Stabilité des systèmes non-linéaires à commutation avec retards de détection des modes actifs

K.M.D. MOTCHON , L. ETIENNE et S. LECOEUCHE

15 novembre 2018

K.M.D. Motchon

Stabilité des SAC

A D A A B A A B A A

Plan de la présentation

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4 Travaux en cours

Formulation générale des problèmes traités

- 2 Analyse de la stabilité : cas non perturbé
 - Formalisme hybride du système
 - Conditions suffisantes de stabilité
 - Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

< ロ > < 同 > < 回 > < 回

Considérons le système à commutation :

$$\dot{x}(t) = F_{\sigma(t)}(x(t), u(t), \lambda(t), v(t)), \quad \forall t \notin \{t_k^\sigma\}_{k \in \mathbb{N}}$$
(1)

- $\sigma \colon \mathbb{R}_+ \longrightarrow \mathcal{P} \subset \mathbb{N}$, le signal de commutation
- t_k^{σ} , instants de commutation
- x(t), le vecteur d'état
- λ (t), incertitude paramétrique
- v(t), entrée inconnue (perturbation)

Commande *u* dépendant des modes :

$$u(t) = G_{\widehat{\sigma}(t)}(x(t)), \quad \forall t \neq t_k^{\sigma}, \forall t \neq t_k^{\overline{\sigma}}$$

$$(2)$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- $\widehat{\sigma}: \mathbb{R}_+ \longrightarrow \mathcal{P}$, une estimation de σ
- $t_k^{\widehat{\sigma}}$, estimation de t_k^{σ}

Hypothèses sur σ et $\widehat{\sigma}$

• Délai maximum δ de détection du mode actif, $t_k^{\widehat{\sigma}} - t_k^{\sigma} \leq \delta$

 Signal de commutation lent : MDT (minimum dwell time), ADT (average dwell time)

Problèmes : Analyse de stabilité et synthèse de commande du système (1)-(2).

Image: A math a math

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

• • • • • • • • • • • •

Pas d'entrée inconnue (perturbé) : (1)–(2) \implies système de commutation de la forme

$$\begin{split} \dot{x}(t) &= f_{\sigma(t)\,\widehat{\sigma}(t)}\left(x(t),\lambda(t)\right), \quad \forall t \notin \{t_k^\sigma\}_{k \in \mathbb{N}^*} \cup \{t_k^\sigma\}_{k \in \mathbb{N}^*} \\ x(t) &= \lim_{s \to t, s < t} x(s), \quad \forall t \in \{t_k^\sigma\}_{k \in \mathbb{N}^*} \cup \{t_k^\sigma\}_{k \in \mathbb{N}^*} \end{split}$$

l Hypothèses

• Incertitudes polytopiques :

$$f_{\sigma\left(t
ight)\,\widehat{\sigma}\left(t
ight)}\left(x\left(t
ight),\lambda\left(t
ight)
ight)\in\mathrm{conv}\left\{f^{1}_{\sigma\left(t
ight)\,\widehat{\sigma}\left(t
ight)}\left(x\left(t
ight)
ight),\ldots,f^{m}_{\sigma\left(t
ight)\,\widehat{\sigma}\left(t
ight)}\left(x\left(t
ight)
ight)
ight\}$$

- Délai maximum δ de détection du mode actif, $t_k^{\widehat{\sigma}} t_k^{\sigma} \leq \delta$
- MDT (minimum dwell time) : $t_{k+1}^{\sigma} t_k^{\sigma} \geq \tau_s$
- Détection du mode actif avant écoulement du temps de séjour : $au_s > \delta$

Question : déterminer des conditions suffisantes sur f_{pq}^r , τ_s et δ pour que le système non-linéaire à commutation soit asymptotiquement stable.

