
Structural properties of linear switched systems:
observability, controllability, minimality
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Outline of the course

I Reminder: structural properties of linear systems.

I Observability of linear switched systems.

I Reachability/controllability of linear switched systems.

I Minimality of linear switched systems.

I Kalman-Ho realization algorithm



Linear Time Invariant (LTI) state-space representation

Σ :

{
σx(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

σx(t) =

{
ẋ(t) continuous time

x(t + 1) discrete time

(A,B,C ): shorthand notation.



Observability: general definition
General non-linear system

σx(t) = f (x(t), u(t)), y = h(x(t), u(t)).

u – input, y – output.

y(z , u) – output signal from initial state z under input u.

called observable (in the sense of indistinguishability), if

∀z1 6= z2 : ∃u : y(z1, u) 6= y(z2, u)

i.e. for any two initial states z , z
′
there exists an input u(.) such

that the corresponding outputs y , y
′

are different.

called observable (in the sense of state reconstruction), if

∀z1 6= z2 : ∀u : y(z1, u) 6= y(z2, u)

i.e. for any two initial states z , z
′
for all inputs u(.) such that the

corresponding outputs y , y
′

are different.



Observability: general definition

Observability in the sense of state reconstruction =⇒
observability in the sense indistinguishability.

Observability in the sense of state reconstruction is necessary for
observer design.

Observability in the sense of indistinguishability is necessary for
minimal dimesional state-space representations.



Observability: linear case

f (x , u) = Ax + Bu, h(x , u) = Cx

Observability in the sense of state reconstruction ⇐⇒
observability in the sense indistinguishability.

For linear systems

y(z , u) = y(z , 0) + y(0, u)

y(z
′
, u) = y(z

′
, 0) + y(0, u)

y(z , u) 6= y(z
′
, u) ⇐⇒ y(z , 0) + y(0, u) 6= y(z

′
, 0) + y(0, u)

⇐⇒ y(z , 0) 6= y(z
′
, 0)

∃u : y(z , u) 6= y(z
′
, u) ⇐⇒ y(z , 0) 6= y(z

′
, 0) ⇐⇒

∀u : y(z , u) 6= y(z
′
, u)



Observability rank condition

(A,B,C ) observable,
⇐⇒

rank
[
CT ATCT · · · (An−1)TCT

]T
= n

⇐⇒

∞⋂
k=0

kerCAk = {0}

⇐⇒

∀z 6= 0, ∃k ≥ 0 : 0 6= CAkz =

{
dk

dtk
y(z , 0)(t)|t=0 cont. time

y(z , 0)(t) disc. time

⇐⇒
∀z 6= 0 : y(z , 0) 6= 0 ⇐⇒ ∀z1 6= z2 : y(z1 − z2, 0) 6= 0 ⇐⇒
∀z1 6= z2 : y(z1, 0) 6= y(z2, 0).



Observability: application

Observability =⇒ existence of a Luenberger-observer

Observability reduction: replace a system (A,B,C ) with another
one with the same input-output behavior.
Basis b1, . . . , bn such that bo+1, . . . , bn spans

ker


C
CA

...
CAn−1


In the new basis

A =

[
Ao 0
? Auo

]
, B =

[
Bo

?

]
, C =

[
Co , 0

]
(Ao ,Bo ,Co) is observable, has the same input-output behavior as
(A,B,C ).



Detour: input-output behaviors

Two different ways to view a system:

I System of equations: σx(t) = f (x(t), u(t)), y = h(x(t))

I Set of observed input-output pairs (y , u) (see ‘Behavioral
approach’ by Jan C. Willems).

Input-output behavior of σx(t) = f (x(t), u(t)), y = h(x(t))

Bf ,h = {(u, y) | ∃x : σx(t) = f (x(t), u(t)), y = h(x(t))}

Input-output behavior is what we want to control, state-space
representation is a tool for control synthesis.



Input-output behavior, input-output function, observability

Input-output function from initial state x0:

If ,h,x0 : u 7→ y s.t.σx(t) = f (x(t), u(t)), y = h(x(t)), x(0) = x0.

Relationship between the two:

Bf ,h =
⋃
x0,u

{(Ix0,f ,h(u), u)}

Observability (in th sense of indistinguishability) ⇐⇒ the
function x0 7→ If ,h,x0 is one-to-one

Observability (in the sense of state reconstruction) ⇐⇒ for every
(u, y) there exists unique x0 s.t. If ,h,x0(u) = y .



