A switched LQ regulator design in continuous time

Pierre Riedinger ${ }^{a}$, Jean Claude Vivalda ${ }^{b}$
${ }^{a}$ CNRS-CRAN, Université de Lorraine, France.
${ }^{b}$ INRIA-IECL, Université de Lorraine, France.

Cran

Plan

Problem formulation and preliminary results

Numerical resolution

Lyapunov based switching law

Discussion concerning the switching law and its degree of optimality

Illustrative examples
Example 1: Stabilizable subsystems
Example 2 : Non stabilizable subsystems

Conclusion

Problem formulation and preliminary results

Consider the class of linear switched systems in continuous time:

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t)+B_{\sigma(t)} u_{\sigma(t)}(t) \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

where

- $\sigma:[0,+\infty) \rightarrow S=\{1, \cdots, s\}$.
- $\left(A_{i}, B_{i}\right) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m_{i}}, i \in S$,
- $u_{i}(t) \in \mathbb{R}^{m_{i}}, 0 \leq m_{i} \leq n$

Objective : Design a state feedback switching law (i.e. $x \mapsto\left(\sigma(x), u_{\sigma(x)}(x)\right)$) that approaches the optimal solution of the following optimization problem:
Problem 1: Minimize the switched quadratic criterion:

$$
\begin{equation*}
\min _{\sigma, u_{\sigma}} \frac{1}{2} \int_{0}^{\infty} x^{\mathrm{T}} Q_{\sigma} x+u_{\sigma}^{\mathrm{T}} R_{\sigma} u_{\sigma} \mathrm{d} t \tag{2}
\end{equation*}
$$

where $Q_{i}=Q_{i}{ }^{\mathrm{T}}>0, R_{i}=R_{i}^{\mathrm{T}}>0, i \in S$
Up to now the exact solution is not available and only approximation via dynamic programming and (open loop) numerical solutions are available.

Problem formulation and preliminary results

Framework: Reformulate Problem 1 into
Problem 2: Minimize the quadratic criterion:,

$$
\min _{\lambda(\cdot), u_{i}(\cdot)} \frac{1}{2} \int_{0}^{\infty} \sum_{i=1}^{s} \lambda_{i}\left(x^{T} Q_{i} x+u_{i}^{T} R_{i} u_{i}\right) d t
$$

subject to

$$
\dot{x}=\sum_{i=1}^{s} \lambda_{i}\left(A_{i} x+B_{i} u_{i}\right), \quad x(0)=x_{0}, \quad \lambda(t) \in \Lambda=\left\{\lambda \in \mathbb{R}^{s}: \sum_{i=1}^{s} \lambda_{i}=1 \quad \lambda_{i} \geq 0\right\}
$$

Three reasons justify the convexification of the problem:

1. The solutions are well defined [Fillipov, 1988]
2. The density of the switched system trajectories into the trajectories of its relaxed version [Ingalls - Sontag 2002]
3. The existence of singular optimal solutions are taking into account [Patino-Riedinger 2009, Bengea-Decarlo 2005].

Problem formulation and preliminary results

To apply Pontryagin Maximum Principle (PMP) for Problem 1 or its relaxed version, the Hamiltonian function is defined as follow:

$$
\begin{equation*}
\mathcal{H}(x, \lambda, u, p)=\sum_{i=1}^{s} \lambda_{i} \mathcal{H}_{i}\left(x, u_{i}, p\right) \tag{3}
\end{equation*}
$$

with $\mathcal{H}_{i}\left(x, u_{i}, p\right)=p^{T}\left(A_{i} x+B_{i} u_{i}\right)+\frac{1}{2}\left(x^{\top} Q_{i} x+u_{i}^{T} R_{i} u_{i}\right)$ and where p defines the co-state.

