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N\

Linear case
2(t) = Ax(t), t ¢ {tr}Iren,
z(t) = Jz(t7), t € {tr}ren, (1)
z(0) = =xo

Ziirich

where z(t™) = 11%1 z(s).

e A continuous part
o A discrete part

o A set of impulse instants {tj }ren,, to = 0.

Jumping rule

o State-dependent jumping instants, e.g. when x enters some sets (internal)
o Time-dependent jumping instants (external)
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o Stability depends on the matrices of the system but also on the set of impulse
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Problems

o Stability depends on the matrices of the system but also on the set of impulse
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How can we characterize stability in an efficient/accurate/tractable way?
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instants!
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e How can we characterize stability in an efficient/accurate/tractable way?
e How can we derive tractable conditions for control design?
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Definition

The dwell-time T}, is defined as T}, = tpy1 — tg, i.e. thy1 =ty + Tk.
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Definition

The dwell-time T}, is defined as T}, = tpy1 — tg, i.e. thy1 =ty + Tk.

Average dwell-time!

e The number of impulses in any time interval
o Asymptotic notion

Ziirich

1 r‘gd. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

<

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems

6/36



Introduction Stability of impulsive systems Stabilization of impulsive systems Sampled-data systems Conclusion
[e]e]e} O@000000000000000 00000 0000000 [e]e]e}
\/

N\
D-BSSE
D T4 Department of Biosystems

I\ 7 scionce and Enginering Dwell-times
N

Definition
The dwell-time T}, is defined as T}, = tpy1 — tg, i.e. thy1 =ty + Tk.
Average dwell-time!

e The number of impulses in any time interval
o Asymptotic notion

Ziirich

Minimum/maximum/range dwell-time?

o Minimum dwell-time: T}, > T forsome T > 0, k € Ny
o Maximum dwell-time: T}, < T forsome T > e > 0, k € Ng

o Minimum dwell-time: Tk € [Tin, Tmaz],for some 0 < Trin < Tmaz < 00,
k € No

o Non-asymptotic notion

1S

2 gc, Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Theorem (1)
Assume that there exist P € ST and scalars c,d € R, d # 0, such that

ATP4+PA+cP < 0 @
JTPj—e %P < 0.

Ziirich

Then, the system is stable provided that the number of impulses N (t, s) over the
interval (s, t] satisfies

—dN(t,s) — (c—=A)(t—s) < pu, forallt>s

for some arbitrary constants A\, i > 0.
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Theorem (1)
Assume that there exist P € ST and scalars ¢ > 0, d < 0, such that
ATP+PA+cP < 0 3)

JTPj—e %P < 0.

Ziirich

Then, the system is stable provided that the number of impulses N (t, s) over the
interval (s, t] satisfies

t— s
N(t,s) < "= 4 Ny, forall t > s.
7—*

1 gd. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Theorem (1)
Assume that there exist P € ST and scalars ¢ < 0, d > 0, such that
ATP+PA+cP < 0 @)

JTPj—e %P < 0.

Ziirich

Then, the system is stable provided that the number of impulses N (t, s) over the
interval (s, t] satisfies

t—s
N(t,s) > —— — N, forall t > s.
7—*

1 gd. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Theorem (1)
Assume that there exist P € ST, and a scalarT > 0 such that the conditions

ATP+PA < 0 )
JTeA TpeAT _p < 0

Ziirich

hold.
Then, the system is stable provided that Ty, > T'; i.e. ty41 > ti, + T, k € No.

o A must be Hurwitz

o Stable continuous-time dynamics, potentially unstable discrete-time dynamics

o If we let T — 0, then we obtain a condition for arbitrary impulse times (but we
must deal with Zeno behavior)

o Easy to check

1 9

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Theorem (1)
Assume that there exist P € ST, and a scalar T > 0 such that the conditions

s ATP+PA ~ 0 ©)