Input-output behavior of linear systems

IA,B,C ,x0 , BA,B,C - input-output function If ,h,x0/input-output
behavior Bf ,h, f (x , u) = Ax + Bu, h(x , u) = Cx .

Nice properties:

IA,B,C ,x0(u) = IA,B,C ,x0(0) + IA,B,C ,0(u)

I IA,B,C ,x0(0) =

{
CeAtx0 cont. time
CAtx0 disc. time

– depends (linearly) on

the initial state, independent of input

I IA,B,C ,0(u) =

{ ∫ t
0 CeA(t−s)Bu(s)ds∑t−1

s=0 CA
(t−s−1)Bu(s)

– depends

(linearly) on the input, not on initial state.

IA,B,C ,0 ⇐⇒ transfer function H(s) = C (sI − A)−1B.



Input-output behavior of linear systems

I Transfer function are often identified with input-output
behavior.

I But: Transfer functions do not capture all the input-output
behavior.

I Transfer functions capture the input-output behavior which
we can control and observe.



Motivating example

Consider two linear systems

σx =

[
0 1
2 −1

]
x +

[
0
1

]
u

y =
[
2 1

]
x

σx =

[
0 1
−2 3

]
x +

[
0
1

]
u

y =
[
−2 1

]
x

They have the same input-output behavior from zero initial state
(transfer functions are the same).

Yet, u = −2y stabilizes the first system, and not the second.

What is the problem ? Which model is the wrong one ?



Observability: exercise

Is (A,B,C ) below observable ?

A =

−3 0 −1
0 −3 0
1 0 1

 , B =

0
1
0

 , C =

1
0
1

T

Use the definition and the rank condition to motivate your answer.

If it is not observable, find two states z , z
′

s.t. IA,B,C ,z = IA,B,C ,z ′ .

Perform observability reduction.



Input-output behavior: exercise

Consider two linear systems

σx =

[
0 1
2 −1

]
x +

[
0
1

]
u

y =
[
2 1

]
x

σx =

[
0 1
−2 3

]
x +

[
0
1

]
u

y =
[
−2 1

]
x

Do they have the same input-output function from the zero initial
sate ?

Do they have the same input-output behavior ?



Observability reduction (Ao,Bo,Co) revisited

Correspondence between input-output functions

IAo ,Bo ,Co ,Px0 = IA,B,C ,x0 , P =

[
Io
0

]
.

Transfer functions of (Ao ,Bo ,Co) and (A,B,C ) are equal:

IAo ,Bo ,Co ,0 = IA,B,C ,0

The set of input-output functions (hence the input-output
behavior) are preserved by observability reduction:⋃

xo

IAo ,Bo ,Co =
⋃
x0

IA,B,C ,x0 , BA,B,C = BAo ,Bo ,Co .

Control synthesis can be done on (Ao ,Bo ,Co) instead of (A,B,C )
(attention, unstable unobserved modes !).



Reachability & controllability

x(z , u)(t) – state of (A,B,C ) at time t, under input u, initial
state z .

A state z , is reachable from x0, if z = x(x0, u)(T ) for some u and
T .

(A,B,C ) is reachable, if all states are reachable from 0.

(A,B,C ) is controllable, if for any z , z
′
, there exists u and T s.t.

x(z , u)(T ) = z
′
.



Conditions for reachabilit

(A,B,C ) reachable, ⇐⇒

rank
[
B AB · · · An−1B

]
= n

⇐⇒
Span{AkBu | k ≥ 0, u ∈ Rm} = n
⇐⇒

(AT ,CT ,BT ) is observable.

Controllability (in cont. time or in disc. time if A is invertible)
⇐⇒ reachability.

Span{AkBu | k ≥ 0, u ∈ Rm} set of reachable states x(0, u)(t)
from zero.



Conditions for reachability

Main idea:

I Span{AkBu | k ≥ 0, u ∈ Rm} is the smallest vector space
which contains states reachable from zero.

I The set of states reachable from zero is a vector space.

The proof of the equivalence of controllability and reachability is
difficult: if a state can be reached from zero, then zero can be
reached from that state.