Theorem (1)

Suppose that $\left(\lambda^{*}, u^{*}\right)$ is optimal with the corresponding state x^{*}. Then, there exists an absolutely continuous function p^{*}, named co-state, such that:

1. $p^{*} \not \equiv 0$,
2. $\dot{p^{*}}=\sum_{i=1}^{s} \lambda_{i}^{*}(t)\left(-A_{i}^{T} p^{*}-Q_{i} x^{*}\right)$ for almost all $t \in \mathbb{R}^{+}$,
3. $\left(\lambda^{*}(t), u^{*}(t)\right) \in \arg \min _{(\lambda \in \Lambda, u)} \mathcal{H}\left(x^{*}(t), \lambda, u, p^{*}(t)\right)$,
4. $\mathcal{H}\left(x^{*}(t), \lambda^{*}(t), u^{*}, p^{*}(t)\right)=0$.

Problem formulation and preliminary results

As the minimum of \mathcal{H} with respect to the u_{i} 's is clearly independent of the value of λ, Theorem 1 can be simplified :

Lemma
The optimal value of the u_{i} 's are given by $u_{i}^{*}(t)=-R_{i}^{-1} B_{i}^{T} p^{*}(t)$ and λ^{*} satisfies:

$$
\begin{equation*}
\lambda^{*}(t) \in \arg \min _{\lambda \in \Lambda} \sum_{i=1}^{s} \lambda_{i} \mathcal{H}_{i}\left(x^{*},-R_{i}^{-1} B_{i}^{T} p^{*}, p^{*}\right) \tag{4}
\end{equation*}
$$

Thus, optimal controls λ^{*} satisfy the complementarity constraints :

$$
0 \leq \lambda_{i}^{*} \perp \mathcal{H}_{i}\left(x^{*},-R_{i}^{-1} B_{i}^{\top} p^{*}, p^{*}\right) \geq 0, i \in S
$$

the sign $x \perp y$ means $x y=0$.

Numerical resolution

Major drawback in the numerical resolution: The existence of singular controls.
Singular controls : there exist at least two indices $(i, j) \in S^{2}$ such that on a non empty time interval (a, b),

$$
\mathcal{H}_{i}=\mathcal{H}_{j}=0, \forall t \in(a, b)
$$

Then all values satisfying $\lambda_{i}+\lambda_{j}=1$ are potential candidate for optimality

- PMP is inconclusive concerning the value of λ^{*} (Additional NC are required)
- λ is not admissible for the switched systems (not at the vertices of Λ) but could be approximated by chattering (Thanks to density theorem).

Numerical consequences:

- Indirect methods like shooting methods are inoperative
- the uniqueness of the solution of Hamiltonian system is lost (bifurcations)
- the solution structure (regular -singular) is required
- Direct methods (NLP) yield to bad numerical results due to the insensitivity of the Lagrangian w.r.t. the control

Numerical resolution

Idea: Take implicitly into account the singular arcs using the necessary condition of the PMP and the Hamiltonian systems and then solve directly an augmented constraint optimization problem.

Denote by $z=(x, p)$
Problem 2: Minimize (using NLP):

$$
\begin{gather*}
\min _{\lambda(\cdot)} \frac{1}{2} \int_{0}^{\infty} \sum_{i=1}^{s} \lambda_{i}\left(x^{\mathrm{T}} Q_{i} x+p^{\mathrm{T}} B_{i} R_{i}^{-1} B_{i}^{T} p\right) \mathrm{d} t \tag{5}\\
\text { subject to } \dot{z}=\sum_{i=1}^{s} \lambda_{i}\left(\begin{array}{cc}
A_{i} & -B_{i} R_{i}^{-1} B_{i}^{T} \\
-Q_{i} & -A_{i}^{T}
\end{array}\right) z \tag{6}\\
0 \leq \lambda_{i} \perp \mathcal{H}_{i}\left(x,-R_{i}^{-1} B_{i}^{T} p, p\right) \geq 0, \quad i \in S \tag{7}\\
\lambda(t) \in \Lambda, \quad x(0)=x_{0}
\end{gather*}
$$

where the sign $x \perp y$ means $x y=0$.
Special issue: Discontinuous Differential Systems : Theory and Numerical Methods
P. Riedinger, C. Morarescu, A numerical framework for optimal control of switched input affine nonlinear systems subject to path constraint, Mathematics and Computers in Simulation, January 2014