.‘ T T

S JTet TpeATyj—pP < 0

hold.
Then, the system is stable provided that0 < ¢ < Ty, < T;i.e. tp11 <ty + T,k € Np.
e A must be anti-Hurwitz

o Anti-stable continuous-time dynamics, stable discrete-time dynamics
o Easy to check

B

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Discretization
o We consider here the discrete-time system
:v(tk+1):e kJx(t, ), k € No (7)
where to = 0 and Tk € [Tmin, Tmaz]-
S
N
S
N
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Discretization
o We consider here the discrete-time system
a(ty, ) = e ThJa(ty), k€ No @
where to = 0 and Tk € [Tmin, Tmaaz]-
=
=
§ Theorem M
Assume that there exist P € ST such that the condition
JTeA 0 peAt ] P <0 ®)

holds for all 0 € [Tyin, Tmax]-
Then, the system is stable provided that Ty, € [Tin, Tmaz], k € No.

o Robust feasibility problem (due to parametric dependence)
o Not easy to check since non-convex in 6. ..

1 9

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Difficulties

Robustness

e Robust LMIs are difficult to check

JTeATOpAb; _ p 0, 0 € [Trmin, Tmaz]
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Difficulties

Robustness
e Robust LMIs are difficult to check

JTeATOpAb; _ p 0, 0 € [Trmin, Tmaz]

o Difficult to extend to uncertain matrices A
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Robustness
e Robust LMIs are difficult to check

JTeATOpAb; _ p 0, 0 € [Trmin, Tmaz]

o Difficult to extend to uncertain matrices A
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JTeA+M)TT p(A+M)T 1 _ p

* Not directly applicable to systems with time-varying A

JTe(TTPO(T)J —P <0
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Difficulties

Robustness
e Robust LMIs are difficult to check

JTeATOpAb; _ p 0, 0 € [Trmin, Tmaz]

o Difficult to extend to uncertain matrices A

Ziirich

JTeA+M)TT p(A+M)T 1 _ p

* Not directly applicable to systems with time-varying A
JTe(TTPO(T)J —P <0
Control Design

e Not convex e _
JT(A+BE) ' T p (A+BK)T 7 _ p L

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems

13/36



Introduction Stability of impulsive systems

Stabilization of impulsive systems Sampled-data systems Conclusion
[e]e]e} 0000000008000 0000 00000 0000000 [e]e]e}
\/
\,’\\, D-BSSE
I\ N Department of Biosystems C d . f . d . |
\»? " scence and Engineering onvex conditions for periodic impulses
N\

Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. T, = T, k € N.
Then, the following statements are equivalent:

(@) The impulsive system with T-periodic impulses is asymptotically stable.
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Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. T, = T, k € N.
Then, the following statements are equivalent:

(@) The impulsive system with T-periodic impulses is asymptotically stable.
(b) There exists a matrix P € ST such that the LMI

JTeA TpeAT f — P <0 ©)

Ziirich

holds.
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Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. T, = T, k € N.
Then, the following statements are equivalent:

(@) The impulsive system with T-periodic impulses is asymptotically stable
(b) There exists a matrix P € ST such that the LMI

Ziirich

JTeATTpAT _p 2o
holds.

)

(c) There exist a differentiable matrix function R : [0, T] — S™, R(0) > 0, and a scalar
€ > 0 such that the LMls

ATR(T)+ R(T)A+ R(r) <0 and JTR(0)J — R(T)+el <0
hold for all = € [0, T).
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Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. T, = T, k € N.
Then, the following statements are equivalent:

(@) The impulsive system with T-periodic impulses is asymptotically stable.
(b) There exists a matrix P € ST such that the LMI

JTeA TpeAT f — P <0 )

Ziirich

holds.

(c) There exist a differentiable matrix function R : [0, T] — S™, R(0) > 0, and a scalar
€ > 0 such that the LMls

ATR(T)+ R(T)A+ R(r) <0 and JTR(0)J — R(T)+el <0

hold for all = € [0, T).