Reachability reduction

Basis b1, . . . , bn such that b1, . . . , br spans

Im
[
B AB · · · An−1B

]
In the new basis

A =

[
Ar ?
0 Auc

]
, B =

[
Br

0

]
, C =

[
Cr ?

]
(Ar ,Br ,Cr ) is reachable, and has the same input-output function
from the zero initial state as (A,B,C )

IAr ,Br ,Cr ,0 = IA,B,C ,0

A state which is not reachable from zero cannot be influenced by
inputs.



Reachability reduction

Reachability reduction preserves the input-output function
generated by initial state 0.

It is not true that (A,B,C ) has the same input-output behavior as
(Ar ,Br ,Cr ).

When replacing (A,B,C ) by (Ar ,Br ,Cr ), we lose behavior which
cannot be controlled.



Reachability & controllability

Perform reachability reduction on

ẋ =

[
0 −2
1 3

]
x +

[
−2
1

]
u

y =
[
0 1

]
x

and

ẋ =

[
0 2
1 −1

]
x +

[
2
1

]
u

y =
[
0 1

]
x

Calculate the input-output functions of the reduced systems from 0

Calculate the inpt-output functions of the original systems from
[0, 1]T .



Transforming an LTI to a minimal one

Minimization procedure

1. Transform (A,B,C ) to a reachable (Ar ,Br ,Cr ) with the same
input-output function from the initial state zero.

2. Transform (Ar ,B,r ,Cr ) to an observable (Am,Bm,Cm) with
the same input-output function from the initial state zero.

I (Am,Bm,Cm) is reachable and observable, its input-output
function from zero is the same as (A,B,C ).

IAm,Bm,Cm,0 = IA,B,C ,0

I Dimension of (Am,Bm,Cm) is the smallest among all
(A
′
,B
′
,C
′
) s.t.

IA′ ,B′ ,C ′ ,0 = IA,B,C ,0



Minimality

Let I be an input-output function.

1. (A,B,C ) is a minimal dimensional system such that
IA,B,C ,0 = I ⇐⇒ (A,B,C ) is reachable from zero, and
(A,B,C ) is observable.

2. If (A,B,C ) and (Â, B̂, Ĉ ) are minimal dimensional s.t.
IA,B,C ,0 = IÂ,B̂,Ĉ ,0 = I then they are isomorphic:
there exists a nonsingular matrix T s.t.:

TAT−1 = Â, TB = B̂, CT−1 = Ĉ .



Consequences of minimality for control

I If two reachable and observable LTI systems have the same
transfer function, then they are isomorphic and have the same
input-output behavior.

Transfer functions capture the input-output behavior of
reachable and observable systems.

I Minimal LTI system which with the same transfer function
isomorphic =⇒
control design does not depend on the choice of the LTI
state-space representation.

I Minimal LTI representations are observable & controllable:
observer design and stabilization is always possible.

I Unobservable/uncontrollable eigenvalues are the only
potential source of problems.

I Try to use minimal systems for control.

I Further applications: system identification, model reduction.



Definition of linear switched systems

σx(t) = f (x(t), u(t)), y(t) = h(x(t), u(t))

f (x , u) = Aqx + Bqv , u = (q, v)

h(x , u) = Cqx , u = (q, v)

Inputs u = (q, v)
q ∈ Q = {1, 2, . . . , d} – discrete mode, v – continuous input

Outputs
y – continuous output

Dimension – n, the dimension of the state x(t).

Linear switched systems: simplest class of hybrid systems.

{Aq,Bq,Cq}q∈Q – shorthand notation.



Expressions for the state and output

Discrete-time

x(x0, (q, v))(t) = Aq(t−1) · · ·Aq(0)x0 +
t−1∑
k=0

Aq(t−1) · · ·Aq(k+1)Bq(k)v(k)

y(x0, (q, v))(t) = Cq(t)Aq(t−1) · · ·Aq(0)x0+

t−1∑
k=0

Cq(t)Aq(t−1) · · ·Aq(k+1)Bq(k)v(k)



Expressions for the state and output

Continuous-time: q(s) = qi for s ∈ [
∑i−1

j=1 tj ,
∑i

j=1 tj), tj ≥ 0,

t =
∑k

j=1 tj .

x(x0, (q, v))(t) = eAqk
tk · · · eAq1 t1x0+

k∑
i=1

∫ ti

0
eAqk

tk · · · eAqi
(ti−s)Bqiu(s +

i−1∑
j=1

tj)

y(x0, (q, v))(t) = Cqk e
Aqk

tk · · · eAq1 t1x0+

k∑
i=1

∫ ti

0
Cqk e

Aqk
tk · · · eAqi

(ti−s)Bqiu(s +
i−1∑
j=1

tj)



Expressions for state and output trajectories

Q = {1, 2, 3}

Discrete-time: q(0) = 1, q(1) = 2, q(2) = 1, q(3) = 2. Write
x(t), y(t) for t = 0, 1, 2, 3.