イロト イポト イヨト イヨト

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

Formalisme hybride du système

• Conditions suffisantes de stabilité

• Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

Formalisme hybride de Goebel et al. (2012)

$$\mathcal{H}: egin{cases} \xi\in\mathscr{C}_{\mathcal{H}}, & \dot{\xi}\in F_{\mathcal{H}}(\xi), \ \xi\in\mathscr{D}_{\mathcal{H}}, & \xi^+\in \mathcal{G}_{\mathcal{H}}(\xi). \end{cases}$$

- ξ état hybride du système
- $\mathscr{C}_{\mathcal{H}}$ espace des "flow"; $F_{\mathcal{H}}(\xi)$ fonction des "flow"
- $\mathscr{D}_{\mathcal{H}}$ espace de "jump"; $G_{\mathcal{H}}(\xi)$ fonction de "jump"

Résultat de stabilité des systèmes hybrides

Théorème (R. Goebel et al. 2012). Soit $\mathscr{A} \subseteq \mathbb{R}$ un ensemble fermé. Si $\mathbf{V}: \operatorname{dom} \mathbf{V} \to \mathbb{R}$ est une fonction de Lyapunov candidate du système \mathcal{H} et s'il existe $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ et une fonction définie-positive $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ t.q. (a) $\forall v \in \overline{\mathscr{C}_{\mathcal{H}}} \cup \mathscr{D}_{\mathcal{H}} \cup G(\mathscr{D}_{\mathcal{H}}), \alpha_1(|v|_{\mathscr{A}}) \leq \mathbf{V}(v) \leq \alpha_2(|v|_{\mathscr{A}})$ (b) $\forall v \in \mathscr{C}_{\mathcal{H}}, \varphi \in F_{\mathcal{H}}(v), \langle \nabla \mathbf{V}(v), \varphi \rangle \leq -\rho(|v|_{\mathscr{A}})$ (c) $\forall v \in \mathscr{D}_{\mathcal{H}}, \forall \psi \in G_{\mathcal{H}}(v), \mathbf{V}(\psi) - \mathbf{V}(v) \leq -\rho(|v|_{\mathscr{A}})$ alors \mathscr{A} est UGpAS pour le système \mathcal{H} .

R. Goebel, R.G. Sanfelice and A.R. Teel. *Hybrid Dynamical Systems : modeling, stability, and robustness,* Princeton University Press, 2012.

イロト イポト イヨト イヨト

• État hybride

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{x} & \boldsymbol{\sigma} & \widehat{\boldsymbol{\sigma}} & \boldsymbol{\tau} & \boldsymbol{s} \end{pmatrix}^\top \in \mathbb{R}^n \times \mathcal{P}^2 \times \mathbb{R}^+ \times \{0,1\}$$

 $\mathbf{w} au$ un "timer"

 \mathbb{S} s variable logique indiquant la possibilité du système à commuter

• Espace et fonction de "flow"

$$\begin{array}{l} \mathbb{I} \hspace{-0.5ex} \mathbb{I} \hspace{-0.5ex} \mathcal{C}_{p\,q} = \{\xi \colon \sigma = p \neq q = \widehat{\sigma}, \, s = 1, \, \tau \in [0\,;\delta] \} \\ \mathbb{I} \hspace{-0.5ex} \mathbb{I} \hspace{-0.5ex} \mathbb{I} \hspace{-0.5ex} \mathcal{C}_{p}^{0} = \{\xi \colon \sigma = \widehat{\sigma} = p, \, s = 0, \, \tau \in [0\,;\tau_{s}] \} \\ \mathbb{I} \hspace{-0.5ex} \mathbb{I} \hspace{-0.5ex} \mathbb{I} \hspace{-0.5ex} \mathcal{C}_{p}^{1} = \{\xi \colon \sigma = \widehat{\sigma} = p, \, s = 1, \, \tau \in [\tau_{s}\,;+\infty[\} \} \end{array}$$

$$\mathscr{C}_{\mathcal{H}} = \left(\cup_{p \neq q \in \mathcal{P}} \mathscr{C}_{p \, q} \right) \cup \left(\cup_{p \in \mathcal{P}} \mathscr{C}_{p}^{0} \right) \cup \left(\cup_{p \in \mathscr{Q}} \mathscr{C}_{p}^{1} \right)$$

э

• Espace et fonction de "jump"

$$G\left(\xi\right) = \begin{cases} \begin{pmatrix} x^{\top} & \sigma & \sigma & \tau & 0 \end{pmatrix}^{\top} & \text{si} & \xi \in \mathscr{D}_{p\,q} = \mathscr{C}_{p\,q}, \\ \begin{pmatrix} x^{\top} & \sigma & \widehat{\sigma} & \tau & 1 \end{pmatrix}^{\top} & \text{si} & \xi \in \mathscr{D}_{p}^{0}, \\ \begin{pmatrix} x^{\top} & \mathcal{P} \setminus \{p\} & \widehat{\sigma} & 0 & 1 \end{pmatrix}^{\top} & \text{si} & \xi \in \mathscr{D}_{p}^{1} = \mathscr{C}_{p}^{1}, \\ \emptyset & & \text{sinon.} \end{cases}$$

