{array}{cccc}
-4 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] B_{q_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]^{T}
\end{aligned}
$$

Perform observability reduction.

Reachability of linear switched systems

$x(z, q, v)(t)$ - state of $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ at time t, under input v, switching signal q, and initial state z.

A state z, is called reachable from x_{0}, if $z=x\left(x_{0}, u\right)(T)$ for some u and T.
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is called reachable from x_{0}, if all states are reachable from x_{0}.
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is called span-reachable from x_{0}, if the linear span of all states reachable from zero is the whole state-space.
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is called controllable, if for any z, z^{\prime}, there exists u and T s.t. $x(z, u)(T)=z^{\prime}$.

Reachability of linear switched systems

Theorem (Sun \& Ge \& Lee)
$\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is span-reachable from 0 ,

$$
n=\operatorname{rank}\left[A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, k<n\right]
$$

$$
n=\operatorname{dim} \operatorname{Span}\left\{A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} v \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, k \geq 0, v\right\}
$$

In continuous time or in discrete-time if A_{q} are invertible, then

- span reachability from 0 is equivalent to reachability from 0 ,
- reachability from 0 is equivalent to controllability.

Reachability of linear switched systems

A non-obvious fact from [Sun \& Ge \& Lee]:
$\operatorname{Span}\left\{A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} v \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, k \geq 0, v \in \mathbb{R}^{m}\right\}=$ $\operatorname{Span}\left\{A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} v \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, n>k \geq 0, v \in \mathbb{R}^{m}\right\}$

Corollary

If for some $q,\left(A_{q}, B_{q}\right)$ is a controllable pair, then $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is span-reachable from 0 .
Proof: Exercise

Reachability of linear switched systems

Main idea:

- $\operatorname{Span}\left\{A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} v \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, k \geq 0, v \in\right.$ $\left.\mathbb{R}^{m}\right\}$
is the smallest vector space which contains states reachable from zero.

In continuous time or in discrete-time if A_{q} are invertible, then there exists a switching signal q and an interval $[0, T]$ s.t.

- The linear span of

$$
\{x(0,(q, v))(t) \mid v \text { continuous input, } t \in[0, T]\}
$$

contains the set of all states which are reachable from zero.

- The set

$$
\{x(0,(q, v))(t) \mid v \text { continuous input, } t \in[0, T]\}
$$

is a vector space.
The proof of the equivalence of controllability and reachability is difficult.

Reachability: exercise

Two modes: $Q=\{1,2\}$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ccc}
-3 & 0 & -1 \\
0 & -3 & 0 \\
1 & 0 & 1
\end{array}\right], B_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], C_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]^{T} \\
& A_{2}=\left[\begin{array}{ccc}
-4 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & -1
\end{array}\right], B_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], C_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]^{T}
\end{aligned}
$$

Check reachability

Reachability: exercise

$$
Q=\{1,2\}
$$

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \\
B_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], B_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
C_{1}=C_{2}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right],
\end{gathered}
$$

Check reachability.

Reachability reduction

$$
\begin{aligned}
& \mathcal{V}^{*}= \\
& \operatorname{Span}\left\{A_{q_{k}} A_{q_{k-1}} \cdots A_{q_{1}} B_{q_{0}} v \mid q_{0}, q_{1}, \ldots, q_{k} \in Q, k \geq 0, v \in \mathbb{R}^{m}\right\}
\end{aligned}
$$

Choose a basis b_{1}, \ldots, b_{n} s.t. $b_{1}, \ldots, b_{r} \operatorname{span} \mathcal{V}^{*}$.
In this new basis,

$$
A_{q}=\left[\begin{array}{cc}
A_{q}^{\mathrm{R}} & A_{q}^{\prime} \tag{1}\\
0 & A_{q}^{\prime \prime}
\end{array}\right], C_{q}=\left[\begin{array}{ll}
C_{q}^{\mathrm{R}}, & C_{q}^{\prime}
\end{array}\right], B_{q}=\left[\begin{array}{c}
B_{q}^{\mathrm{R}} \\
0
\end{array}\right],
$$