Lyapunov based switching law

Insight: Lyapunov function as a tight upper bound on the value function (may coincide at some points)

- Consider the family of Riccati equations parametrized by $\lambda \in \Lambda$:

$$
\begin{equation*}
A(\lambda)^{\top} P_{\lambda}+P_{\lambda} A(\lambda)-P_{\lambda} B(\sqrt{\lambda}) R^{-1} B(\sqrt{\lambda})^{\mathrm{T}} P_{\lambda}+Q(\lambda)=0 . \tag{8}
\end{equation*}
$$

corresponding to the LQ subproblem obtained for a fixed λ, if exists.

- $A(\lambda)=\sum_{i \in S} \lambda_{i} A_{i}$,
- $B(\sqrt{\lambda})=\left[\sqrt{\lambda_{1}} B_{1}\left|\sqrt{\lambda_{2}} B_{2}\right| \ldots \mid \sqrt{\lambda_{s}} B_{s}\right]$
- $Q(\lambda)=\sum_{i \in S} \lambda_{i} Q_{i}$ and $R=\operatorname{diag}\left(\left[R_{1}, R_{2}, \cdots, R_{s}\right]\right)$.

Lemma

If the pair $(A(\lambda), B(\sqrt{\lambda}))$ is stabilizable and $Q(\lambda)$ is positive definite, then there exists a positive definite solution to the parametrized Riccati equation Eq. (8).

Lyapunov based switching law

We denote by Λ^{+}the set $\Lambda^{+}=\left\{\lambda \in \Lambda\right.$ | the pair $(A(\lambda), B(\sqrt{\lambda}))$ is stabilizable and $\left.\max \operatorname{spec}\left(P_{\lambda}\right) \leq \nu_{\max }\right\}$ where $\operatorname{spec}\left(P_{\lambda}\right)$ denotes the spectrum of P_{λ} and $v_{\max }$ an arbitrary large number.
Λ^{+}satisfies the following property.

Lemma

The matrices Q_{i} being positive definite, if one can find $\lambda^{0} \in \Lambda$ such that $\left(A\left(\lambda^{0}\right), B\left(\sqrt{\lambda^{0}}\right)\right)$ is controllable, then, for every $v_{\max }$ large enough, set Λ^{+}is compact and its interior is not empty in Λ.
Moreover, the two following real numbers, α_{m} and α_{M}, defined as

$$
\alpha_{m}=\min _{\lambda \in \Lambda^{+}} \min \left(\operatorname{spec}\left(P_{\lambda}\right)\right) \quad \alpha_{M}=\max _{\lambda \in \Lambda^{+}} \max \left(\operatorname{spec}\left(P_{\lambda}\right)\right)
$$

are positive.

Lyapunov based switching law

Let us now introduce the following Lyapunov function

$$
\begin{equation*}
V_{m}(x):=\inf _{\lambda \in \Lambda^{+}} x^{\mathrm{T}} P_{\lambda} x \tag{9}
\end{equation*}
$$

where P_{λ} denotes the solution of Ricccati equation (8).

- We show that V_{m} is a positive definite function, homogeneous of degree 2, proper and locally Lipschitz.
- Moreover, the directional derivative of $V_{m}(x ; d)$ in direction d is given by [Furukawa 1983]:

$$
V_{m}^{\prime}(x ; d)=\lim _{h \rightarrow 0 ; h>0} \frac{V_{m}(x+h d)-V_{m}(x)}{h}=2 \inf _{\lambda \in \ell(x)} d^{\mathrm{T}} P_{\lambda} x
$$

where $\ell(x)$ denotes the subset of $\lambda \in \Lambda^{+}$such that $V_{m}(x)=x^{\top} P_{\lambda} x$.