 $\mathbb{I} \ \mathcal{D}_p^0 = \{ \xi \colon s = 0, \tau = \boldsymbol{\tau}_s, \, \sigma = \widehat{\sigma} = p \}$

$$\mathscr{D}_{\mathcal{H}} = \left(\cup_{p \neq q \in \mathcal{P}} \mathscr{D}_{p \, q} \right) \cup \left(\cup_{p \in \mathcal{P}} \mathscr{D}_{p}^{0} \right) \cup \left(\cup_{p \in \mathcal{P}} \mathscr{D}_{p}^{1} \right)$$

э

メロト メタト メヨト メヨト

UGpAS de l'ensemble

$$\mathscr{A} = \left\{ \xi = \begin{pmatrix} \mathsf{x} & \sigma & \widehat{\sigma} & \tau & s \end{pmatrix}^\top : \mathsf{x} = \mathsf{0}_n, \sigma \in \mathscr{Q}, \widehat{\sigma} \in \mathscr{Q}, \tau \in \mathbb{R}_+ \text{ et } s \in \{0, 1\} \right\}$$

par rapport au système hybride ${\mathcal H}$

ъ

2

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

Théorème (Etienne et al. 2018). Supposons qu'il existe des fonctions continument dérivables V_{pq} , V_p , $p, q \in \mathcal{P}$ et des fonctions de classe \mathcal{K}_{∞} , $\underline{\kappa}_{pq}$, $\overline{\kappa}_{pq}$, $\underline{\alpha}_{pq}$, $\overline{\alpha}_{pq}$ et ρ telles que

(a) $\forall p, q \in \mathcal{P}$,

$$\underline{\kappa}_{pq} (\|x\|) \leq V_{pq} (x,\tau) \leq \overline{\kappa}_{pq} (\|x\|), \quad \forall \tau \in [0; \eta_{pq}] \\ \underline{\alpha}_{p} (\|x\|) \leq V_{p} (x,\tau) \leq \overline{\alpha}_{p} (\|x\|), \quad \forall \tau \in [\boldsymbol{\tau}_{s}; +\infty[$$

avec

$$\eta_{pq} = \begin{cases} \delta & \text{if } p \neq q \\ \boldsymbol{\tau}_s & \text{if } p = q \end{cases}$$

(b)
$$\forall p, q \in \mathcal{P} \text{ et } \forall r = 1, 2, ..., m$$

$$\begin{cases} \langle \partial_x V_{pq}(x, \tau), f_{pq}^r(x) \rangle + \partial_\tau V_{pq}(x, \tau) \leq -\rho(||x||), & \forall \tau \in [0; \eta_{pq}] \\ \langle \partial_x V_p(x, \tau), f_{pp}^r(x) \rangle + \partial_\tau V_p(x, \tau) \leq -\rho(||x||), & \forall \tau \in [\tau_s; +\infty[$$
(c) $\forall p \neq q \in \mathcal{Q},$

$$V_{pp}(x, \tau) - V_{pq}(x, \tau) \leq -\rho(||x||), & \forall \tau \in [0; \delta] \end{cases}$$

$$\begin{aligned} & V_{\rho\rho}\left(x,\tau\right) - V_{\rhoq}\left(x,\tau\right) \leq -\rho\left(\|x\|\right), \quad \forall \tau \in [0\,;\delta] \\ & V_{\rho}\left(x,\tau_{s}\right) - V_{\rho\rho}\left(x,\tau_{s}\right) \leq -\rho\left(\|x\|\right) \\ & V_{\rhoq}\left(x,0\right) - V_{q}\left(x,\tau\right) \leq -\rho\left(\|x\|\right), \quad \forall \tau \in [\tau_{s}\,;+\infty[\end{aligned}$$

Alors l'ensemble \mathscr{A} est UGpAS pour le système \mathcal{H} .