Continuous-time: k = 4, q1 = 1, q2 = 2, q3 = 1, q4 = 2. Write
x(t), y(t).



Why structure theory of linear switched systems difficult

Local structure of LTI models does not determine the structure of
the switched system.
Two modes: Q = {1, 2}

A1 =

−3 0 −1
0 −3 0
1 0 1

 , B1 =

0
1
0

 , C1 =

1
0
1

T

A2 =

−4 0 1
0 −2 0
1 0 −1

 , B2 =

1
0
1

 , C2 =

0
1
0

T

The local subsystems are not observable, but the switched system
is (we will see it later).



Observability of linear switched systems

I{Aq ,Bq ,Cq}q∈Q ,x0
- input-output function If ,h,x0 ,

f (x , (q, v)) = Aqx + Bqu, h(x , (q, v)) = Cqx .

{Aq,Bq,Cq}q∈Q is observable, if the function
x0 7→ I{Aq ,Bq ,Cq ,}q∈Q ,x0

is one-to-one.

Decomposition into autonomus and continuous input-dependent
part:

I{Aq ,Bq ,Cq}q∈Q ,x0
((q, v)) =

I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) + I{Aq ,Bq ,Cq}q∈Q ,0((q, v))

Exercise: Write down the analytic expressions for
I{Aq ,Bq ,Cq}q∈Q ,x0

((q, 0)) and I{Aq ,Bq ,Cq}q∈Q ,x0
((q, v)) (discrete or

cont. time)



Condition for observability

Theorem (Sun & Ge & Lee)

{Aq,Bq,Cq}q∈Q is observable, ⇐⇒

n = rank [(CqAqkAqk−1
· · ·Aq1)T | q, q1, . . . , qk ∈ Q, 0 ≤ k < n]

⇐⇒
∞⋂
k=0

⋂
q,q1,...,qk∈Q

kerCqAqkAqk−1
· · ·Aq1 = {0}



Condition for observability

A non-obvious fact from [Sun & Ge & Lee]:

∞⋂
k=0

⋂
q,q1,...,qk∈Q

kerCqAqkAqk−1
· · ·Aq1 =

n−1⋂
k=0

⋂
q,q1,...,qk∈Q

kerCqAqkAqk−1
· · ·Aq1 .

Corollary

If for some q, (Cq,Aq) is an observable pair, then {Aq,Bq,Cq}q∈Q
is observable.

Proof: Exercise



Observability of linear switched systems

{Aq,Bq,Cq}q∈Q is observable, if ∀x0, x
′
0 :

∀q : I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) = I{Aq ,Bq ,Cq}q∈Q ,x

′
0
((q, 0)) =⇒ x0 = x

′
0,

i.e., different initial states can be distinguished by the outputs for
zero continuous input and some switching signal.

I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) linear in x0 =⇒

I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) = I{Aq ,Bq ,Cq}q∈Q ,x

′
0
((q, 0)) ⇐⇒

I{Aq ,Bq ,Cq}q∈Q ,x0−x
′
0
((q, 0)) = 0

{Aq,Bq,Cq}q∈Q is observable, if

(∀q : I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) = 0) =⇒ x0 = 0.



Observability of linear switched systems

(∀q ∈ Q : I{Aq ,Bq ,Cq}q∈Q ,x0
((q, 0)) = 0) ⇐⇒

CqAqkAqk−1
· · ·Aq1x0 = 0, ∀k ≥ 0, q, q1, . . . , qk ∈ Q



Observability: exercise

Two modes: Q = {1, 2}

A1 =

−3 0 −1
0 −3 0
1 0 1

 , B1 =

0
1
0

 , C1 =

1
0
1

T

A2 =

−4 0 1
0 −2 0
1 0 −1

 , B2 =

1
0
1

 , C2 =

0
1
0

T

Check observability



Observability: exercise

Q = {1, 2}

A1 =

1 1 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 1
0 1 1

 ,
B1 =

0
0
1

 , B2 =

0
0
1

 ,
C1 = C2 =

[
1 0 0

]
,

Check observability.



