Converse Lyapunov–Krasovskii theorems for uncertain retarded differential equations $^{\rm 1}$

Ihab Haidar

Laboratoire des Signaux et Systèmes (L2S), Supélec, France

 $26 \ \mathrm{March} \ 2014$

¹Ihab Haidar, Paolo Mason and Mario Sigalotti, *Converse Lyapunov–Krasovskii* theorems for uncertain retarded differential equations, Provisionally accepted as regular paper, *Automatica*, 2014.

Ihab Haidar (L2S-Supélec)

GT MOSAR-Nancy 2014

- Retarded Functional Differential Equation (RFDE)
- Switching system approach
- Results
- Conclusion

Consider the following Retarded Functional Differential Equation (RFDE)

$$(\Sigma) \qquad \dot{x}(t) = L(t)x_t \qquad t \ge 0,$$

where

- $x(t) \in \mathbb{R}^n$: the system state at time t
- $x_t: \theta \mapsto x(t+\theta), \quad \theta \in [-r, 0]$: the history function

• $x_0 = \varphi \in X$: an initial condition

• $L: [0, +\infty) \to \mathcal{L}(X, \mathbb{R}^n)$: a bounded linear operator

イロン イヨン イヨン イヨン

Typical examples

1

2

$$\begin{aligned} \dot{x}(t) &= A_0 x(t) + A_1 x(t - \tau(t)) \qquad t \ge 0 \\ x(\theta) &= \varphi(\theta), \quad \theta \in [-r, 0] \end{aligned}$$

for some $n \times n$ matrices A_0 and A_1 and $\tau : [0, +\infty) \to [-r, 0]$.

$$\begin{aligned} \dot{x}(t) &= \int_0^r A(t,\theta) \, x(t-\theta) d\theta, \qquad t \ge 0 \ , \\ x(\theta) &= \varphi(\theta), \end{aligned}$$

 $A(t,\theta)$ is a $n \times n$ matrix uniformly bounded with respect to t and $\theta \in [0,r]$ and measurable with respect to θ .

Image: A mathematical states and a mathem

Existence and uniqueness of a solution

•
$$X = C([-r, 0], \mathbb{R}^n)$$
 or $X = H^1([-r, 0], \mathbb{R}^n)$

• $L(\cdot)\varphi: t \mapsto L(t)\varphi$ is a measurable function $\forall \varphi \in C([-r, 0], \mathbb{R}^n)$

• there exists a positive constant m such that

$$(K): \qquad |L(t)\varphi| \le m \|\varphi\|_C \qquad \forall \varphi \in C([-r,0],\mathbb{R}^n)$$

Lemma

Consider the linear RFDE given by system (Σ) . Let X be the Banach spaces $C([-r,0],\mathbb{R}^n)$ or $H^1([-r,0],\mathbb{R}^n)$. Assume that condition (K) holds. For every $\varphi \in X$ there exists a unique solution of (Σ) with initial condition φ .

A D N A B N A B N A

Three principal approaches

• Lyapunov–Krasovskii: consists of finding a positive functional that decays along the trajectories of the considered systems

• Lyapunov–Razumikhin: enables to employ Lyapunov function instead of Lyapunov functional

• Barnea: consists in reducing the stability problem to an optimization problem

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lyapunov–Krasovskii Theorem

Theorem (Lyapunov–Krasovskii)

Let $u, v, w: [0, +\infty) \to [0, +\infty)$ are continuous nondecreasing functions, u(s)and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exists a continuous function $V: C([-r, 0], \mathbb{R}^n) \to \mathbb{R}$ such that

$$\begin{aligned} u(|\varphi(0)|) &\leq V(\varphi) \leq v(\|\varphi\|_C) \\ \overline{D}V(\varphi) &\leq -w(|\varphi(0)|) \end{aligned}$$

then the solution x = 0 of equation (2) is uniformly stable. If w(s) > 0 for s > 0, then the solution x = 0 is exponentially stable.

$$\overline{D}V(\varphi) = \lim_{t \to 0} \sup \frac{V(x_t(\varphi)) - V(\varphi)}{t}$$
$$\underline{D}V(\varphi) = \lim_{t \to 0} \inf \frac{V(x_t(\varphi)) - V(\varphi)}{t}$$

7 / 21

Image: A math a math

$$x(k+1) = A_0 x(k) + A_1 x(k - \tau(k)), \qquad 0 < \tau(k) \le m$$

Let

$$z(k) = [x^T(k), \dots, x^T(k-m)]^T$$
 and $\sigma : \mathbb{Z}^+ \to \mathbb{S} = \{1, \dots, m\}$

$$z(k+1) = \overline{A}_{\sigma(k)} z(k)$$
 with $\sigma(k) = \tau(k)$

where the matrix $\bar{A}_{\sigma(k)}$ switches in the set of possible matrices $\{\bar{A}_1, \dots, \bar{A}_m\}$

