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Problem formulation

• Class of systems diffeomorphic to ẋ(t) = Ax(t) + φ(u(t), x(t)) +Bε(t)

yd(t) = Cx(t− d) = x(1)(t− d)

• x =


x(1)

...

x(q−1)

x(q)

 ∈ IRn, x(i) ∈ IRp, i = 1, . . . , q,

• A =

 0(q−1)p,p I(q−1)p

0p 0p,(q−1)p

,

• B =
(

0p 0p . . . Ip

)T
, C =

(
Ip 0p . . . 0p

)
,
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• φ(u, x) =



φ(1)(u, x(1))

φ(2)(u, x(1), x(2))
...

φ(q−1)(u, x(1), . . . , x(q−1))

φ(q)(u, x)


triangular nonlinearity,

• The input u ∈ U a compact subset of IRm and the delayed output yd ∈ IRp,

• d > 0 is the constant (known) measurement delay,

• ε : [−d,+∞[ 7→ IRp the system uncertainties.



4'

&

$

%

Objective

• To design a cascade observer providing an estimation of the actual state by

using the delayed output

• Two main obstacles have to be handled simultaneously

1. The presence of a time delay in the output measurements,

2. The presence of the uncertainties in the state equations.

• A third obstacle will also be considered when the outputs are available only at

(not equally spaced) sampling instants.
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Assumptions

• The state x(t) and the control u(t) are bounded, i.e. x(t) ∈ X and u(t) ∈ U

for all t ≥ 0 where X ⊂ IRn and U ⊂ IRs are compact sets.

• The function φ is Lipschitz with respect to x uniformly in u, i.e.

∀ρ > 0; ∃Lφ > 0; ∀u s.t. ∥u∥ ≤ ρ; ∀(x, x̄) ∈ X ×X,

∥φ(i) (u, x)− φ(i) (u, x̄) ∥ ≤ Lφ∥x− x̄∥.

• The unknown function ε is essentially bounded, i.e.

∃δε > 0 ; ess sup
t≥−d

∥ ε(t)∥ ≤ δε.
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Notations

• For j = 0, . . . ,m and t ≥ − j
md where m is a positive integer,

xj(t) = x

(
t− d+

j

m
d

)
, uj(t) = u

(
t− d+

j

m
d

)
, εj(t) = ε

(
t− d+

j

m
d

)
,

The following property is to be emphasized (the rational behind the cascade

structure of the observer)

xj

(
t− d

m

)
= xj−1(t) and uj

(
t− d

m

)
= uj−1(t), j = 1, . . . ,m.

• ∆θ = diag
(
Ip,

1
θ Ip, . . . ,

1
θq−1 Ip

)
, θ > 0 a positif real.
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Cascade observer equations



˙̂xj(t) = Ax̂j(t) + φ(uj(t), x̂j(t))−Gj(t), j = 0, . . . ,m

G0(t) = θ∆−1
θ KC(x̂0(t)− yd(t)) and for j = 1, . . . ,m,

Gj(t) = eĀ
d
m

(
Gj−1(t) +

(
A− Ā

) (
x̂j

(
t− d

m

)
− x̂j−1(t)

)
+ φ

(
uj−1(t), x̂j

(
t− d

m

))
− φ(uj−1(t), x̂j−1(t))

)
,

• K =


k1Ip
...

kqIp

, ki > 0, i = 1, . . . , q, s.t. Ã
∆
= A−KC is Hurwitz, i.e. there

exist a positive constant ν and a SDP matrix P such that

ÃTP + PÃ ≤ −2νIn.
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• Ā, n× n Hurwitz matrix,

• Ā, K and θ are the observer design parameters,

• Observer initialization

x̂0(0) = x̂(−d) and x̂j(s) = x̂(s− d+
j

m
d), s ∈ [− j

m
d, 0], j = 1, . . . ,m.

x̂(s), s ∈ [−d, 0], any a priori selected estimate of the state vector.
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Some remarks

• The cascade observer is composed by m+ 1 chained subsystems

1. The first subsystem is a high gain observer for the delayed state x(t− d)

2. Each one of the m remaining subsystems predicts the state of the preceding

subsystem over an horizon of d
m =⇒ the state of the m′th predictor is an

estimate of the system actual state.