Lyapunov based switching law

Theorem (Main result)

Assume that

1. $Q_{i}>0, i \in S$
2. $\exists \lambda_{0}$ s.t. $\left(A\left(\lambda_{0}\right), B\left(\sqrt{\lambda}_{0}\right)\right)$ is controllable.

For every $x \in \mathbb{R}^{n}$, we choose

$$
(i(x), \lambda(x)) \in \arg \min _{(i, \lambda) \in S \times \ell(x)}\left(2 x^{\mathrm{T}} M_{i}(\lambda) P_{\lambda} x+x^{\mathrm{T}} N_{i}(\lambda) x\right)
$$

where
$M_{i}(\lambda):=A_{i}-B_{i} K_{i}(\lambda)$,
$K_{i}(\lambda):=R_{i}^{-1} B_{i}^{\top} P_{\lambda}$
$N_{i}(\lambda):=Q_{i}+K_{i}(\lambda)^{\top} R_{i} K_{i}(\lambda)$.
Then, the feedback

$$
\begin{aligned}
\sigma & =i(x) \\
u_{i(x)} & =-K_{i(x)}(\lambda(x)) x=-R_{i(x)}^{-1} B_{i(x)}^{T} P_{\lambda(x)} x
\end{aligned}
$$

stabilizes the switched system (1) with a cost smaller than $\frac{1}{2} V_{m}\left(x_{0}\right)$.
Exponential convergence rate is greater than $\beta=\frac{\eta_{0}}{\alpha_{1}}$ where η_{0} and α_{1} are given by:

$$
\eta_{0}=\min _{i \in S} \inf _{x \in S^{n-1}} \inf _{\lambda \in \ell(x)} x^{\top} N_{i}(\lambda) x, \quad \alpha_{1}=\max _{x \in S^{n-1}} V_{m}(x)
$$

Lyapunov based switching law

Sketch of the proof:

- Riccati eq. (8) can be rewritten as a convex combination:

$$
\sum_{i \in S} \lambda_{i}\left(2 x^{\mathrm{T}} M_{i}^{\mathrm{T}}(\lambda) P_{\lambda} x+x^{\mathrm{T}} N_{i}(\lambda) x\right)=0
$$

- For every $(x, \lambda) \in \mathbb{R}^{n} \times \Lambda^{+}$,

$$
\min _{i \in S}\left(2 x^{\mathrm{T}} M_{i}^{\mathrm{T}}(\lambda) P_{\lambda} x+x^{\mathrm{T}} N_{i}(\lambda) x\right) \leq 0
$$

- Then, from the directional derivative of V_{m}, for every $\left(x, \lambda^{0}\right) \in \mathbb{R}^{n} \times \ell(x)$, there exists $i\left(x, \lambda^{0}\right)$ such that in direction $d=M_{i\left(x, \lambda^{0}\right)}\left(\lambda^{0}\right) x$

$$
V_{m}^{\prime}\left(x ; M_{i}\left(\lambda^{0}\right) x\right) \leq 2 x^{\mathrm{T}} M_{i}^{\mathrm{T}}\left(\lambda^{0}\right) P_{\lambda^{0}} x \leq-x^{\mathrm{T}} N_{i}\left(\lambda^{0}\right) x
$$

- Therefore, for any initial condition x_{0},

$$
V_{m}(x(t))+\int_{0}^{t} x^{\mathrm{T}}\left(Q_{i(x)}+K_{i(x)}(\lambda(x))^{\mathrm{T}} R_{i(x)} K_{i(x)}(\lambda(x)) x d \tau \leq V_{m}\left(x_{0}\right), \quad \forall t \geq 0\right.
$$

As $Q_{i}>0, \forall i \in S$, it follows that: $x(t) \rightarrow 0$ when $t \rightarrow+\infty$.

Discussion concerning the switching law and its optimality

Why do we claim that the Lyapunov function can be a tight upper bound on the value function?