(d) There exist a differentiable matrix function S : [0,T] > S™, S(T) = 0, and a scalar
€ > 0 such that the LMIs

ATS(r)+ S(1)A—S8(r) <0 and JTS(T)J—S(0)+el <0

hold for all + € [0, T).
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Theorem

Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P € STy such that the LMI

Ziirich

JTeA 0 peAd s _p 2o (10)
holds for all 0 € [Trin, Tmaz]-

Moreover, when one of the above statements holds, then the aperiodic impulsive
system with ranged dwell-time T}, € [Tynin, Tmaz] IS asymptotically stable.
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Theorem

Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P € STy such that the LMI

Ziirich

JTeA 0 peAd s _p 2o (10)
holds for all 0 € [Trin, Tmaz]-

(b) There exist a differentiable matrix function R : [0, Tmaz] — S™, R(0) > 0, and a
scalar e > 0 such that the LMIs

ATR(T) + R(T)A+ R(7) < 0 (11)
and

JTR(0)J — R(6) +I <0 (12)
hold for all T € [0, Tmaz] @and all 0 € [Trin, Tmaz]-

Moreover, when one of the above statements holds, then the aperiodic impulsive
system with ranged dwell-time T}, € [Tynin, Tmaz] IS asymptotically stable.
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Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P € ST such that the LMIs

Ziirich

ATP+PA<0 and JTeA TPeAT P <o
hold.

thatTy, > T.

Moreover, when one of the above statements holds, the impulsive system is
asymptotically stable under minimum dwell-time T, i.e. for any sequence {ty }ren Such
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Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P € ST such that the LMIs

Ziirich

ATP+PA<0 and JTeA TPeAT P <o
hold.

(b) There exist a differentiable matrix function R : [0, T] — S™, R(0) = 0, and a scalar
e > 0 such that the LMIs

AT R(0) + R(0)A <0
ATR(T) + R(r)A+ R(r) <0 and JTR(0)J — R(T) +el <0
hold for all + € [0, T).

thatTy, > T.

Moreover, when one of the above statements holds, the impulsive system is
asymptotically stable under minimum dwell-time T, i.e. for any sequence {ty }ren Such
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Pros and cons

Benefits

Ziirich
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e Convex in the matrices of the system — robustness analysis possible
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Pros and cons

Benefits

e Convex in the matrices of the system — robustness analysis possible
e Convex in the matrices of the system — control design possible
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Pros and cons

Benefits

e Convex in the matrices of the system — robustness analysis possible
e Convex in the matrices of the system — control design possible
o Applicable to systems with time-varying matrices

Ziirich
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Pros and cons

Benefits

e Convex in the matrices of the system — robustness analysis possible
e Convex in the matrices of the system — control design possible
o Applicable to systems with time-varying matrices
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Drawbacks

o Infinite-dimensional LMI problems
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Pros and cons

Benefits

e Convex in the matrices of the system — robustness analysis possible
e Convex in the matrices of the system — control design possible
o Applicable to systems with time-varying matrices

Ziirich

Drawbacks

o Infinite-dimensional LMI problems

o Needs relaxation (piecewise linear approximation or SOS)
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Let us consider the system’
4 - -1 01 ;- 12 0 (13)
0o 12|’ 0 05 |°
<
=
3
N
1 'gc, Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Example 1 - Range dwell-time

Let us consider the system’

-1

0.1
i [

1.2

k

Proposed method

Ziirich

Periodic case

QL
o & Mg

o Finds the theoretical bounds
o Also holds in the aperiodic case

1.2 0

J = { 0 0.5} (13)
H Tmin [ Trmaz l
0.1834 | 0.4998
0.1824 | 0.5768
0.1824 | 0.5776
0.1824 | 0.5776

s

s T8 9
Lyapunov function V() = z7 Px

1

1 gc, Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Let us consider the system !
-1 0 2 1
A = J = . 14
1 -2 |’ 1 3 (14)
<
=
3
N
1 'gc, Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Minimum dwell-time

Let us consider the system !