$\left\{A_{q}^{\mathrm{R}}, B_{q}^{\mathrm{R}}, C_{q}^{\mathrm{R}}\right\}_{q \in Q}$ is span-reachable from 0.
The input-output function from zero of $\left\{A_{q}^{\mathrm{R}}, B_{q}^{\mathrm{R}}, C_{q}^{\mathrm{R}}\right\}_{q \in Q}$ and $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ are the same.

$$
I_{\left\{A_{q}^{\mathrm{R}}, B_{q}^{\mathrm{R}}, C_{q}^{\mathrm{R}}\right\}_{q \in Q, 0}}=I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, 0} .
$$

Last $n-r$ coordinates: uncontrollable part, cannot be influenced by continuous inputs.

Reachability: exercise

$$
\begin{aligned}
& A_{q_{1}}=\left[\begin{array}{cccc}
-3 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right], B_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]^{T} \\
& A_{q_{2}}=\left[\begin{array}{cccc}
-4 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] B_{q_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]^{T}
\end{aligned}
$$

Apply reachability reduction.

Minimization

- Apply reachability reduction to $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ to get $\left\{A_{q}^{\mathrm{R}}, B_{q}^{\mathrm{R}}, C_{q}^{\mathrm{R}}\right\}_{q \in Q}$.
- Apply observability reduction to $\left\{A_{q}^{\mathrm{R}}, B_{q}^{\mathrm{R}}, C_{q}^{\mathrm{R}}\right\}_{q \in Q}$ to get $\left\{A_{q}^{m}, B_{q}^{m}, C_{q}^{m}\right\}_{q \in Q}$.
$\left\{A_{q}^{m}, B_{q}^{m}, C_{q}^{m}\right\}_{q \in Q}$ is span-reachable from 0 , observable, and its input-output function from 0 is the same as that of $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$, i.e.,

$$
I_{\left\{A_{q}^{m}, B_{q}^{m}, C_{q}^{m}\right\}_{q \in Q}, 0}=I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, 0} .
$$

State-space dimension of $\left\{A_{q}^{m}, B_{q}^{m}, C_{q}^{m}\right\}_{q \in Q}$ is \leq state-space dimension of $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$.

Minimality

Let I be an input-output function.

Theorem (Pet06,Pet07,Pet11a,Pet13)

- $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is a minimal dimensional among all linear switched systems whose input-output function from 0 is I, $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ is observable and span-reachable from 0 .
- $\left\{A_{q}^{m}, B_{q}^{m}, C_{q}^{m}\right\}_{q \in Q}$ is minimal dimensional among all linear switched systems with the same input-output function from 0.
- If $\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}$ and $\left\{\hat{A}_{q}, \hat{B}_{q}, \hat{C}_{q}\right\}_{q \in Q}$ are minimal dimensional s.t. $I_{\left\{A_{q}, B_{q}, C_{q}\right\}_{q \in Q}, 0}=I_{\left\{\hat{A}_{q}, \hat{B}_{q}, \hat{C}_{q}\right\}_{q \in Q}, 0}=I$ then they are isomorphic:
there exists a nonsingular matrix T s.t.:

$$
\forall q: T A_{q} T^{-1}=\hat{A}_{q}, T B_{q}=\hat{B}_{q}, C T_{q}^{-1}=\hat{C}_{q} .
$$

Counter-examples

- If at least one of the continuous subsystems are minimal, then the switched system is minimal.
- A switched system can be minimal (resp. observable, reachable), without any of the subsystems being minimal (resp. observable, reachable).
- Certain linear switched systems can never be brought to a form where all the continuous subsystems are minimal.

Example

$$
\begin{aligned}
& A_{q_{1}}=\left[\begin{array}{cccc}
-3 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right], B_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]^{\top} \\
& A_{q_{2}}=\left[\begin{array}{cccc}
-4 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] B_{q_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] C_{q_{1}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]^{T}
\end{aligned}
$$

This system is neither observable nor reachable, hence it is not minimal.