- The value $\frac{1}{2} V_{m}(x)$ is the best cost related to every constant convex combination that stabilizes the relaxed system (In infinite number !).
- If all subsystems are stabilizable, then $\frac{1}{2} V_{m}(x) \leq \min _{i \in S} \frac{1}{2} x^{T} P_{i} x$

When $\frac{1}{2} V_{m}(x)$ is optimal?
"Along the part of trajectories where the optimal control λ^{*} is constant to reach the origin".

- if the number of switchings is finite
- if the trajectory is steered to the origin by a constant singular control λ for which $P_{\lambda}>0$.
\rightarrow Singular controls in dimension $n=2$ are constant.

Discussion concerning the switching law and its optimality

Formally, we can justified the design of the switching law as follow.

- Assuming known the value function, one can write for any $T>0$,

$$
V^{*}\left(x_{0}\right)=\min _{\sigma} \frac{1}{2} \int_{0}^{T} x^{T} Q_{\sigma(t)} x+u_{\sigma(t)}^{T} R_{\sigma(t)} u_{\sigma(t)} d t+V^{*}(x(T))
$$

- The transversality condition of PMP implies at time $T, p^{*}(T)=\frac{\partial V(x(T))}{\partial x}$ (if exists).
- Now suppose that $V^{*}(x(T))$ is approximated by $V_{m}(x(T))$. Then, an approximation of $p^{*}(T)$ is given by $p^{*}(x(T)) \approx P_{\lambda} x(T)$ with $\lambda \in \ell(x)$.
- Thus, it is easy to check that the minimization of the Hamiltonian at time T leads to the provided switching law.
- As the problem is homogenous and if the approximation is "good", one can infer that $p^{*}(x) \approx P_{\lambda(x)} x$ with $\lambda(x) \in \ell(x)$ for every x.
Roughly speaking, the state feedback switching law matches the optimal one when $P_{\lambda(x)} X$ is a good approximation of p^{*}.

Example 1

Consider a two mode switched system with the following design parameters:

$$
\begin{array}{rlr}
A_{1}=\left(\begin{array}{cc}
-2.7 & 3.9 \\
4.4 & -12.6
\end{array}\right), & A_{2}=\left(\begin{array}{cc}
-9.5 & -5.1 \\
-7.5 & -3.3
\end{array}\right), \\
B_{1}=\binom{0.1}{0}, & B_{2}=\binom{4.6}{0}, \\
Q_{1}=Q_{2}=\operatorname{ld}, R_{1}=1 \text { and } R_{2}=2 . &
\end{array}
$$

For each subsystem, an LQ design can be be performed separately.

Example 1 :

Figure: Ex. 1: State space trajectories: (red) optimal solution (NLP); (blue) switching law

Figure: Ex. 1: Cost comparisons for different initial positions taken on the unit ball.

Example 2

For this second example, we have chosen two non stabilizable subsystems:

$$
\begin{array}{ll}
A_{1}=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right), & A_{2}=\left(\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right), \\
B_{1}=\binom{0}{1}, & B_{2}=\binom{1}{0} .
\end{array}
$$

$Q_{1}=Q_{2}=\mathrm{Id}, R_{1}=2$ and $R_{2}=1$

- There is no LQ design that can be defined separately for each subsystem.
- The set Λ^{+}is non empty, the switching law presented in this paper can be applied.

Example 2 :

Figure: Ex. 2: State space trajectories: (red) optimal solution (NLP); (blue) switching law

Figure: Ex. 2: Cost comparisons for different initial positions taken on the unit ball.

Conclusion

- A state feedback switching law for switched LQ regulator problems in continuous time.
- Applicable if a controllable convex combination of the subsystems exists
- The switching law can be optimal along arcs (singular or not) ending to the origin with a constant optimal control.
- In any case, a guarantee on the cost is provided by the upper bound $\frac{1}{2} V_{\text {min }}(x)$.
- Additional stability results in the paper for sampled switched law

Related papers:

- P. Riedinger, A switched LQ regulator design in continuous time, IEEE TAC to appear in May 2014.
- P. Riedinger, J-C. Vivalda, An LQ sub-optimal stabilizing feedback law for switched linear systems, HSCC 2014, Berlin.