Ziirich

—1 0 2
S R YN
2 1.1883

Proposed approach 4 1.1408

6 1.1406

Exponential LMI - 1.1406
Periodic case - 1.1406

e Non-conservative dwell-time result

1 9

3] (14)

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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o Let us consider now the system

#(t) = Az(t), t & {tr}ren,
z(t) Jz(t™), t € {tktren, (15)
z(0) Zo

where
A€eAd:=co{Ai1,...,An}, JE€ T :=co{J1,...,IN}

Ziirich
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o Let us consider now the system
i(t) = Az(t), t & {tutren,
z(t) = Ja(tT), t € {tr}ren, (15)

z(0) Zo

where
A€eAd:=co{Ai1,...,An}, JE€ T :=co{J1,...,IN}

Ziirich

e Define the set
®; = {®(T): ®(s)solves (16), A(s) € An, s € [0,T]}.

N
%S) - <§ *i(s)Ai) ®(s), ®(0) = I. 16)
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o Let us consider now the system
i(t) = Az(t), t ¢ {te}ren,
z(t) = Ja(tT), t € {tr}ren, (15)
z(0) = =m0

where
A€eAd:=co{Ai1,...,An}, JE€ T :=co{J1,...,IN}

Ziirich

o Define the set
®; = {®(T): ®(s)solves (16), A(s) € An, s € [0,T]}.
dd(s) N
—_—t = Ai(8)A; | ®(s), ®(0) =1. 16
e <§ (s))(s) (0) (16)
o We can now consider the uncertain discrete-time system

z((k+1)T) = WJz(kT),k € Ng (17)
where ¥ € ®.
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Theorem

Let us consider an uncertain (time-varying) impulsive system (A, J), A€ A4, J € 4,
with T -periodic impulses. Then, the following statements are equivalent:

(@) The uncertain (time-varying) impulsive system with T -periodic impulses is
quadratically stable

Ziirich
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Theorem

Let us consider an uncertain (time-varying) impulsive system (A, J), A€ A4, J € 4,
with T -periodic impulses. Then, the following statements are equivalent:

(@) The uncertain (time-varying) impulsive system with T -periodic impulses is
quadratically stable

(b) There exists a matrix P € ST, such that the LMI

Ziirich

JTeTPEJ - P <0
holds for all (¥, J) € &4 x J.
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Theorem

Let us consider an uncertain (time-varying) impulsive system (A, J), A€ A4, J € 4,
with T -periodic impulses. Then, the following statements are equivalent:

(@) The uncertain (time-varying) impulsive system with T -periodic impulses is
quadratically stable

(b) There exists a matrix P € ST, such that the LMI

Ziirich

JTeTPEJ - P <0
holds for all (¥, J) € &4 x J.
(c) There exist a differentiable matrix function R : [0, T] — S™, R(0) = 0, and a scalar
e > 0 such that the LMls
ATR(7) + R(1)A; + R(1) <0, and JT R(0)J; — R(T) + eI <0
hold for all € [0,T) andalli =1,...,N.
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Stabilization of impulsive systems
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System
@(t) = Ax(t) + Beue(t), t # ty (18)
z(t) = Ja(t”)+ Bgua(t), t =ty

where u. € R™< and ugy € R™d are the control inputs.

Ziirich
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Stabilization of impulsive systems
0®000

Sampled-data systems Conclusion
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Stabilization problem

System

i(t)
z(t)

= Ax(t) + Beuc(t), t # tg
= Jz(t7) + Bauq(t), t =tk

where u. € R™< and ugy € R™d are the control inputs.

= Kc(r)z(tr +71), T €10,

s Control law
§ We consider the following class of control-laws:
N
uc(tr + 1)
uq(tx)

= Kgz(l)
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System
@(t) = Aw(t) + Beuc(t), t # 1y 18)
z(t) = Jz(t7)+ Baua(t), t =1tk

where u. € R™< and ugy € R™d are the control inputs.

