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Problem formulation and preliminary results

Consider the class of linear switched systems in continuous time:

ẋ(t) = Aσ(t)x(t) + Bσ(t)uσ(t)(t) x(0) = x0 (1)

where
I σ : [0,+∞)→ S = {1, · · · , s}.
I (Ai ,Bi) ∈ R

n×n × Rn×mi , i ∈ S,
I ui(t) ∈ Rmi , 0 ≤ mi ≤ n

Objective : Design a state feedback switching law (i.e. x 7→ (σ(x), uσ(x)(x))) that
approaches the optimal solution of the following optimization problem:
Problem 1: Minimize the switched quadratic criterion:

min
σ,uσ

1
2

∫ ∞

0
xTQσx + uT

σRσuσdt (2)

where Qi = Qi
T > 0, Ri = Ri

T > 0, i ∈ S

Up to now the exact solution is not available and only approximation via dynamic
programming and (open loop) numerical solutions are available.



Problem formulation and preliminary results

Framework: Reformulate Problem 1 into
Problem 2: Minimize the quadratic criterion:,

min
λ(·), ui (·)

1
2

∫ ∞

0

s∑
i=1

λi(xT Qix + uT
i Riui)dt

subject to

ẋ =
s∑

i=1

λi(Aix + Biui), x(0) = x0, λ(t) ∈ Λ =

{
λ ∈ Rs :

s∑
i=1

λi = 1 λi ≥ 0
}
.

Three reasons justify the convexification of the problem:

1. The solutions are well defined [Fillipov, 1988]

2. The density of the switched system trajectories into the trajectories of its
relaxed version [Ingalls - Sontag 2002]

3. The existence of singular optimal solutions are taking into account
[Patino-Riedinger 2009, Bengea-Decarlo 2005].



Problem formulation and preliminary results

To apply Pontryagin Maximum Principle (PMP) for Problem 1 or its relaxed
version, the Hamiltonian function is defined as follow:

H(x, λ, u, p) =
s∑

i=1

λiHi(x, ui , p) (3)

with Hi(x, ui , p) = pT (Aix + Biui) + 1
2 (xT Qix + uT

i Riui) and where p defines the
co-state.

Theorem (1)
Suppose that (λ∗, u∗) is optimal with the corresponding state x∗. Then, there
exists an absolutely continuous function p∗, named co-state, such that:

1. p∗ . 0,

2. ṗ∗ =
∑s

i=1 λ
∗
i (t)(−AT

i p∗ − Qix∗) for almost all t ∈ R+,

3. (λ∗(t), u∗(t)) ∈ arg min(λ∈Λ,u)H(x∗(t), λ, u, p∗(t)),

4. H(x∗(t), λ∗(t), u∗, p∗(t)) = 0.



Problem formulation and preliminary results

As the minimum of H with respect to the ui ’s is clearly independent of the value
of λ, Theorem 1 can be simplified :

Lemma
The optimal value of the ui ’s are given by u∗i (t) = −R−1

i BT
i p∗(t) and λ∗ satisfies:

λ∗(t) ∈ arg min
λ∈Λ

s∑
i=1

λiHi(x∗,−R−1
i BT

i p∗, p∗). (4)

Thus, optimal controls λ∗ satisfy the complementarity constraints :

0 ≤ λ∗i ⊥ Hi(x∗,−R−1
i BT

i p∗, p∗) ≥ 0, i ∈ S

the sign x ⊥ y means xy = 0.



Numerical resolution

Major drawback in the numerical resolution: The existence of singular controls.

Singular controls : there exist at least two indices (i, j) ∈ S2 such that on a non
empty time interval (a, b),

Hi = Hj = 0,∀t ∈ (a, b)

Then all values satisfying λi + λj = 1 are potential candidate for optimality

I PMP is inconclusive concerning the value of λ∗ (Additional NC are required)
I λ is not admissible for the switched systems (not at the vertices of Λ)

but could be approximated by chattering (Thanks to density theorem).

Numerical consequences:
I Indirect methods like shooting methods are inoperative

I the uniqueness of the solution of Hamiltonian system is lost (bifurcations)
I the solution structure (regular -singular) is required

I Direct methods (NLP) yield to bad numerical results due to the insensitivity
of the Lagrangian w.r.t. the control



Numerical resolution

Idea: Take implicitly into account the singular arcs using the necessary condition
of the PMP and the Hamiltonian systems and then solve directly an augmented
constraint optimization problem.