Example: cont

After minimization, we obtain

$$
\begin{gathered}
A_{q_{1}}=\left[\begin{array}{ccc}
-3 & 0 & -0.02 \\
0 & -3 & 0 \\
0.98 & 0 & 0.006
\end{array}\right], B_{q_{1}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] C_{q_{1}}=\left[\begin{array}{c}
0.95 \\
0 \\
-0.31
\end{array}\right]^{T} \\
A_{q_{2}}=\left[\begin{array}{ccc}
-4 & 0 & -0.02 \\
0 & -2 & 0 \\
0.98 & 0 & -0.99
\end{array}\right] B_{q_{2}}=\left[\begin{array}{c}
0.31 \\
0 \\
0.95
\end{array}\right] C_{q_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]^{T}
\end{gathered}
$$

The system above is minimal, but none of the subsystems is minimal

Example: cont

If we simulate the two systems for white noise input and switching sequence $\left(q_{2}, 1\right)\left(q_{1}, 2\right)\left(q_{1}, 3\right)\left(q_{2}, 1\right)$.

Further consequences

- For linear switched systems which are observable and span-reachable from zero, the input-output function from 0 captures all the input-output behavior.
- It is impossible to estimate the state for non-observable linear switched systems. The converse need not be true.
- It is impossible to control (stabilize) a linear switched system with continuous inputs, if it is not span-reachable from zero. The converse need not be true.
- Minimal switched systems isomorphic \Longrightarrow control depends only on the input-output behavior not on the choice of the state-space representation.
- Existence of quadratic (control) Lyapunov functions, storage functions is a property of input-output behavior.

Linear Time Invariant (LTI) state-space representation

$\Sigma=(A, B, C)$.
Input-output map $Y_{\Sigma}=I_{A, B, C, 0}$ maps input $u($.$) to output y($.$) ,$ initial state $x(0)=0$.

$$
Y_{\Sigma}(u)(t)=\left\{\begin{array}{l}
\int_{0}^{t} C e^{A(t-s)} B u(s) d s \\
\sum_{s=0}^{t-1} C A^{(t-s)} B u(s)
\end{array}\right.
$$

Σ is a realization of $Y: u(.) \mapsto y($.$) , iff Y_{\Sigma}=Y$.
Realization problem
For the specified input-output map Y find a (preferably minimal) linear system Σ such that Σ realizes Y.

Impulse response

A potential input-output map of a linear system is determined by its impulse response:

Impulse response $G(t)$

$$
Y(u(.), t)= \begin{cases}\left.\int_{0}^{t} G(t-s) u(s) d s\right) & \text { continuous time } \\ \sum_{s=0}^{t-1} G(t-s) u(s) & \text { discrete time }\end{cases}
$$

Σ is a realization, iff

$$
\begin{aligned}
& \left.G(t)=C e^{A t} B \text { (cont.time }\right) \\
& G(t)=C A^{t} B \text { (disc.-time) }
\end{aligned}
$$

Markov parameters

Markov parameters

$$
M_{k}=\left\{\begin{aligned}
\left.\frac{d^{k}}{d t^{k}} G(t)\right|_{t=0} & \text { continuous time, or } \\
G(k+1) & \text { discrete time }
\end{aligned}\right.
$$

Classical step. $\quad \Sigma$ is a realization of $Y \Longleftrightarrow M_{k}=C A^{k} B$

Existence of a realization

Recall M_{k} - Markov parameters*
Hankel matrix of $Y \quad H_{Y}=\left[\begin{array}{cccc}M_{0} & M_{1} & M_{2} & \cdots \\ M_{1} & M_{2} & M_{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots\end{array}\right]$

Theorem

- Y has a realization by an LTI \Longleftrightarrow rank $H_{Y}<+\infty$.
- rank H_{Y} is the dimension of a minimal LTI realization of Y.

Ho-Kalman algorithm

1. Find a factorization

$$
H_{N, N+1}=\left[\begin{array}{cccc}
M_{0} & M_{1} & \cdots & M_{N} \\
M_{1} & M_{2} & \cdots & M_{N+1} \\
\vdots & \vdots & \vdots & \vdots \\
M_{N-1} & M_{N} & \cdots & M_{2 N-1}
\end{array}\right]=O R
$$

s.t. O full column rank, R full row rank.
(e.g, SVD: $H_{N, N+1}=U \Sigma V^{T}, O=U \Sigma^{1 / 2}, R=\Sigma^{1 / 2} V^{T}$).
2. $R=\left[\begin{array}{llll}R_{1} & , R_{2}, & \cdots, & R_{N+1}\end{array}\right], O=\left[\begin{array}{c}O_{1} \\ O_{2} \\ \vdots \\ O_{N}\end{array}\right]$.
3. $B=R_{1}, C=O_{1}$, and A solves

$$
A\left[\begin{array}{llll}
R_{1}, & R_{2}, & \cdots, & R_{N}
\end{array}\right]=\left[\begin{array}{llll}
R_{2}, & R_{3}, & \cdots, & R_{N+1}
\end{array}\right]
$$