< Control law
:E We consider the following class of control-laws:
N
uelte +7) = Ke(r)a(ty+7), 7€ [0,Th), i9)
ug(ty) = Kax(ty)

Minimum dwell-time case

_ K.(7) if - € [0,7T)
Ke(r) = { Ko(T)  iftre[T,Th) (20)

where T), > T, k € N and f{c(r) is some matrix function to be determined.
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Theorem (Minimum dwell-time)

Assume that here exist a differentiable matrix function S : [0,T] — S™, S(T) = 0, a
matrix function U, : [0, T) — R™<*™ a matrix Uy € R™4*™ and a scalare > 0 such

< thatthe LMIs _ ~

f§ Sym[AS(T) + B.U.(T)] < 0, (1)

N Sym[AS(T) 4+ B:Uc(7)] + S(7) <0 (22)
and

—S(0) +eI  JS(T)+ BaU,
* —S(T)d =0 (23)

hold for all T € [0, T] . Then, the closed-loop system is asymptotically stable with
minimum dwell-time T' and suitable controller gains are retrieved using

Ke(r) = Uc(r)S(r)™' and K; = UzST)~ L (24)
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Theorem (Range dwell-time)
Assume that here exist a differentiable matrix function S : [0,T] — S™, S(0) >~ 0, a
matrix function U. : [0,T] — R™<*™, a matrix Uy € R"™4*™ and a scalar ¢ > 0 such
S thatthe LMis )
E Sym[AS(7) + BcUc(7)] + S(7) <0 (25)
N
and

—S(8)+ el JS(0) + Bl
x s 20 (26)

hold for all T € [0, Tnaz] @and all 0 € [Tyin, Tmaz]. Then, the closed-loop system is
asymptotically stable with range dwell-time [Ty,in, Tma«] @and suitable controller gains
are retrieved using

Ke(7) Uc(r)S(r)"r and Ky UgS(0)~ 1. (27)
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Let us consider the system with matrices

1 0 1 1
A:[1 2},Bz{o]andJ:[1

o We want to compute K. (7) such that the minimum dwell-time is, at most, T = 0.1.

(28)

W =
[E—1

Ziirich
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Let us consider the system with matrices

Ziirich

Corentin Briat

1

SHIESB ST

W =
[E—1

(28)
o We want to compute K. (7) such that the minimum dwell-time is, at most, T = 0.1.
o We obtain

(r) = 1 [ 14750481 4 3.27148897 — 41.0119147 |7
T d(r) | 3.9063911 — 1.67330597 — 37.47244372
where d(1) =

= —0.19767438 4 0.784542177 + 7.656221972.
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Let us consider the system with matrices
1 0 1 1
A_[IZ},B_{O]andJ_[l

o We want to compute K. (7) such that the minimum dwell-time is, at most, T = 0.1.

(28)

W =
[E—1

Ziirich

States
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System

Let us consider now the continuous-time system

#(t) = Ax(t) + Bu(t)

(29)

where z € R™ and v € R™ are the state of the system and the control input,

respectively.

Ziirich
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0@00000 000

Sampled-data systems

System
Let us consider now the continuous-time system

#(t) = Ax(t) + Bu(t)

(29)

where z € R™ and v € R™ are the state of the system and the control input,

< respectively.
=2
N
3 Controller

The control input is assumed to be computed from a sampled-data state-feedback

control law given by

u(t) = K1$(tk) + Kzu(tk_l), te [tk,tk+1) (30)

where K1 € R™*™ and K2 € R™*™ are the control gains to be determined.
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System
Let us consider now the continuous-time system
z(t) = Az(t) + Bu(t) (29)
where z € R™ and v € R™ are the state of the system and the control input,
< respectively.
=
3 Controller

The control input is assumed to be computed from a sampled-data state-feedback
control law given by

u(t) = Kiz(t) + Kou(tp—1), t € [tg, try1) (30)
where K1 € R™*™ and K2 € R™*™ are the control gains to be determined.