Observability reduction

W∗ =
n−1⋂
k=0

⋂
q,q1,...,qk∈Q

kerCqAqkAqk−1
· · ·Aq1 =

∞⋂
k=0

⋂
q,q1,...,qk∈Q

kerCqAqkAqk−1
· · ·Aq1 .

b1, . . . , bn basis s.t. bo+1, . . . , bn span W∗.
In this new basis,

Aq =

[
AO
q 0

A
′
q A

′′
q

]
,Cq =

[
CO
q , 0

]
,Bq =

[
BO
q

B
′
q

]
,



Observability reduction

{AO
q ,B

O
q ,C

O
q }q∈Q is observable.

The input-output behavior of {AO
q ,B

O
q ,C

O
q }q∈Q and

{Aq,Bq,Cq}q∈Q are the same.

I{AO
q ,BO

q ,CO
q }q∈Q ,Px0

= I{Aq ,Bq ,Cq}q∈Q ,x0
.

P =

[
Io 0
0 0

]
Last n − o coordinates: unobservable part, does not influence the
output, cannot be estimated from the output.



Observability: exercise

Aq1 =


−3 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −3

 ,Bq1 =


0
0
0
1

Cq1 =


1
0
0
0


T

Aq2 =


−4 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −2

Bq2 =


0
1
0
0

Cq1 =


0
0
0
1


T

Perform observability reduction.



Reachability of linear switched systems

x(z , q, v)(t) – state of {Aq,Bq,Cq}q∈Q at time t, under input v ,
switching signal q, and initial state z .

A state z , is called reachable from x0, if z = x(x0, u)(T ) for some
u and T .

{Aq,Bq,Cq}q∈Q is called reachable from x0, if all states are
reachable from x0.

{Aq,Bq,Cq}q∈Q is called span-reachable from x0, if the linear span
of all states reachable from zero is the whole state-space.

{Aq,Bq,Cq}q∈Q is called controllable, if for any z , z
′
, there exists

u and T s.t. x(z , u)(T ) = z
′
.



Reachability of linear switched systems

Theorem (Sun & Ge & Lee)

{Aq,Bq,Cq}q∈Q is span-reachable from 0, ⇐⇒

n = rank [AqkAqk−1
· · ·Aq1Bq0 | q0, q1, . . . , qk ∈ Q, k < n]

⇐⇒

n = dimSpan{AqkAqk−1
· · ·Aq1Bq0v | q0, q1, . . . , qk ∈ Q, k ≥ 0, v}

In continuous time or in discrete-time if Aq are invertible, then

I span reachability from 0 is equivalent to reachability from 0,

I reachability from 0 is equivalent to controllability.



Reachability of linear switched systems

A non-obvious fact from [Sun & Ge & Lee]:

Span{AqkAqk−1
· · ·Aq1Bq0v | q0, q1, . . . , qk ∈ Q, k ≥ 0, v ∈ Rm} =

Span{AqkAqk−1
· · ·Aq1Bq0v | q0, q1, . . . , qk ∈ Q, n > k ≥ 0, v ∈ Rm}

Corollary

If for some q, (Aq,Bq) is a controllable pair, then {Aq,Bq,Cq}q∈Q
is span-reachable from 0.

Proof: Exercise



Reachability of linear switched systems

Main idea:

I Span{AqkAqk−1
· · ·Aq1Bq0v | q0, q1, . . . , qk ∈ Q, k ≥ 0, v ∈

Rm}
is the smallest vector space which contains states reachable
from zero.

In continuous time or in discrete-time if Aq are invertible, then
there exists a switching signal q and an interval [0,T ] s.t.

I I The linear span of

{x(0, (q, v))(t) | v continuous input, t ∈ [0,T ]}

contains the set of all states which are reachable from zero.
I The set

{x(0, (q, v))(t) | v continuous input, t ∈ [0,T ]}

is a vector space.

The proof of the equivalence of controllability and reachability is
difficult.