3. The rational behind the cascade observer design is based upon the following

properties

xj

(
t− d

m

)
= xj−1(t) and uj

(
t− d

m

)
= uj−1(t), j = 1, . . . ,m.
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• Observation error, x̃j(t)
∆
= x̂j(t)− xj(t), related to the predictor at rank

1 ≤ j ≤ m,

ẋj(t) = Axj(t) + φ(uj(t), xj(t)) +Bεj(t)

= Āxj(t) + φ(uj(t), xj(t)) + (A− Ā)xj(t) +Bεj(t),

Ā a design matrix parameter, to be chosen Hurwitz.

Hence,

xj(t) = eĀ
d
mxj−1(t) +

∫ t

t− d
m

eĀ(t−s)
(
φ(uj(s), xj(s)) + (A− Ā)xj(s) +Bεj(s)

)
ds,

since xj(t−
d

m
) = xj−1(t).



11'

&

$

%

The state of the predictor x̂j

˙̂xj(t) = Ax̂j(t) + φ(uj(t), x̂j(t))−Gj(t),

= Āx̂j(t) + φ(uj(t), x̂j(t)) + (A− Ā)x̂j(t)−Gj(t).

Hence,

x̂j(t) = eĀ
d
m x̂j

(
t− d

m

)
+ eĀt

∫ t

t− d
m

e−Ās
(
φ(uj(s), x̂j(s)) + (A− Ā)x̂j(s)−Gj(s)

)
ds.

Miming the relationship between the states xj(t) and xj−1(t), one imposes a

similar relationship between x̂j and x̂j−1, j = 1, . . . ,m

x̂j(t) = eĀ
d
m x̂j−1(t) + rj(t) + eĀt

∫ t

t− d
m

e−Ās
(
φ(uj(s), x̂j(s)) + (A− Ā)x̂j(s)

)
ds,

the rj ’s, j = 1, . . . ,m, vector functions, shall be determined simultaneously with

the correction terms Gj ’s. This is achieved by equating the above two equations

=⇒
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eĀ
d
m

(
x̂j

(
t− d

m

)
− x̂j−1(t)

)
− rj(t) = eĀt

∫ t

t− d
m

e−ĀsGj(s)ds.

Differentiating with respect to time each side of the above equation

Gj(t) = eĀ
d
m

(
Gj−1(t) + (A− Ā)

(
x̂j

(
t− d

m

)
− x̂j−1(t)

)
+φ(uj−1, x̂j

(
t− d

m

)
)− φ(uj−1, x̂j−1(t))

)
−
(
ṙj(t)− Ārj(t)

)
.

Hence, if one chooses rj such that

ṙj(t) = Ārj(t),

then, the expression of the correction term Gj specializes

Gj(t) = eĀ
d
m

(
Gj−1(t) +

(
A− Ā

)(
x̂j

(
t− d

m

)
− x̂j−1(t)

)
+ φ

(
uj−1(t), x̂j

(
t− d

m

))
− φ(uj−1(t), x̂j−1(t))

)
, 1 ≤ j ≤ m

G0(t) = θ∆−1
θ KC(x̂0(t)− yd(t)) (High Gain Observer)
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• Observation error, x̃0(t)
∆
= x̂0(t)− x0(t), related to the first subsystem (high

gain observer)

∥x̃0(t)∥ ≤ µ(θ)e−aθt∥x̃0(0)∥+
M

θ
δε,

- µ(θ), polynomial in θ,

- aθ =
θν

2λM (P )
, (ÃTP + PÃ ≤ −2νIn, Ã = A−KC)

- M = 2
λM (P )σ(P )

ν
with σ(P ) =

√
λM (P )/λm(P ),

- δε, essential bound of the uncertainties.

• Since the matrix Ā is Hurwitz, there exists a positive number β ≥ 1 such that

∀t ≥ 0 : ∥eĀt∥ ≤ βe−āt,

ā = min
i∈{1,...,n}

∣∣ℜ(λi(Ā))
∣∣, λi(Ā), i = 1, . . . , n, the n eigenvalues of Ā (with

negative real parts).
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Theorem 1

If the matrix Ā is chosen such that ā ≤ aθ and if the number m is selected such

that

η
d

m
< 1, with η = β

(
Lφ + ∥Ā−A∥

)
,

Lφ is the Lipschitz constant of φ, then one has for j = 1, . . . ,m,

∥x̃j(t)∥ ≤ ρje
−āt +Mjδε, t ≥ 0,

ρj =
η

1− η d
m

∫ 0

− d
m

∥x̃j(s)∥ds+ βχj
mµ(θ)∥x̃0(0)∥+

β

1− η d
m

j−1∑
k=0

χk
m∥rj−k(0)∥,

Mj = βχj
m

M

θ
+

β d
m

1− η d
m

j−1∑
i=0

χi
m, χm =

e−ā d
m

1− η d
m

.
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Remarks

• The convergence of the cascade observer is closely related to the observer

dynamics of the first subsystem as well as the prediction dynamics of the

remaining subsystems.