Denote by z = (x, p)
Problem 2: Minimize (using NLP):

min
λ(·)

1
2

∫ ∞

0

s∑
i=1

λi(xTQix + pTBiR−1
i BT

i p)dt (5)

subject to ż =
s∑

i=1

λi

(
Ai −BiR−1

i BT
i

−Qi −AT
i

)
z (6)

0 ≤ λi ⊥ Hi(x,−R−1
i BT

i p, p) ≥ 0, i ∈ S (7)

λ(t) ∈ Λ, x(0) = x0

where the sign x ⊥ y means xy = 0.
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Lyapunov based switching law

Insight: Lyapunov function as a tight upper bound on the value function (may
coincide at some points)

I Consider the family of Riccati equations parametrized by λ ∈ Λ:

A(λ)T Pλ + PλA(λ) − PλB(
√
λ)R−1B(

√
λ)

T
Pλ + Q(λ) = 0. (8)

corresponding to the LQ subproblem obtained for a fixed λ, if exists.
I A(λ) =

∑
i∈S λiAi ,

I B(
√
λ) = [

√
λ1B1|

√
λ2B2| . . . |

√
λsBs ]

I Q(λ) =
∑

i∈S λiQi and R = diag([R1,R2, · · · ,Rs ]).

Lemma
If the pair (A(λ),B(

√
λ)) is stabilizable and Q(λ) is positive definite, then there

exists a positive definite solution to the parametrized Riccati equation Eq. (8).



Lyapunov based switching law

We denote by Λ+ the set

Λ+ =
{
λ ∈ Λ | the pair (A(λ),B(

√
λ)) is stabilizable and max spec(Pλ) ≤ νmax

}
where spec(Pλ) denotes the spectrum of Pλ and νmax an arbitrary large number.

Λ+ satisfies the following property.

Lemma
The matrices Qi being positive definite, if one can find λ0 ∈ Λ such that
(A(λ0),B(

√
λ0)) is controllable, then, for every νmax large enough,

set Λ+ is compact and its interior is not empty in Λ.

Moreover, the two following real numbers, αm and αM , defined as

αm = min
λ∈Λ+

min(spec(Pλ)) αM = max
λ∈Λ+

max(spec(Pλ))

are positive.



Lyapunov based switching law

Let us now introduce the following Lyapunov function

Vm(x) := inf
λ∈Λ+

xTPλx (9)

where Pλ denotes the solution of Ricccati equation (8).

I We show that Vm is a positive definite function, homogeneous of degree 2,
proper and locally Lipschitz.

I Moreover, the directional derivative of Vm(x; d) in direction d is given by
[Furukawa 1983]:

V ′m(x; d) = lim
h→0;h>0

Vm(x + hd) − Vm(x)

h
= 2 inf

λ∈`(x)
dTPλx.

where `(x) denotes the subset of λ ∈ Λ+ such that Vm(x) = xT Pλx.



Lyapunov based switching law
Theorem (Main result)
Assume that

1. Qi > 0, i ∈ S

2. ∃λ0 s.t. (A(λ0),B(
√
λ0)) is controllable.

For every x ∈ Rn, we choose

(i(x), λ(x)) ∈ arg min
(i,λ)∈S×`(x)

(
2xTMi(λ)Pλx + xTNi(λ)x

)
.

where
Mi(λ) := Ai − BiKi(λ),
Ki(λ) := R−1

i BT
i Pλ

Ni(λ) := Qi + Ki(λ)T RiKi(λ).
Then, the feedback

σ = i(x)

ui(x) = −Ki(x)(λ(x))x = −R−1
i(x)B

T
i(x)Pλ(x)x

stabilizes the switched system (1) with a cost smaller than 1
2 Vm(x0).