Reachability: exercise

Two modes: Q = {1, 2}

A1 =

−3 0 −1
0 −3 0
1 0 1

 , B1 =

0
1
0

 , C1 =

1
0
1

T

A2 =

−4 0 1
0 −2 0
1 0 −1

 , B2 =

1
0
1

 , C2 =

0
1
0

T

Check reachability



Reachability: exercise

Q = {1, 2}

A1 =

1 1 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 1
0 1 1

 ,
B1 =

0
0
1

 , B2 =

0
0
1

 ,
C1 = C2 =

[
1 0 0

]
,

Check reachability.



Reachability reduction

V∗ =

Span{AqkAqk−1
· · ·Aq1Bq0v | q0, q1, . . . , qk ∈ Q, k ≥ 0, v ∈ Rm}

Choose a basis b1, . . . , bn s.t. b1, . . . , br span V∗.
In this new basis,

Aq =

[
AR
q A

′
q

0 A
′′
q

]
,Cq =

[
CR
q , C

′
q

]
,Bq =

[
BR
q

0

]
, (1)

{AR
q ,B

R
q ,C

R
q }q∈Q is span-reachable from 0.

The input-output function from zero of {AR
q ,B

R
q ,C

R
q }q∈Q and

{Aq,Bq,Cq}q∈Q are the same.

I{AR
q ,BR

q ,CR
q }q∈Q ,0 = I{Aq ,Bq ,Cq}q∈Q ,0.

Last n − r coordinates: uncontrollable part, cannot be influenced
by continuous inputs.



Reachability: exercise

Aq1 =


−3 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −3

 ,Bq1 =


0
0
0
1

Cq1 =


1
0
0
0


T

Aq2 =


−4 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −2

Bq2 =


0
1
0
0

Cq1 =


0
0
0
1


T

Apply reachability reduction.



Minimization

I Apply reachability reduction to {Aq,Bq,Cq}q∈Q to get
{AR

q ,B
R
q ,C

R
q }q∈Q .

I Apply observability reduction to {AR
q ,B

R
q ,C

R
q }q∈Q to get

{Am
q ,B

m
q ,C

m
q }q∈Q .

{Am
q ,B

m
q ,C

m
q }q∈Q is span-reachable from 0, observable, and its

input-output function from 0 is the same as that of
{Aq,Bq,Cq}q∈Q , i.e.,

I{Am
q ,B

m
q ,Cm

q }q∈Q ,0 = I{Aq ,Bq ,Cq}q∈Q ,0.

State-space dimension of {Am
q ,B

m
q ,C

m
q }q∈Q is ≤ state-space

dimension of {Aq,Bq,Cq}q∈Q .



Minimality

Let I be an input-output function.

Theorem (Pet06,Pet07,Pet11a,Pet13)

I {Aq,Bq,Cq}q∈Q is a minimal dimensional among all linear
switched systems whose input-output function from 0 is I ,
⇐⇒
{Aq,Bq,Cq}q∈Q is observable and span-reachable from 0.

I {Am
q ,B

m
q ,C

m
q }q∈Q is minimal dimensional among all linear

switched systems with the same input-output function from 0.

I If {Aq,Bq,Cq}q∈Q and {Âq, B̂q, Ĉq}q∈Q are minimal
dimensional s.t. I{Aq ,Bq ,Cq}q∈Q ,0 = I{Âq ,B̂q ,Ĉq}q∈Q ,0 = I then

they are isomorphic:
there exists a nonsingular matrix T s.t.:

∀q : TAqT
−1 = Âq, TBq = B̂q, CT

−1
q = Ĉq.



Counter-examples

I If at least one of the continuous subsystems are minimal, then
the switched system is minimal.

I A switched system can be minimal (resp. observable,
reachable), without any of the subsystems being minimal
(resp. observable, reachable).

I Certain linear switched systems can never be brought to a
form where all the continuous subsystems are minimal.



Example

Aq1 =


−3 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −3

 ,Bq1 =


0
0
0
1

Cq1 =


1
0
0
0


T

Aq2 =


−4 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −2

Bq2 =


0
1
0
0

Cq1 =


0
0
0
1


T

This system is neither observable nor reachable, hence it is not
minimal.