L. Etienne, K.M.D. Motchon and S. Lecoeuche, Stability analysis for switched uncertain nonlinear systems with dwell time and delay in the active mode detection. IEEE Control Systems Letters, 2018 (Accepted)

K.M.D. Motchon

 η_{Pq}

$$Q \colon \mathbb{R}^{r} \longrightarrow \mathbb{R}$$
 est un polynôme **SoS** $\iff Q(z) = \sum_{i=1}^{\kappa} h_{i}^{2}(z), \forall z \in \mathbb{R}^{r}$

Théorème (Etienne et al. 2018). Supposons que $\forall p, q \in \mathcal{P}$ et $\forall k = 1, 2, \dots, m$ les fonctions $f_{\rho,q}^{k}$ solutions polynomiales. S'il existe $\varepsilon > 0$ et des polynômes **SoS** $V_{\rho,q}(x, \tau)$, $V_p(x), \pi_{pq}(x,\tau), \tilde{\pi}_{pq}(x,\tau)$ et $\bar{\pi}_p(x,\tau)$ t.g. (a) $\forall p, q \in \mathcal{P}$, $V_{pq}(x,\tau) - \pi_{pq}(x,\tau) \ \mu_{npq}(\tau) - \varepsilon \|x\|^2$ est SoS $V_{n}(x) - \varepsilon ||x||^{2}$ est SoS (b) $\forall p, q \in \mathcal{P}$ et $\forall r = 1, 2, \dots, m$ $-\langle \partial_x V_{pq}(x,\tau), f_{pq}^r(x) \rangle - \partial_\tau V_{pq}(x,\tau) - \widetilde{\pi}_{pq}(x,\tau) \mu_{\eta_{pq}}(\tau) - \varepsilon \|x\|^2$ est SoS $\langle \partial_x V_p(x), f_{np}^r(x) \rangle - \varepsilon ||x||^2$ est **SoS** (c) $\forall p \neq q \in \mathcal{P}$. $V_{(1)} = V_{(1)} + V_{(2)} + V_{(2)} + V_{(2)} = ||v||^2 \text{ act } Sect.$

$$V_{pq}(x,\tau) - V_{pp}(x,\tau) - \mu_{\delta}(\tau) - \varepsilon ||x|| \text{ est SoS}$$

$$V_{pp}(x,\tau_s) - V_p(x) - \varepsilon ||x||^2 \text{ est SoS}$$

$$V_q(x) - V_{pq}(x,0) - \overline{\pi}_p(x,\tau) \tau - \varepsilon ||x||^2 \text{ est SoS}$$

où $\mu_{\beta}(\tau) = \tau \ (\beta - \tau), \ \beta \in \{\eta_{pq}, \delta\}$ alors \mathscr{A} est UGpAS pour le système \mathcal{H} .

-

イロト イボト イヨト イヨト

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

•
$$\mathbb{R}^2 \ni \dot{x}(t) = A_{\sigma(t)}(x(t), \theta) + B_{\sigma(t)}u(t); u(t) = K_{\hat{\sigma}(t)}x(t) \in \mathbb{R}$$

 $\theta \in [-1.3; -0.9] ; \sigma(t) \in \{1, 2\} ; \hat{\sigma}(t) \in \{1, 2\}$
 $A_1(x, \theta) = \begin{pmatrix} -x_1 + x_2 + \theta x_1^3 + x_1 x_2 \\ 2 x_2 \end{pmatrix}; B_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; K_1 = \begin{pmatrix} 0 \\ -3 \end{pmatrix}^\top$
 $A_2(x, \theta) = \begin{pmatrix} x_1 + x_2 \\ \theta x_2^3 - x_2 + x_1 \end{pmatrix}; B_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; K_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}^\top.$

• $\mathcal{P} = \{1,2\}$; m = 2; sommets du polytope

$$\dot{x} = f_{\sigma \,\widehat{\sigma}}\left(x\right), \quad \sigma\left(t\right) \in \mathcal{P}, \widehat{\sigma}\left(t\right) \in \mathcal{P} \text{ et } f_{p \, q}\left(x\right) \in \operatorname{conv}\left\{f_{p \, q}^{1}\left(x\right), f_{p \, q}^{2}\left(x\right)\right\}$$

2

(日) (四) (王) (王)

• Résultats numériques, $au_s = 2$

Figure – $||x(\cdot)||$ pour $\delta = 0.6$ (en pointillé) et $\delta = 1.7$ (en ligne continue)

• Stabilité asymptotique garantie jusqu'à $\delta = 0.6$.