Exponential convergence rate is greater than β = η0
α1

where η0 and α1 are given
by:

η0 = min
i∈S

inf
x∈Sn−1

inf
λ∈`(x)

xT Ni(λ)x, α1 = max
x∈Sn−1

Vm(x)



Lyapunov based switching law

Sketch of the proof:
I Riccati eq. (8) can be rewritten as a convex combination:∑

i∈S

λi

(
2xTMT

i (λ)Pλx + xTNi(λ)x
)

= 0,

I For every (x, λ) ∈ Rn × Λ+,

min
i∈S

(
2xTMT

i (λ)Pλx + xTNi(λ)x
)
≤ 0

I Then, from the directional derivative of Vm,
for every (x, λ0) ∈ Rn × `(x), there exists i(x, λ0) such that in direction
d = Mi(x,λ0)(λ

0)x

V ′m(x; Mi(λ
0)x) ≤ 2xTMT

i (λ0)Pλ0 x ≤ −xTNi(λ
0)x

I Therefore, for any initial condition x0,

Vm(x(t)) +

∫ t

0
xT(Qi(x) + Ki(x)(λ(x))TRi(x)Ki(x)(λ(x))xdτ ≤ Vm(x0), ∀t ≥ 0.

As Qi > 0, ∀i ∈ S, it follows that: x(t)→ 0 when t → +∞.



Discussion concerning the switching law and its optimality

Why do we claim that the Lyapunov function can be a tight upper bound on the
value function?
I The value 1

2 Vm(x) is the best cost related to every constant convex
combination that stabilizes the relaxed system (In infinite number !).

I If all subsystems are stabilizable, then 1
2 Vm(x) ≤ mini∈S

1
2 xT Pix

When 1
2 Vm(x) is optimal?

“Along the part of trajectories where the optimal control λ∗ is constant to reach
the origin”.
I if the number of switchings is finite
I if the trajectory is steered to the origin by a constant singular control λ for

which Pλ > 0.
→ Singular controls in dimension n = 2 are constant.



Discussion concerning the switching law and its optimality

Formally, we can justified the design of the switching law as follow.
I Assuming known the value function, one can write for any T > 0,

V ∗(x0) = minσ
1
2

∫ T

0
xT Qσ(t)x + uT

σ(t)Rσ(t)uσ(t)dt + V ∗(x(T))

I The transversality condition of PMP implies at time T , p∗(T) =
∂V(x(T))

∂x (if
exists).

I Now suppose that V ∗(x(T)) is approximated by Vm(x(T)). Then, an
approximation of p∗(T) is given by p∗(x(T)) ≈ Pλx(T) with λ ∈ `(x).

I Thus, it is easy to check that the minimization of the Hamiltonian at time T
leads to the provided switching law.

I As the problem is homogenous and if the approximation is "good", one can
infer that p∗(x) ≈ Pλ(x)x with λ(x) ∈ `(x) for every x.

Roughly speaking, the state feedback switching law matches the optimal one
when Pλ(x)x is a good approximation of p∗.



Example 1

Consider a two mode switched system with the following design parameters:

A1 =

(
−2.7 3.9
4.4 −12.6

)
, A2 =

(
−9.5 −5.1
−7.5 −3.3

)
,

B1 =

(
0.1
0

)
, B2 =

(
4.6
0

)
,

Q1 = Q2 = Id, R1 = 1 and R2 = 2.

For each subsystem, an LQ design can be be performed separately.



Example 1 :
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Figure: Ex. 1: State space trajectories:
(red) optimal solution (NLP); (blue)
switching law
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Figure: Ex. 1: Cost comparisons for
different initial positions taken on the unit
ball.



Example 2

For this second example, we have chosen two non stabilizable subsystems:

A1 =

(
1 0
1 −1

)
, A2 =

(
−2 1
0 1

)
,

B1 =

(
0
1

)
, B2 =

(
1
0

)
.

Q1 = Q2 = Id, R1 = 2 and R2 = 1
I There is no LQ design that can be defined separately for each subsystem.
I The set Λ+ is non empty, the switching law presented in this paper can be

applied.



Example 2 :

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

state space

x1

x 2

Figure: Ex. 2: State space trajectories:
(red) optimal solution (NLP); (blue)
switching law
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Figure: Ex. 2: Cost comparisons for
different initial positions taken on the unit
ball.



Conclusion

I A state feedback switching law for switched LQ regulator problems in
continuous time.

I Applicable if a controllable convex combination of the subsystems exists
I The switching law can be optimal along arcs (singular or not) ending to the

origin with a constant optimal control.
I In any case, a guarantee on the cost is provided by the upper

bound 1
2 Vmin(x).

I Additional stability results in the paper for sampled switched law
Related papers:
I P. Riedinger, A switched LQ regulator design in continuous time, IEEE TAC to appear in May 2014.

I P. Riedinger, J-C. Vivalda, An LQ sub-optimal stabilizing feedback law for switched linear systems,
HSCC 2014, Berlin.
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