Correctness of Ho-Kalman algorithm and partial realization

$$
\begin{aligned}
& H_{N, N}=\left[\begin{array}{cccc}
M_{0} & M_{1} & \cdots & M_{N-1} \\
M_{1} & M_{2} & \cdots & M_{N} \\
\vdots & \vdots & \vdots & \vdots \\
M_{N-1} & M_{N} & \cdots & M_{2 N-2}
\end{array}\right], \\
& H_{N+1, N}=\left[\begin{array}{cccc}
M_{0} & M_{1} & \cdots & M_{N-1} \\
M_{1} & M_{2} & \cdots & M_{N} \\
\vdots & \vdots & \vdots & \vdots \\
M_{N} & M_{N+1} & \cdots & M_{2 N-1}
\end{array}\right]
\end{aligned}
$$

Correctness of Ho-Kalman algorithm and partial realization

Theorem (Ho-Kalman algorithm \& partial realization)

- rank $H_{N, N}=\operatorname{rank} H_{Y} \Longrightarrow(A, B, C)$ is a minimal realization of Y
- If Y has a realization of dimension less than N, then rank $H_{N, N}=\operatorname{rank} H_{Y}$.
- rank $H_{N, N}=\operatorname{rank} H_{N+1, N}=\operatorname{rank} H_{N, N+1} \Longrightarrow$ (A, B, C) is a so called $2 N$ realization of Y, i.e.

$$
M_{k}=C A^{k} B, k=0,1, \ldots, 2 N-1
$$

Impulse response of linear switched systems

- Potential input-output map Y of a linear switched system

1. Maps switching signal $q($.$) and input u($.$) to output y($.$) .$
2. Linear in continuous input $u()$.

- Y is completely described by its impulse response Impulse response for switching $q($.

Switching $q()$: stay in discrete mode q_{1}, \ldots, q_{k} for times t_{1}, \ldots, t_{k}.

$$
G_{q_{1} \ldots q_{k}}\left(t_{1}, \ldots, t_{k}\right)=Y\left(q(.), \sigma_{0}\right)
$$

- σ_{0} is the Dirac-delta for continuous-time
- $\sigma_{0}(0)=1, \sigma_{0}(t)=0, t>0$ for discrete-time

Markov parameters for linear switched systems

Markov parameters, $q_{0}, q \in Q$ - discrete modes, $j=1,2, \ldots, m$

$$
S_{q, q_{0}}\left(q_{1} q_{2} \cdots q_{k}\right)=\left\{\begin{array}{l}
G_{q_{0} q_{1} \cdots q_{k} q}(1,1, \ldots, 1) \\
\left.\frac{d}{d t_{1}} \cdots \frac{d}{d t_{k}} G_{q_{0} q_{1} \cdots q_{k}}\left(0, t_{1}, \ldots, t_{k}, 0\right)\right|_{t_{1}=\cdots=t_{k}=0}
\end{array}\right.
$$

Markov parameters are indexed by sequences of discrete modes Q^{*}
Σ is a realization of Y

$$
S_{q, q_{0}}\left(q_{1} q_{2} \cdots q_{k}\right)=C_{q} A_{q_{k}} \cdots A_{q_{1}} B_{q_{0}}
$$

Hankel matrix for linear switched systems

$Q=\{1,2, \ldots, D\}$
$v_{1} \prec \ldots \prec v_{k}, \ldots$ lexicographic ordering of all sequences.

$$
M(v)=\left[\begin{array}{ccc}
S_{1,1}(v) & \ldots & S_{1, D}(v) \\
\vdots & \ldots & \vdots \\
S_{D, 1}(v) & \ldots & S_{D, D}(v)
\end{array}\right]
$$

