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Problem

Problem

Consider the following Retarded Functional Differential Equation (RFDE)

(Σ) ẋ(t) = L(t)xt t ≥ 0,

where

x(t) ∈ Rn : the system state at time t

xt : θ 7→ x(t+ θ), θ ∈ [−r, 0] : the history function

x0 = ϕ ∈ X : an initial condition

L : [0,+∞)→ L(X,Rn) : a bounded linear operator
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Problem

Typical examples

1 ∣∣∣∣∣ ẋ(t) = A0x(t) +A1x(t− τ(t)) t ≥ 0

x(θ) = ϕ(θ), θ ∈ [−r, 0]

for some n× n matrices A0 and A1 and τ : [0,+∞)→ [−r, 0].

2 ∣∣∣∣∣∣∣
ẋ(t) =

∫ r

0

A(t, θ)x(t− θ)dθ, t ≥ 0 ,

x(θ) = ϕ(θ),

A(t, θ) is a n× n matrix uniformly bounded with respect to t and
θ ∈ [0, r] and measurable with respect to θ.
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Problem

Existence and uniqueness of a solution

X = C([−r, 0],Rn) or X = H1([−r, 0],Rn)

L(·)ϕ : t 7→ L(t)ϕ is a measurable function ∀ϕ ∈ C([−r, 0],Rn)

there exists a positive constant m such that

(K) : |L(t)ϕ| ≤ m‖ϕ‖C ∀ϕ ∈ C([−r, 0],Rn)

Lemma

Consider the linear RFDE given by system (Σ). Let X be the Banach spaces
C ([−r, 0],Rn) or H1 ([−r, 0],Rn). Assume that condition (K) holds. For
every ϕ ∈ X there exists a unique solution of (Σ) with initial condition ϕ.
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Problem

Three principal approaches

Lyapunov–Krasovskii: consists of finding a positive functional that decays
along the trajectories of the considered systems

Lyapunov–Razumikhin: enables to employ Lyapunov function instead of
Lyapunov functional

Barnea: consists in reducing the stability problem to an optimization
problem
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Problem

Lyapunov–Krasovskii Theorem

Theorem (Lyapunov–Krasovskii )

Let u, v, w : [0,+∞)→ [0,+∞) are continuous nondecreasing functions, u(s)
and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exists a
continuous function V : C([−r, 0],Rn)→ R such that

u(|ϕ(0)|) ≤ V (ϕ) ≤ v(‖ϕ‖C)

DV (ϕ) ≤ −w(|ϕ(0)|)

then the solution x = 0 of equation (2) is uniformly stable. If w(s) > 0 for
s > 0, then the solution x = 0 is exponentially stable.

DV (ϕ) = lim
t→0

sup
V (xt(ϕ))− V (ϕ)

t

DV (ϕ) = lim
t→0

inf
V (xt(ϕ))− V (ϕ)

t
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Switching approach

x(k + 1) = A0x(k) +A1x(k − τ(k)), 0 < τ(k) ≤ m

Let

z(k) = [xT (k), . . . , xT (k −m)]T and σ : Z+ → S = {1, . . . ,m}

z(k + 1) = Āσ(k)z(k) with σ(k) = τ(k)

where the matrix Āσ(k) switches in the set of possible matrices {Ā1, · · ·, Ām}

Āi =


A0 0 · · · 0 A1 0 · · · 0
I 0 · · · · · · · · · · · · · · · 0
0 I 0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0 I 0

 .

2
2L. Hetel, J. Daafouz, and C. Iung. Equivalence between the Lyapunov–Krasovskii functional

approach for discrete delay systems and the stability conditions for switched systems. Nonlinear
Analysis: Hybrid Systems, 2(3):697–705, 2008.
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Switching approach

We parametrize the operator t 7→ L(t)

Let S be an index set (which can be uncountable).

Let σ(·) : [0,+∞) −→ S be a measurable signal

σ(·) parametrizes (Σ)

(Σ) : ẋ(t) = Lσ(t)xt,

there exists a positive constant m such that

(K) : |Lσϕ| ≤ m‖ϕ‖C ∀ϕ ∈ C([−r, 0],Rn), σ ∈ S
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Switching approach

Semigroup associated to each candidate

With any σ ∈ S
ẋ(t) = Lσxt,

one can associate a C0-semigroup

Tσ(t) : X → X defined by Tσ(t)(ϕ) = xt

with infinitesimal generator Aσ given by

D(Aσ) =

{
ϕ ∈ X :

dϕ

dθ
∈ X, dϕ

dθ
(0) = Lσϕ

}
,

Aσϕ =
dϕ

dθ
.
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Switching approach

Switched system representation: picewise
constant case

The evolution operator corresponding to a piecewise constant signal

σ(t) =
∑
k≥0

1[tk,tk+1)(t)σk

with t0 = 0, tk < tk+1 for k ≥ 0 is given by

Tσ(·)(t) = Tσk
(t− tk)Tσk−1

(tk − tk−1)...Tσ0
(t1 − t0) t ∈ [tk, tk+1).