< 177 ►

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

Analyse de la stabilité et synthèse de commande : cas sans incertitude

• Conditions générales d'analyse de la stabilité

- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

Pas d'incertitude : (1)–(2) \implies système de commutation de la forme

$$\begin{split} \dot{x}\left(t\right) &= f_{\sigma(t)\,\widehat{\sigma}(t)}\left(x(t),v(t)\right), \quad \forall t \notin \{t_k^{\sigma}\}_{k \in \mathbb{N}^{\star}} \cup \{t_k^{\sigma}\}_{k \in \mathbb{N}^{\star}} \\ x\left(t\right) &= \lim_{s \to t, s < t} x(s), \quad \forall t \in \{t_k^{\sigma}\}_{k \in \mathbb{N}^{\star}} \cup \{t_k^{\widehat{\sigma}}\}_{k \in \mathbb{N}^{\star}} \end{split}$$

Hypothèses

- Délai maximum δ de détection du mode actif, $t_k^{\widehat{\sigma}} t_k^{\sigma} \leq \delta$
- ADT (average dwell time) : $\mathcal{N}_{\sigma}(t,s) \leq N_0 + \frac{t-s}{\tau_a}, \forall t \geq s$

Question : déterminer des conditions suffisantes sur f_{pq} , τ_a et δ pour que le système non-linéaire à commutation soit ISS (input-to-state stable) : $\exists \alpha, \gamma \in \mathcal{K}_{\infty}$ et $\beta \in \mathcal{KL}$ telles que $\forall x_0 \in \mathbb{R}^n$ et $\forall v \in \mathcal{V} (\mathbb{R}_+, \mathbb{R}^\ell)$,

$$\alpha\left(\left\|x\left(t\right)\right\|\right) \leq \beta\left(\left\|x_{0}\right\|, t-t_{0}\right) + \gamma\left(\left\|v\right\|_{\left[t_{0}:t\right)}\right), \quad \forall t \geq t_{0} \geq 0$$

• • • • • • • • • •

Théorème (Motchon et al. 2018). S'il existe des fonctions continument dérivables $V_p: \mathbb{R}^n \longrightarrow [0; \infty), p \in \mathcal{P}$, des fonctions α_1, α_2 et ρ de classe \mathcal{K}_{∞} , et des constantes $\mu \ge 1, \lambda_0 > 0$ et $\lambda \ge 0$ telles que (a) $\forall p \in \mathcal{P}, \alpha_1(||x||) < V_p(x) < \alpha_2(||x||)$

(a) $\forall p \in \mathcal{P}, \alpha_1(||\mathbf{x}||) \leq \mathbf{v}_p(\mathbf{x}) \leq \alpha_2(||\mathbf{x}||)$ (b) $\forall p, q \in \mathcal{P}, [\nabla V_p(\mathbf{x})]^\top f_{qp}(\mathbf{x}, \mathbf{v}) \leq \lambda_{qp} V_p(\mathbf{x}) + \rho(||\mathbf{v}||)$ avec

$$\lambda_{q\,p} = \begin{cases} -\lambda_0 & \text{if} \quad p = q, \\ \lambda & \text{if} \quad p \neq q. \end{cases}$$

(c) $\forall p, q \in \mathcal{P}, V_p(x) \leq \mu V_q(x)$

alors le système bouclé est ISS lorsque $\tau_a > [\ln \mu + (\lambda_0 + \lambda) \ \delta] / \lambda_0$.

K.M.D. Motchon, L. Etienne, and S. Lecoeuche, Input-to-state stability of switched nonlinear system with delay in the active mode detection and average dwell-time, Int J Robust Nonlinear Control, 2018 (Soumis)

イロト イボト イヨト イヨト

• Fonctions α , β et γ :

$$\alpha = \alpha_{1} \quad ; \quad \beta\left(\left\|x_{0}\right\|, t - t_{0}\right) = \mu^{N_{0}+1} e^{(N_{0}+1)(\lambda_{0}+\lambda)\delta} e^{-(t-t_{0})\gamma_{a}} \alpha_{2}\left(\left\|x_{0}\right\|\right)$$

$$\gamma\left(\left\|\mathbf{v}\right\|_{[t_0;t)}\right) = \frac{\mu e^{(N_0+1)\lambda_0 \tau_a + (\lambda_0+\lambda)\delta}}{(1 - e^{-\tau_a \gamma_a})\lambda_0} \rho\left(\left\|\mathbf{v}\right\|_{[t_0;t)}\right)$$

avec

$$\gamma_a = \lambda_0 - rac{\ln \mu + (\lambda_0 + \lambda) \, \delta}{\tau_a}.$$

- $\delta = 0 \implies$ Conditions ISS de Vu et al. (2007)
 - $\begin{array}{l} \mathbb{I} & \mathbb{C} \\ \mathbb{I} & \mathbb{C} \\ \mathbb{I} \\ \mathbb$

L. Vu, D. Chatterjee and D. Liberzon, Input-to-state stability of switched systems and switching adaptive control. Automatica, 43 : 639–646, 2007.