Example: cont

After minimization, we obtain

Aq1 =

 −3 0 −0.02
0 −3 0

0.98 0 0.006

 ,Bq1 =

0
1
0

Cq1 =

 0.95
0

−0.31

T

Aq2 =

 −4 0 −0.02
0 −2 0

0.98 0 −0.99

Bq2 =

0.31
0

0.95

Cq2 =

0
1
0

T

The system above is minimal, but none of the subsystems is
minimal



Example: cont

If we simulate the two systems for white noise input and switching
sequence (q2, 1)(q1, 2)(q1, 3)(q2, 1).
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Further consequences

I For linear switched systems which are observable and
span-reachable from zero, the input-output function from 0
captures all the input-output behavior.

I It is impossible to estimate the state for non-observable linear
switched systems. The converse need not be true.

I It is impossible to control (stabilize) a linear switched system
with continuous inputs , if it is not span-reachable from zero.
The converse need not be true.

I Minimal switched systems isomorphic =⇒ control depends
only on the input-output behavior not on the choice of the
state-space representation.

I Existence of quadratic (control) Lyapunov functions, storage
functions is a property of input-output behavior.



Linear Time Invariant (LTI) state-space representation

Σ = (A,B,C ).

Input-output map YΣ = IA,B,C ,0 maps input u(.) to output y(.),
initial state x(0) = 0.

YΣ(u)(t) =

{ ∫ t
0 CeA(t−s)Bu(s)ds∑t−1
s=0 CA

(t−s)Bu(s)

Σ is a realization of Y : u(.) 7→ y(.), iff YΣ = Y .

Realization problem
For the specified input-output map Y find a (preferably minimal)
linear system Σ such that Σ realizes Y .



Impulse response

A potential input-output map of a linear system is determined by
its impulse response:

Impulse response G (t)

Y (u(.), t) =


∫ t

0 G (t − s)u(s)ds) continuous time∑t−1
s=0 G (t − s)u(s) discrete time

Σ is a realization, iff

G (t) = CeAtB (cont.time)

G (t) = CAtB (disc.-time)



Markov parameters

Markov parameters

Mk =


dk

dtk
G (t)|t=0 continuous time, or

G (k + 1) discrete time

Classical step. Σ is a realization of Y ⇐⇒ Mk = CAkB



Existence of a realization

Recall Mk – Markov parameters*

Hankel matrix of Y HY =

M0 M1 M2 · · ·
M1 M2 M3 · · ·

...
...

...
...



Theorem

I Y has a realization by an LTI ⇐⇒ rank HY < +∞.

I rank HY is the dimension of a minimal LTI realization of Y .



Ho-Kalman algorithm

1. Find a factorization

HN,N+1 =


M0 M1 · · · MN

M1 M2 · · · MN+1
...

...
...

...
MN−1 MN · · · M2N−1

 = OR

s.t. O full column rank, R full row rank.
(e.g, SVD: HN,N+1 = UΣV T , O = UΣ1/2, R = Σ1/2V T ).

2. R =
[
R1 ,R2, · · · , RN+1

]
, O =


O1

O2
...

ON

.

3. B = R1, C = O1, and A solves

A
[
R1, R2, · · · , RN

]
=
[
R2, R3, · · · , RN+1

]



Correctness of Ho-Kalman algorithm and partial realization

HN,N =


M0 M1 · · · MN−1

M1 M2 · · · MN
...

...
...

...
MN−1 MN · · · M2N−2

 ,

HN+1,N =


M0 M1 · · · MN−1

M1 M2 · · · MN
...

...
...

...
MN MN+1 · · · M2N−1





Correctness of Ho-Kalman algorithm and partial realization

Theorem (Ho-Kalman algorithm & partial realization)

I rank HN,N = rank HY =⇒ (A,B,C ) is a minimal
realization of Y

I If Y has a realization of dimension less than N, then
rank HN,N = rank HY .

I rank HN,N = rank HN+1,N = rank HN,N+1 =⇒
(A,B,C ) is a so called 2N realization of Y , i.e.

Mk = CAkB, k = 0, 1, . . . , 2N − 1



Impulse response of linear switched systems

I Potential input-output map Y of a linear switched system

1. Maps switching signal q(.) and input u(.) to output y(.).
2. Linear in continuous input u().

I Y is completely described by its impulse response

Impulse response for switching q(.)

Switching q(): stay in discrete mode q1, . . . , qk for times
t1, . . . , tk .