Hankel matrix: H_{Y}

$$
H_{Y}=\left[\begin{array}{ccccc}
M\left(v_{1} v_{1}\right) & M\left(v_{2} v_{1}\right) & \cdots & M\left(v_{k} v_{1}\right) & \cdots \\
M\left(v_{1} v_{2}\right) & M\left(v_{2} v_{2}\right) & \cdots & M\left(v_{k} v_{2}\right) & \cdots \\
M\left(v_{1} v_{3}\right) & M\left(v_{2} v_{3}\right) & \cdots & M\left(v_{k} v_{3}\right) & \cdots \\
\vdots & \vdots & \cdots & \vdots & \cdots
\end{array}\right],
$$

Realization theorem for linear switched systems

Theorem (Pet06,Pet07,Pet11a,Pet13)

- Y has a realization \Longleftrightarrow rank $H_{Y}<+\infty$,

Realization algorithm [Pet06,Pet11,Pet13]

$$
H_{Y, N+1, N}=\left[\begin{array}{ccc}
M\left(v_{1} v_{1}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{1}\right) \\
\vdots & \cdots & \vdots \\
M\left(v_{1} v_{\mathbf{M}(N)}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{\mathbf{M}(N)}\right) \\
M\left(v_{1} v_{\mathbf{M}(N+1)}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{\mathbf{M}(N+1)}\right)
\end{array}\right]
$$

$\mathbf{M}(N)$ - number of sequences over Q of length at most N
1: $H_{f, N+1, N}=O R$
2: $B_{q}=m(q-1)+1, \ldots, m q t h$ columns of R.
3: $C_{q}=p(q-1)+1, \ldots, p q$ th rows of O.
4: $A_{q}=\bar{O}^{+} O_{q}$

- \bar{O} - the block rows of O which are indexed by v_{1}, \ldots, v_{N}.
- \bar{O}^{+}-pseudo-inverse of \bar{O}.
- O_{q} - shifted \bar{O} : the row of O_{q} indexed by sequence v is the row of O indexed by sequence $q v$.

Partial realization theorem for linear switched systems

$$
\begin{aligned}
& H_{Y, N, N}=\left[\begin{array}{ccc}
M\left(v_{1} v_{1}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{1}\right) \\
\vdots & \cdots & \vdots \\
M\left(v_{1} v_{\mathbf{M}(N)}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{\mathbf{M}(N)}\right)
\end{array}\right] \\
& H_{Y, N, N+1}=\left[\begin{array}{cccc}
M\left(v_{1} v_{1}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{1}\right) & M\left(v_{\mathbf{M}(N+1)} v_{1}\right) \\
\vdots & \cdots & \vdots & \vdots \\
M\left(v_{1} v_{\mathbf{M}(N)}\right) & \cdots & M\left(v_{\mathbf{M}(N)} v_{\mathbf{M}(N)}\right) & M\left(v_{\mathbf{M}(N+1)} v_{\mathbf{M}(N)}\right)
\end{array}\right]
\end{aligned}
$$

Theorem (Pet11b,Pet13)

1. If rank $H_{Y, N, N}=\operatorname{rank} H_{Y, N, N+1}=\operatorname{rank} H_{Y, N+1, N}$ then the result of the algorithm recreates the Markov-parameters $M\left(v_{1}\right), \ldots M\left(v_{M(2 N+1)}\right)$.
2. If $N \geq$ the dimension of a realization of Y, then the algorithm returns a minimal realization of Y.

Example

Consider the switched system from the previous example and Y the input-output map of that system.

$$
H_{Y, 2,1}=\left[\begin{array}{cccccc}
0 & 0 & 0 & -1 & 0 & -1 \\
1 & 0 & -3 & 0 & -2 & 0 \\
0 & -1 & 0 & 3 & 0 & 4 \\
-3 & 0 & 9 & 0 & 6 & 0 \\
0 & -1 & 0 & 4 & 0 & 5 \\
-2 & 0 & 6 & 0 & 4 & 0 \\
0 & 3 & 0 & -9 & 0 & -12 \\
9 & 0 & -27 & 0 & -18 & 0 \\
0 & 4 & 0 & -12 & 0 & -16 \\
6 & 0 & -18 & 0 & -12 & 0 \\
0 & 4 & 0 & -12 & 0 & -16 \\
6 & 0 & -18 & 0 & -12 & 0 \\
0 & 5 & 0 & -16 & 0 & -21 \\
4 & 0 & -12 & 0 & -8 & 0
\end{array}\right]
$$

Example: cont.