A D A A B A A B A A

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

Théorème (Motchon et al. 2018). Supposons que les fonctions F_p et G_p soient polynomiales. S'il existe des fonctions polynomiales définies positives V_p , des constantes $\mu \ge 1, \lambda_0 > 0, \lambda \ge 0, \varepsilon > 0$ et $\theta > 0$ telles que (a) $\forall p \in \mathcal{P}, V_p(x) - \varepsilon ||x||^2$ est **SOS** (b) $\forall p, q \in \mathcal{P}, -[\nabla V_p(x)]^\top f_{qp}(x, v) + \lambda_{qp} V_p(x) + \theta ||v||^2$ est **SOS** avec $\lambda_{qp} = \begin{cases} -\lambda_0 & \text{if } p = q, \\ \lambda & \text{if } p \neq q. \end{cases}$

(c) $\forall p, q \in \mathcal{P}, \mu V_q(x) - V_p(x)$ est SOS

alors le système bouclé est ISS lorsque $\tau_a > [\ln \mu + (\lambda_0 + \lambda) \delta]/\lambda_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modèle thermique simplifié d'un bâtiment à deux chambres, Meyer et al. (2014) :

$$\dot{\Theta}_{i} = \sum_{j \in J} \varsigma_{ij} \left(\Theta_{j} - \Theta_{i} \right) + \varsigma_{i \text{ ext}} \left(\Theta_{ext} - \Theta_{i} \right) + \kappa_{i} \omega_{i} \left(\overline{\Theta}_{i}^{4} - \Theta_{i}^{4} \right) + u_{i}$$

- $J = \{1, 2\}$
- Θ_i , température de la chambre $i \in \{1, 2\}$
- Θ_{ext}, température extérieure
- *ς_{ij}* coefficients de transfert de la chaleur
- $\omega_i \in \{0,1\}$ est une perturbation ; $\omega_i = 1 \implies$ présence humaine dans la chambre i

Variable d'état,
$$x = \begin{bmatrix} \Theta_1 & \Theta_2 \end{bmatrix}^ op - \begin{bmatrix} \Theta_1^{obj} & \Theta_2^{obj} \end{bmatrix}^ op$$

Objectif : Maintenir la température des chambres autour de $\Theta^{obj} = \begin{bmatrix} \Theta_1^{obj} & \Theta_2^{obj} \end{bmatrix}^\top$ en utilisant une commande

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0.5(\Theta_1^{obj} - \Theta_1) - \varsigma_{1 ext} (\Theta_{ext} - \Theta_1) - \hat{\omega}_1 \kappa_1 \left(\overline{\Theta}_1^4 - \Theta_1^4\right) \\ 0.5(\Theta_2^{obj} - \Theta_2) - \varsigma_{2 ext} (\Theta_{ext} - \Theta_2) - \hat{\omega}_2 \kappa_2 \left(\overline{\Theta}_2^4 - \Theta_2^4\right) \end{pmatrix}$$

P-J. Meyer, H. Nazarpour, A. Girard and E. Witrant, Experimental implementation of UFAD regulation based on robust controled invariance. In : 13th European Control Conference, 1468–1473, June 24-27, 2014.

K.M.D. Motchon

Stabilité des SAC

Paramètres	Résultats
$\varepsilon = 5, N_0 = 2$	$\mu^{N_0+1} e^{(N_0+1)(\lambda_0+\lambda)\delta} = 3.3$
$\mu = 1.1$	$\alpha_2(x) = 0.2 x ^6 + 2.2 x ^4 + 15 x ^2$
$\delta = 1$	$oldsymbol{\gamma}_{a}{=}1$; $oldsymbol{ au}_{a}{=}3$; $ heta{=}510^{-5}$
$\lambda = \lambda_0 = 0.1$	$\frac{\mu \operatorname{e}^{(N_0+1)\lambda_0 \tau_a + (\lambda_0+\lambda)\delta}}{(1-\operatorname{e}^{-\tau_a \gamma_a})\lambda_0} = 15; \ \rho(\ v\) = \theta \ v_1^2 + \theta^2 \ v_2^2 + \theta^4 \ v_2^4$

Figure – Norme $||x(\cdot)||$ de $x = \begin{bmatrix} \Theta_1 & \Theta_2 \end{bmatrix}^\top - \begin{bmatrix} \Theta_1^{obj} & \Theta_2^{obj} \end{bmatrix}^\top$ (en pontillé) et l'estimation de la borne limite sur l'erreur de stabilisation (en ligne continue).