- The delayed state observer dynamics can be appropriately assigned by the

observer design parameters θ and K,

- The prediction dominant dynamics can be tuned by the prediction design

parameter Ā and the number of subsystems in the cascade.

• In the uncertainty-free case, the estimation error related to each predictor at

the rank j and in particular to the last one i.e. at rank m, converges

exponentially to zero. In the presence of uncertainties, the estimation error

remains bounded and the underlying ultimate bound is proportional to the

uncertainties essential bound δε.
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• Lemma. Let A be the n× n anti-shift block matrix and let Ā be a n× n

Hurwitz matrix with eigenvalues λ1, . . . , λn ordered such that

0 < −ℜ(λ1) ≤ . . . ≤ −ℜ(λn),

ℜ(·) is the real part of the complex number (·). Then, one has

|ℜ(λ1)| ≤ ∥A− Ā∥.

• Proposition. Let Mmδε be the ultimate bound of the error between the actual

state x(t) and the state of the last subsystem x̂m(t) in the cascade observer, i.e.

lim sup
t→∞

∥x̂m(t)− x(t)∥ ≤ Mmδε. Then, the sequence (Mm)
m∈IN⋆ is non

increasing with

lim
m→∞

Mm = β
M

θ
e(η−ā)d + β

e(η−ā)d − 1

η − ā
,
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lim
m→∞

Mm = β
M

θ
e(η−ā)d + β

e(η−ā)d − 1

η − ā
,

• The right hand side of the above equation is constituted by two terms

- The first, β
M

θ
e(η−ā)d can be made as small as desired by choosing values of θ

high enough.

- The second, β
e(η−ā)d − 1

η − ā
, is fixed and is the limit of the ultimate bound

when the length of the cascade, i.e. m, is chosen sufficiently high.

• The term η − ā appearing in the expression of the ultimate bound is directly

related to the Lipschitz constant of the system nonlinearities

η − ā = β
(
Lφ + ∥A− Ā∥

)
− ā

≥ βLφ since β ≥ 1 and ∥A− Ā∥ − ā ≥ 0 according to the lemma.



18'

&

$

%

lim
m→∞

Mm = β
M

θ
e(η−ā)d + β

e(η−ā)d − 1

η − ā
,with η − ā ≥ βLφ

• Since the function α 7→ eα − 1

α
is increasing for α ≥ 0, one has

lim
m→∞

Mm ≥ β
M

θ
eβLφd +

eβLφd − 1

Lφ
,

i.e. the lower bound of the limit is an increasing function of the Lipschitz

constant of the system nonlinearities.

• The cascade observer provides an estimate of the delayed state (first subsystem

of cascade), as well as an estimate of the actual state (last subsystem):

- The ultimate bound of the observation error related to the delayed state can

be made as small as desired (by choosing values of θ sufficiently high).

- This property is no longer true with for the actual state. Nevertheless, the

smallest values of this bound can be reached by choosing values of m

sufficiently high.
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The sampled output case

• The outputs are available at the sampling instants 0 ≤ t0 < . . . < tl < . . . with

lim
l→+∞

tl = +∞

• There exist 0 < τm ≤ τM < +∞ such that

0 < τm ≤ τk = tk+1 − tk ≤ τM , ∀k ≥ 0.

 ẋ(t) = Ax(t) + φ(u(t), x(t)) +Bε(t)

yd(tk) = Cx(tk − d) = x(1)(tk − d)
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Some recalls

In the delay-free case (yd(tk) = y(tk)), a continuous-discrete time high gain

observer has been proposed (Automatica 55, pp. 78-87,2015)

˙̂x(t) = Ax̂(t) + φ(u(t), x̂(t))− θ∆−1
θ Ke−k1θ(t−tk)(Cx̂(tk)− y(tk)),

The upper bound of the sampling partition diameter, τM , has to satisfy

τMχ(θ) < 1, with χ(θ) =
ν
√

λm(P )

2(Lφ + θ)∥K∥λ3/2
M (P )

,
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The underlying estimation error satisfies

∥x̂(t)− x(t)∥ ≤ µ(θ)e−ηθ(τM )t∥x̂(0)− x(0)∥+Nθ(τm, τM )
δε
θ
,

ηθ(τM ) = aθe
−aθτM − (1− e−aθτM )

χθ
, aθ =

θν

2λM
,

Nθ(τm, τM ) =

√
λM

λm
θτM

2− e−ηθ(τM )τm

1− e−ηθ(τM )τm
,

τm and τM , the lower and upper bounds of the sampling partition diameter.