Objectives

Find a control law of the form (30) such that the closed-loop system is robustly stable
for all sampling-periods in the range [Tmin, Tmaz]-
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Sampled-data systems as impulsive systems

* Any sampled-data system can be equivalently reformulated as an impulsive
system:

28] - 220
L3l

0 z(t)}’“étk

Ziirich

A
E A e
Lo

(31)
K || =) |05
J
where z(t) = u(ty), t € [tg, tht+1)-
o Let J = Jy + BoK where
I 0 0
Jo—{o 0},BO=[I}andK:[K1 K> ] (32)
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Theorem (Aperiodic sampled-data systems)
The following statements are equivalent:
(a) There exists a control law of the form (30) that quadratically stabilizes the system

(29) for any aperiodic sampling instant sequence {t;,} such that
Tk S [Tmzn’ Tmaz]-

Ziirich
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Theorem (Aperiodic sampled-data systems)
The following statements are equivalent:

(a) There exists a control law of the form (30) that quadratically stabilizes the system
(29) for any aperiodic sampling instant sequence {t;,} such that
Tk S [Tmzn’ Tmaz]-

Ziirich

(b) There exist a differentiable matrix function R : [0, Traz] — S*T™, S(0) = 0, a

matrix Y € R™*("+t™) ang g scalare > 0 such that the conditions

A(T)S(T) + S(MA(T)T + 8(r) <0 (33)
and
_S(el +el JOS(i))SzB)Jaoy <0 (34)
hold for all T € [0, Trmaz] @and all 0 € [Trin, Tmaz]-

Moreover, when this statement holds, a suitable stabilizing control gain can be
obtained using the expression K =Y S(0)~!.
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Let us consider the sampled-data system (29) with matrices
0 1 0
A= and B = . 35
0 -0.1 0.1 (35)
S
N
S
N
31/36
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Let us consider the sampled-data system (29) with matrices

0 1 0
A:{O —0.1}andB:[0.1] (35)
< o Fixed control law: K1 = [ —3.75 —11.5 ] and K3 = 0.
‘=
3 dn System (35)
Tmaz
4 1.7279
Proposed result 6 17052
(Fridman et al., 2004) - 0.869
(Naghshtabrizi et al., 2008) - 1.113
(Fridman, 2010) - 1.695
(Liu et al., 2010) - 1.695
(Seuret, 2012) - 1.723
3 1.7294
(Seuret and Peet, 2013) 5 1.7294
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Let us consider the sampled-data system (29) with matrices

0 1 0
Ai{o _0.1}andB7[0_1] (35)
s o Designed control law for some given [Tin, Tmaz]-
E l Tmin [ Trmax H K, [ Ko [ dr l
0.001 10 —0.1145 —0.8088 | -0.0024 2
’ 50 —0.0202 —0.1560 -0.0030 2
10 —0.0310 —0.3222 0 3
0.001 50 —0.0259 —0.2726 | 0 4
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o Let us consider the following sampled-data system (29) with matrices
0 1 0
A= nd B = .
—9 01 |2 1 (36)
S
5 eletk;=[1 0 ]and Kz =0.
N

d System (36)
" Timin [ Tmax
4 0.4 1.6316
Proposed result 6 0.4 1.8270
(Seuret, 2012) - 0.400 1.251

3 0.4 1.820

(Seuret and Peet, 2013) 5 0.4 1828
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Let us consider the uncertain sampled-data system (29) with matrices

0 1 0 1 0
< aeaze{[0 0 ]a[9 Sy JJams-[0] e
~
'E: where ¢ is a positive parameter.
l 0 [ Tmin [ Tmaz H Kl [ K2 [ dR l

5 1 0.001 10 —0.0757 —0.7306 | [ -0.0006 | 2

5 : 20 —0.0411  —0.3835 -0.0022 | 2

20 0.001 10 —0.0578 —0.5560 | -0.0025 2

20 ’ 20 —0.0339 —0.3121 -0.0019 2
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Concluding remarks
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Concluding statements

o Robust stability under minimum, maximum and range dwell-time
o Robust stabilization possible

Ziirich

e Can be extended to homogeneous Lyapunov functions easily

Possible extensions

o Switched systems, time-dependent hybrid systems
e Dynamic output feedback?
e Nonlinear systems
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Thank you for your Attention

Ziirich
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