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

4) Travaux en cours

$$F_{\sigma(t)}(x(t), u(t), v(t)) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t) + E_{\sigma(t)}v(t) \quad ; \quad u(t) = K_{\widehat{\sigma}(t)}x(t).$$

Théorème (Motchon et al. 2018). S'il existe des constantes $\lambda_0 > 0$, $\lambda \ge 0$, $\mu \ge 1$ et $\theta > 0$, des matrices définies positives $S_p \in \mathbb{R}^{n \times n}$, $p \in \mathcal{P}$ et des matrices $U_p \in \mathbb{R}^{m \times n}$ telles que :

(a)
$$\forall (p,q) \in \mathcal{P} \times \mathcal{P}, A_q S_p + B_q U_p + S_p A_q^\top + U_p^\top B_q^\top - \lambda_{q p} S_p + \frac{1}{\theta} E_q E_q^\top \preceq 0$$
 avec

$$\lambda_{q\,p} = \left\{ egin{array}{cc} -\lambda_0 & ext{if} & p=q, \ \lambda & ext{if} & p
eq. \end{array}
ight.$$

(b) $(p,q) \in \mathcal{P} \times \mathcal{P}, S_p - \mu S_q \leq 0$ alors pour les gains

$$K_p = U_p S_p^{-1}, \quad p \in \mathcal{P}$$

le système bouclé est ISS lorsque $\tau_a > [\ln \mu + (\lambda_0 + \lambda) \ \delta]/\lambda_0$.

1

Image: A math a math

Cas où $E_q = 0_{n \times \ell}$ et $v \equiv 0$

• Notre condition ISS \implies Condition UGAS de Zhang and Gao (2010)

$$\alpha_{1}(\|\mathbf{x}(t)\|) \leq \mu^{N_{0}+1} e^{(N_{0}+1)(\lambda_{0}+\lambda)\delta} e^{-(t-t_{0})\gamma_{a}} \alpha_{2}(\|\mathbf{x}_{0}\|)$$

• Notre résultat de synthèse \implies Résultats de synthèse de Zhang and Gao (2010)

L. Zhang and H. Gao, Asynchronously switched control of switched linear systems with average dwell time. Automatica, 46 : 953–958, 2010.

イロト イポト イヨト イヨト

Commande commutée du modèle à commutation de suspension de véhicule de Du et al. (2014)

$$\dot{x}(t) = Ax(t) + B_{\sigma(t)}u(t) + Ev(t)$$
; $u(t) = K_{\widehat{\sigma}(t)}x(t)$

- $x(t) \in \mathbb{R}^{14}$
- $u(t) \in \mathbb{R}$, force appliquée aux roues
- $v(t) \in \mathbb{R}^4$, entrée inconnue modélisant les imperfections de la route

H. Du, N. Zhang and L. Wang, Switched control of vehicle suspension based on motion-mode detection. Vehicle System Dynamics, 52(1): 142–165, 2014.

• Valeur des paramètres : δ = 0.5, μ = 1.5, λ_0 = 0.04, λ = 0.01 et θ = 63.50

Figure – Profil de la route

Figure – Évolution de la norme $||x(\cdot)||$ du vecteur d'état

32 / 35

Formulation générale des problèmes traités

2 Analyse de la stabilité : cas non perturbé

- Formalisme hybride du système
- Conditions suffisantes de stabilité
- Exemple numérique

3 Analyse de la stabilité et synthèse de commande : cas sans incertitude

- Conditions générales d'analyse de la stabilité
- Conditions SoS pour l'analyse dans le cas polynomial
- Synthèse de la commande dans le cas linéaire

Travaux en cours

- Extension du résultat de synthèse au cas non-linéaire avec des méthodes SoS
- Hypothèses de MDADT (mode-dependent average dwell time) sur σ

• • • • • • • • • • • •

Merci pour votre attention