If the sampling period is constant, i.e. τm = τM = Ts, then ηθ(Ts) and Nθ(Ts)

are respectively a decreasing and non decreasing functions of Ts and one has

lim
Ts→0

ηθ(Ts) = aθ and lim
Ts→0

Nθ(Ts) = M,
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Cascade observer equations - Sampled outputs



˙̂zj(t) = Aẑj(t) + φ(uj(t), ẑj(t))−Hj(t), j = 0, . . . ,m,

H0(t) = θ∆−1
θ Ke−k1θ(t−tk)(Cẑ0(tk)− yd(tk)) for t ∈ [tk, tk+1[,

and for j = 1, . . . ,m,

Hj(t) = eĀ
d
m

(
Hj−1(t) +

(
A− Ā

) (
ẑj
(
t− d

m

)
− ẑj−1(t)

)
+ φ

(
uj−1(t), ẑj

(
t− d

m

))
− φ(uj−1(t), ẑj−1(t))

)
.
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Theorem 2

If

• the upper bound of the sampling partition diameter τM satisfies

τMχ(θ) < 1 with χ(θ) =
ν
√
λm

2(Lφ + θ)∥K∥λ3/2
M

,

• the matrix Ā is chosen such that ā ≤ ηθ(τM ),

• the number m of the cascaded systems is chosen such that η d
m < 1,

(η = β
(
Lφ + ∥Ā−A∥

)
),

then,
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one has for j = 1, . . . ,m,

∥z̃j(t)∥
∆
= ∥ẑj(t)− xj(t)∥ ≤ ρ̄je

−āt + M̄jδε, t ≥ 0,

ρ̄j =
η

1− η d
m

∫ 0

− d
m

∥z̃j(s)∥ds+ βχj
mµ(θ)∥z̃0(0)∥+

β

1− η d
m

j−1∑
k=0

χk
m∥rj−k(0)∥,

M̄j = βχj
m

N(τm, τM )

θ
+

β d
m

1− η d
m

j−1∑
i=0

χi
m,

(
χm =

e−ā d
m

1− η d
m

)
.
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Example

• q = 3 and p = 2, i.e. x =


x(1)

x(2)

x(3)

 ∈ IR6, x(1) =

 z1

z2

, x(2) =

 z3

z4

,

x(3) =

 z5

z6

, zi ∈ IR,

• u =

 u1 = 10 cos((t)

u2 = 10 sin(t)

, u1, u2 ∈ IR, y = x(1) =

 z1

z2

 ∈ IR2,

• φ(1)(u, x) =

 −0.2z1 + u1

−0.2z2 + u2

, φ(2)(u, x) =

 −0.05z33 + u2z3

−0.05z34 + u1z4

,

• φ(3)(u, x) =

 −0.1z5 + 2tanh(z5)

−0.1z6 + 2tanh(z6)

, ε(t) =

 ε1(t) = 0.5 cos(0.1t)

ε2(t) = 0.5 sin(0.1t)


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• The objective is to estimate the actual state components zk(t), k = 1, . . . , 6,

from the delayed sampled outputs z1(tk − d) and z2(tk − d),

• This shall be achieved by using a continuous-discrete time cascade observer,

• In all the simulations,

- θ = 5, K = [3I2 3I2 I2]
T ,

- Ā = A− λI6, A is the 6× 6 anti-shift matrix and λ > 0 is a positive real.
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• Continuous estimates of the system actual states: d = 0.3s, λ = 10,m = 5.
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• Time evolution of the estimation error obtained with three values of

Ā = A− λI6

0 1 2 3 4 5
Time (S)

0

10

20

30

‖x̃
m
‖

λ = 0.1
λ = 1
λ = 10

• Relatively high values for λ have to be avoided =⇒ high values for ∥A− Ā∥ =⇒

the condition β
(
Lφ + ∥Ā−A∥

) d

m
< 1 may be violated if m is not augmented.
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• Zoom on the ultimate bound of the estimation error obtained with two values

of m
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• Time evolution of the estimation error obtained with two values of d

(λ = 10,m = 50)
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