The evolution is then given by the following switched system

(Σ) −→ (Σs) :
xt = Tσ(·)(t)x0,

x0 = ϕ ∈ X.
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Switching approach

Theorem (F.M. Hante and M. Sigalottia)
aF.M. Hante and M. Sigalotti. Converse Lyapunov theorems for switched systems in

Banach and Hilbert spaces. SIAM J. Control Optim., 49(2):752–770, 2011.

The conditions
(i) there exist M ≥ 1 and w > 0 such that

‖Tσ(·)(t)‖L(X) ≤Mewt, t ≥ 0, σ(·)-uniformly,

(ii) there exists a function V : X → [0,∞) such that
√
V (·) is a norm on X,

V (ϕ) ≤ c‖ϕ‖2X

for some constant c > 0 and

DσV (ϕ) ≤ −‖ϕ‖2X , σ ∈ S, ϕ ∈ X.

are necessary and sufficient for the existence of constants K ≥ 1 and
µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly.
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Results

Uniform exponenetial boundedness

Lemma

Suppose that condition (K) holds. If X = C([−r, 0],Rn) or H1([−r, 0],Rn)
then the solutions of (Σs) are σ(·)-uniformly exponentially bounded.

Proof.
1 case X = C([−r, 0],Rn).

By integrating system (Σ) and using equation (K), one has for every t ≥ 0

‖xt‖C ≤ ‖ϕ‖C +m

∫ t

0

‖xs‖Cds.

Thanks to Gronwall’s Lemma, we have

‖xt‖C ≤ ‖ϕ‖Cemt. (1)

2 case X = H1([−r, 0],Rn).
Same reasoning + Poincaré Inequality.
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Results

First converse theorem

Theorem
Suppose that condition (K) holds. System (Σs) is uniformly exponentially
stable in X, if and only if there exists a function V : X → [0,∞) such that√
V (·) is a norm on X,

V (ϕ) ≤ c‖ϕ‖2X ,

for some constant c > 0 and

DσV (ϕ) ≤ −‖ϕ‖2X , σ ∈ S, ϕ ∈ X.
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Results

Lemma (F.M. Hante and M. Sigalottia)
aF.M. Hante and M. Sigalotti. Converse Lyapunov theorems for switched systems in

Banach and Hilbert spaces. SIAM J. Control Optim., 49(2):752–770, 2011.

Assume that
(i) there exist M ≥ 1 and w > 0 such that

‖Tσ(·)(t)‖L(X) ≤Mewt, t ≥ 0, σ(·)-uniformly,

(ii) there exist c ≥ 0 and p ∈ [1,+∞) such that∫ +∞

0

‖Tσ(·)(t)x‖pX ≤ c‖x‖
p
X , σ(·)-uniformly,

for every x ∈ X.
Then there exist K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly.
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Results

Second converse theorem

Theorem
Suppose that condition (K) holds. Then system (Σs) is uniformly
exponentially stable in X if and only if there exists a continuous function
V : X → [0,+∞) such that

V (ϕ) ≤ c‖ϕ‖2X ,

for some constant c > 0 and

DσV (ϕ) ≤ −|ϕ(0)|2, σ ∈ S, ϕ ∈ X.
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Results

Proof

1

V (xt)− V (x0) ≤ −
∫ t

0

|xs(0)|2ds

2 ∫ +∞

0

|xs(0)|2ds ≤ c‖ϕ‖2X

3 ∫ t

0

‖xs‖2H1ds ≤ c1
∫ t

0

|xs(0)|2ds+ c2‖ϕ‖2H1ds,

4 ∫ +∞

0

‖xt‖2H1ds ≤ c0‖ϕ‖2H1 ,
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Results

Extension to measurable cases

Q := {Lσ ∈ L(X,Rn) | σ ∈ S}.

Theorem
System (Σ) is uniformly exponentially stable for L : [0,+∞)→ Q such that
L(·)ϕ is measurable for any ϕ ∈ X if and only if it is uniformly exponentially
stable for L ∈ PC ([0,+∞), Q).
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Results

Proof

Lemma
System (Σ) is uniformly exponentially stable for L : [0,+∞)→ Q such that
L(·)ϕ is measurable for any ϕ ∈ C([−r, 0],Rn) if and only if it is uniformly
exponentially stable for L ∈ PC ([0,+∞), Q).

Lemma

Suppose that condition (K) holds. The following two statements are
equivalent:
(i) System (Σ) is uniformly exponentially stable in C([−r, 0],Rn).
(ii) System (Σ) is uniformly exponentially stable in H1([−r, 0],Rn).
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Conclusion

Conclusion

In this work we give a collection of converse Lyapunov–Krasovskii
theorems for uncertain retarded functional differential equations.

The first converse Theorem shows that the existence of a squared norm
V (·) on C([−r, 0],Rn) is a necessary and sufficient condition for the
uniform exponential stability of system (Σ).

By the second converse theorem the assumption that V (·) is a squared
norm is dropped.

One of the novelties of our results is that these functionals may not have
a strictly positive norm-dependent lower bound, in contrast with what is
known in the literature.
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Thank you for your attention
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