	(A_0)	0	• • •	0	A_1	0	•••	0
	Ι	0	• • •	• • •	• • •	• • •		0
	0	Ι	0		• • •	• • •	• • •	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$.
						0	Ι	$\left. \begin{array}{c} 0\\ \vdots\\ 0 \end{array} \right)$

Ihab Haidar (L2S-Supélec)

²

²L. Hetel, J. Daafouz, and C. Iung. Equivalence between the Lyapunov–Krasovskii functional approach for discrete delay systems and the stability conditions for switched systems. Nonlinear Analysis: Hybrid Systems, 2(3):697–705, 2008.

We parametrize the operator $t \mapsto L(t)$

- Let S be an index set (which can be uncountable).
- Let $\sigma(\cdot): [0, +\infty) \longrightarrow \mathbb{S}$ be a measurable signal
- $\sigma(\cdot)$ parametrizes (Σ)

$$(\Sigma): \qquad \dot{x}(t) = L_{\sigma(t)} x_t,$$

 \bullet there exists a positive constant m such that

$$(K): \qquad |L_{\sigma}\varphi| \le m \|\varphi\|_C \qquad \forall \varphi \in C([-r,0],\mathbb{R}^n), \sigma \in \mathbb{S}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Semigroup associated to each candidate

With any $\sigma \in \mathbb{S}$

$$\dot{x}(t) = L_{\sigma} x_t,$$

one can associate a C_0 -semigroup

$$T_{\sigma}(t): X \to X$$
 defined by $T_{\sigma}(t)(\varphi) = x_t$

with infinitesimal generator \mathcal{A}_{σ} given by

$$D(\mathcal{A}_{\sigma}) = \left\{ \varphi \in X : \frac{d\varphi}{d\theta} \in X, \frac{d\varphi}{d\theta}(0) = L_{\sigma}\varphi \right\},$$
$$\mathcal{A}_{\sigma}\varphi = \frac{d\varphi}{d\theta}.$$

Switched system representation: picewise constant case

• The evolution operator corresponding to a piecewise constant signal

$$\sigma(t) = \sum_{k \ge 0} \mathbb{1}_{[t_k, t_{k+1})}(t) \sigma_k$$

with $t_0 = 0$, $t_k < t_{k+1}$ for $k \ge 0$ is given by

 $T_{\sigma(\cdot)}(t) = T_{\sigma_k}(t - t_k)T_{\sigma_{k-1}}(t_k - t_{k-1})...T_{\sigma_0}(t_1 - t_0) \qquad t \in [t_k, t_{k+1}).$

• The evolution is then given by the following switched system

$$(\Sigma) \longrightarrow (\Sigma_s): \qquad \begin{array}{rcl} x_t &=& T_{\sigma(\cdot)}(t)x_0, \\ x_0 &=& \varphi \in X. \end{array}$$

(日) (四) (日) (日) (日)

Theorem (F.M. Hante and M. $Sigalotti^a$)

^aF.M. Hante and M. Sigalotti. Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces. SIAM J. Control Optim., 49(2):752–770, 2011.

The conditions

(i) there exist $M \ge 1$ and w > 0 such that

$$||T_{\sigma(\cdot)}(t)||_{\mathcal{L}(X)} \le M e^{wt}, \quad t \ge 0, \ \sigma(\cdot)$$
-uniformly,

(ii) there exists a function $V: X \to [0, \infty)$ such that $\sqrt{V(\cdot)}$ is a norm on X,

 $V(\varphi) \le c \|\varphi\|_X^2$

for some constant c > 0 and

$$\overline{D}_{\sigma}V(\varphi) \leq -\|\varphi\|_X^2, \quad \sigma \in \mathbb{S}, \varphi \in X.$$

are necessary and sufficient for the existence of constants $K \geq 1$ and $\mu > 0$ such that

$$|T_{\sigma(\cdot)}(t)||_{\mathcal{L}(X)} \le Ke^{-\mu t}, \quad t \ge 0, \ \sigma(\cdot)$$
-uniformly.

Ihab Haidar (L2S-Supélec)

Uniform exponential boundedness

Lemma

Suppose that condition (K) holds. If $X = C([-r, 0], \mathbb{R}^n)$ or $H^1([-r, 0], \mathbb{R}^n)$ then the solutions of (Σ_s) are $\sigma(\cdot)$ -uniformly exponentially bounded.

Proof.

• case $X = C([-r, 0], \mathbb{R}^n)$. By integrating system (Σ) and using equation (K), one has for every $t \ge 0$

$$||x_t||_C \le ||\varphi||_C + m \int_0^t ||x_s||_C ds.$$

Thanks to Gronwall's Lemma, we have

$$\|x_t\|_C \le \|\varphi\|_C e^{mt}.$$
(1)

② case $X = H^1([-r, 0], \mathbb{R}^n)$. Same reasoning + Poincaré Inequality.