Applying the realization algorithm to $H_{Y, 2,1}$ yields.

$$
\begin{gathered}
A_{q_{1}}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -3.02 & 0.17 \\
0 & -0.32 & 0.018
\end{array}\right], B_{q_{1}}=\left[\begin{array}{c}
-1.9 \\
0 \\
0
\end{array}\right], C_{q_{1}}=\left[\begin{array}{c}
0 \\
0.21 \\
0.46
\end{array}\right]^{T} \\
A_{q_{2}}=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -4.02 & 0.17 \\
0 & -0.32 & -0.98
\end{array}\right], B_{q_{2}}=\left[\begin{array}{c}
0 \\
1.25 \\
-0.57
\end{array}\right], C_{q_{2}}=\left[\begin{array}{c}
-0.53 \\
0 \\
0
\end{array}\right]^{T}
\end{gathered}
$$

Example: cont

If we simulate the two systems for white noise input and switching sequence $\left(q_{2}, 1\right)\left(q_{1}, 2\right)\left(q_{1}, 3\right)\left(q_{2}, 1\right)$.

Further work

- The results above can be extended to linear jumps and bilinear local equations.
- The results can be extended to LPV systems.
- Extension to stochastic jump-Markov linear systems.
- Application to model reduction, system identification.

References

固 R．E．Kalman．
Advanced theory of linear systems．
In Topics in Mathematical System Theory，pages 237－339．
McGraw－Hill，New York， 1969.
囯 T．Kailath，Linear Systems．Prentice Hall， 1980.
围 T．Katayama．
Subspace Methods for System Identification．
Springer－Verlag， 2005.

References

R
M. Petreczky.

Realization theory of linear and bilinear switched systems: A formal power series approach: Part i.
ESAIM Control, Optimization and Calculus of Variations, 17:410-445, 2011.

國 M. Petreczky, L. Bako, and van J.H. Schuppen.
Realization theory for discrete-time linear switched systems.
Automatica, 49(11):3337-3344, 2013.
䡒 M. Petreczky and J. H. Van Schuppen.
Partial-realization of linear switched systems: A formal power series approach.
Automatica, 47(10):2177-2184, 2011.

References

五
M. Petreczky and J.H. van Schuppen.

Realization theory for linear hybrid systems.
IEEE Trans. on Automatic Control, 55:2282 - 2297, 2010.
(in Mihaly Petreczky, Aneel Tanwani and Stephan Trenn.
Observability of Switched Linear Systems.
In Hybrid Dynamical Systems: Observation and control, Lecture Notes in Control and Information Sciences, vol. 457, M. Djemai, M. Defoort (eds), Springer Verlag, ISBN:

978-3-319-10795-0, 2015.
國 Mihaly Petreczky.
Realization theory of linear hybrid systems.
In Hybrid Dynamical Systems: Observation and control,
Lecture Notes in Control and Information Sciences, vol. 457,
M. Djemai, M. Defoort (eds), Springer Verlag, ISBN:

978-3-319-10795-0, 2015.

References

國 Zh. Sun and Sh. S. Ge.
Switched linear systems : control and design.
Springer, London, 2005.
囯 S.S. Ge, Zhendong Sun, and T.H. Lee.
Reachability and controllability of switched linear discrete-time systems.
IEEE Trans. Automatic Control, 46(9):1437-1441, 2001.
Ehendong Sun, S.S. Ge, and T.H. Lee.
Controllability and reachability criteria for switched linear systems.
Automatica, 38:115-786, 2002.
Zhendong Sun and Dazhong Zheng.
On reachability and stabilization of switched linear systems.
IEEE Trans. Automatic Control, 46(2):291 - 295, 2001.