Gq1...qk (t1, . . . , tk) = Y (q(.), σ0)

I σ0 is the Dirac-delta for continuous-time
I σ0(0) = 1, σ0(t) = 0, t > 0 for discrete-time



Markov parameters for linear switched systems

Markov parameters, q0, q ∈ Q – discrete modes, j = 1, 2, . . . ,m

Sq,q0(q1q2 · · · qk) =

 Gq0q1···qkq(1, 1, . . . , 1)
d
dt1
· · · d

dtk
Gq0q1···qkq(0, t1, . . . , tk , 0)|t1=···=tk=0


Markov parameters are indexed by sequences of discrete modes Q∗

Σ is a realization of Y ⇐⇒

Sq,q0(q1q2 · · · qk) = CqAqk · · ·Aq1Bq0



Hankel matrix for linear switched systems

Q = {1, 2, . . . ,D}

v1 ≺ . . . ≺ vk , . . . lexicographic ordering of all sequences.

M(v) =

S1,1(v) . . . S1,D(v)
... . . .

...
SD,1(v) . . . SD,D(v)


Hankel matrix: HY

HY =


M(v1v1) M(v2v1) · · · M(vkv1) · · ·
M(v1v2) M(v2v2) · · · M(vkv2) · · ·
M(v1v3) M(v2v3) · · · M(vkv3) · · ·

...
... · · ·

... · · ·

 ,



Realization theorem for linear switched systems

Theorem (Pet06,Pet07,Pet11a,Pet13)

I Y has a realization ⇐⇒ rank HY < +∞,



Realization algorithm [Pet06,Pet11,Pet13]

HY ,N+1,N =


M(v1v1) · · · M(vM(N)v1)

... · · ·
...

M(v1vM(N)) · · · M(vM(N)vM(N))
M(v1vM(N+1)) · · · M(vM(N)vM(N+1))


M(N) – number of sequences over Q of length at most N

1: Hf ,N+1,N = OR
2: Bq = m(q − 1) + 1, . . . ,mqth columns of R.
3: Cq = p(q − 1) + 1, . . . , pqth rows of O.
4: Aq = Ō+Oq

I Ō – the block rows of O which are indexed by v1, . . . , vN .

I Ō+–pseudo-inverse of Ō.

I Oq – shifted Ō: the row of Oq indexed by sequence v is
the row of O indexed by sequence qv .



Partial realization theorem for linear switched systems

HY ,N,N =

 M(v1v1) · · · M(vM(N)v1)
... · · ·

...
M(v1vM(N)) · · · M(vM(N)vM(N))


HY ,N,N+1 =

 M(v1v1) · · · M(vM(N)v1) M(vM(N+1)v1)
... · · ·

...
...

M(v1vM(N)) · · · M(vM(N)vM(N)) M(vM(N+1)vM(N))


Theorem (Pet11b,Pet13)

1. If rank HY ,N,N = rank HY ,N,N+1 = rank HY ,N+1,N then the
result of the algorithm recreates the Markov-parameters
M(v1), . . .M(vM(2N+1)).

2. If N ≥ the dimension of a realization of Y , then the algorithm
returns a minimal realization of Y .



Example
Consider the switched system from the previous example and

Y the input-output map of that system.

HY ,2,1 =



0 0 0 −1 0 −1
1 0 −3 0 −2 0
0 −1 0 3 0 4
−3 0 9 0 6 0
0 −1 0 4 0 5
−2 0 6 0 4 0
0 3 0 −9 0 −12
9 0 −27 0 −18 0
0 4 0 −12 0 −16
6 0 −18 0 −12 0
0 4 0 −12 0 −16
6 0 −18 0 −12 0
0 5 0 −16 0 −21
4 0 −12 0 −8 0





Example: cont.

Applying the realization algorithm to HY ,2,1 yields.

Aq1 =

3 0 0
0 −3.02 0.17
0 −0.32 0.018

 ,Bq1 =

−1.9
0
0

 ,Cq1 =

 0
0.21
0.46

T

Aq2 =

−2 0 0
0 −4.02 0.17
0 −0.32 −0.98

 ,Bq2 =

 0
1.25
−0.57

 ,Cq2 =

−0.53
0
0

T



Example: cont

If we simulate the two systems for white noise input and switching
sequence (q2, 1)(q1, 2)(q1, 3)(q2, 1).
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Further work

I The results above can be extended to linear jumps and
bilinear local equations.

I The results can be extended to LPV systems.

I Extension to stochastic jump-Markov linear systems.

I Application to model reduction, system identification.
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