13 / 21

First converse theorem

Theorem

Suppose that condition (K) holds. System (Σ_s) is uniformly exponentially stable in X, if and only if there exists a function $V: X \to [0, \infty)$ such that $\sqrt{V(\cdot)}$ is a norm on X,

 $V(\varphi) \le c \|\varphi\|_X^2,$

for some constant c > 0 and

$$\underline{D}_{\sigma}V(\varphi) \leq -\|\varphi\|_X^2, \quad \sigma \in \mathbb{S}, \varphi \in X.$$

< 口 > < 円 >

Lemma (F.M. Hante and M. Sigalotti^a)

^aF.M. Hante and M. Sigalotti. Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces. SIAM J. Control Optim., 49(2):752–770, 2011.

Assume that

(i) there exist $M \ge 1$ and w > 0 such that

 $||T_{\sigma(\cdot)}(t)||_{\mathcal{L}(X)} \le M e^{wt}, \quad t \ge 0, \ \sigma(\cdot) \text{-uniformly},$

(ii) there exist $c \ge 0$ and $p \in [1, +\infty)$ such that

 $\int_0^{+\infty} \|T_{\sigma(\cdot)}(t)x\|_X^p \le c \|x\|_X^p, \ \sigma(\cdot)\text{-uniformly},$

for every $x \in X$.

Then there exist $K \ge 1$ and $\mu > 0$ such that

 $||T_{\sigma(\cdot)}(t)||_{\mathcal{L}(X)} \le Ke^{-\mu t}, \quad t \ge 0, \ \sigma(\cdot)$ -uniformly.

Second converse theorem

Theorem

Suppose that condition (K) holds. Then system (Σ_s) is uniformly exponentially stable in X if and only if there exists a continuous function $V: X \to [0, +\infty)$ such that

 $V(\varphi) \le c \|\varphi\|_X^2,$

for some constant c > 0 and

 $\underline{D}_{\sigma}V(\varphi) \leq -|\varphi(0)|^2, \sigma \in \mathbb{S}, \varphi \in X.$

< 口 > < 円 >

Proof

1 $V(x_t) - V(x_0) \le -\int_0^t |x_s(0)|^2 ds$ 2 $\int_{0}^{+\infty} |x_s(0)|^2 ds \le c \|\varphi\|_X^2$ 8 $\int_{0}^{t} \|x_{s}\|_{H^{1}}^{2} ds \leq c_{1} \int_{0}^{t} |x_{s}(0)|^{2} ds + c_{2} \|\varphi\|_{H^{1}}^{2} ds,$ 4 $\int_{0}^{+\infty} \|x_t\|_{H^1}^2 ds \le c_0 \|\varphi\|_{H^1}^2,$

17 / 21

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extension to measurable cases

$$Q := \{ L_{\sigma} \in \mathcal{L}(X, \mathbb{R}^n) \mid \sigma \in \mathbb{S} \}.$$

Theorem

System (Σ) is uniformly exponentially stable for $L: [0, +\infty) \to Q$ such that $L(\cdot)\varphi$ is measurable for any $\varphi \in X$ if and only if it is uniformly exponentially stable for $L \in PC([0, +\infty), Q)$.

Lemma

System (Σ) is uniformly exponentially stable for $L: [0, +\infty) \to Q$ such that $L(\cdot)\varphi$ is measurable for any $\varphi \in C([-r, 0], \mathbb{R}^n)$ if and only if it is uniformly exponentially stable for $L \in PC([0, +\infty), Q)$.

Lemma

Suppose that condition (K) holds. The following two statements are equivalent:

- (i) System (Σ) is uniformly exponentially stable in $C([-r, 0], \mathbb{R}^n)$.
- (ii) System (Σ) is uniformly exponentially stable in $H^1([-r, 0], \mathbb{R}^n)$.

(日) (四) (日) (日) (日)

Conclusion

- In this work we give a collection of converse Lyapunov–Krasovskii theorems for uncertain retarded functional differential equations.
- The first converse Theorem shows that the existence of a squared norm V(·) on C([-r, 0], ℝⁿ) is a necessary and sufficient condition for the uniform exponential stability of system (Σ).
- By the second converse theorem the assumption that $V(\cdot)$ is a squared norm is dropped.
- One of the novelties of our results is that these functionals may not have a strictly positive norm-dependent lower bound, in contrast with what is known in the literature.

20 / 21

Thank you for your attention

Ihab Haidar (L2S-Supélec)

GT MOSAR-Nancy 2014

26 March 2014 21 / 21