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Impulsive systems

Linear case

ẋ(t) = Ax(t), t /∈ {tk}k∈N0

x(t) = Jx(t−), t ∈ {tk}k∈N0

x(0) = x0

(1)

where x(t−) = lim
s↑t

x(s).

• A continuous part
• A discrete part
• A set of impulse instants {tk}k∈N0

, t0 = 0.

Jumping rule

• State-dependent jumping instants, e.g. when x enters some sets (internal)
• Time-dependent jumping instants (external)
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Problems

• Stability depends on the matrices of the system but also on the set of impulse
instants!
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• How can we characterize stability in an efficient/accurate/tractable way?
• How can we derive tractable conditions for control design?
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Stability of impulsive systems
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Dwell-times

Definition
The dwell-time Tk is defined as Tk = tk+1 − tk, i.e. tk+1 = tk + Tk.

Average dwell-time1

• The number of impulses in any time interval
• Asymptotic notion

Minimum/maximum/range dwell-time2

• Minimum dwell-time: Tk ≥ T̄ for some T̄ > 0, k ∈ N0

• Maximum dwell-time: Tk ≤ T̄ for some T̄ > ε > 0, k ∈ N0

• Minimum dwell-time: Tk ∈ [Tmin, Tmax],for some 0 < Tmin ≤ Tmax <∞,
k ∈ N0

• Non-asymptotic notion

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

2 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems 6/36



Introduction Stability of impulsive systems Stabilization of impulsive systems Sampled-data systems Conclusion

Dwell-times

Definition
The dwell-time Tk is defined as Tk = tk+1 − tk, i.e. tk+1 = tk + Tk.

Average dwell-time1

• The number of impulses in any time interval
• Asymptotic notion

Minimum/maximum/range dwell-time2

• Minimum dwell-time: Tk ≥ T̄ for some T̄ > 0, k ∈ N0

• Maximum dwell-time: Tk ≤ T̄ for some T̄ > ε > 0, k ∈ N0

• Minimum dwell-time: Tk ∈ [Tmin, Tmax],for some 0 < Tmin ≤ Tmax <∞,
k ∈ N0

• Non-asymptotic notion

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

2 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems 6/36



Introduction Stability of impulsive systems Stabilization of impulsive systems Sampled-data systems Conclusion

Dwell-times

Definition
The dwell-time Tk is defined as Tk = tk+1 − tk, i.e. tk+1 = tk + Tk.

Average dwell-time1

• The number of impulses in any time interval
• Asymptotic notion

Minimum/maximum/range dwell-time2

• Minimum dwell-time: Tk ≥ T̄ for some T̄ > 0, k ∈ N0

• Maximum dwell-time: Tk ≤ T̄ for some T̄ > ε > 0, k ∈ N0

• Minimum dwell-time: Tk ∈ [Tmin, Tmax],for some 0 < Tmin ≤ Tmax <∞,
k ∈ N0

• Non-asymptotic notion

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

2 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems 6/36



Introduction Stability of impulsive systems Stabilization of impulsive systems Sampled-data systems Conclusion

Average dwell-time - General result

Theorem (1)
Assume that there exist P ∈ Sn�0 and scalars c, d ∈ R, d 6= 0, such that

ATP + PA+ cP ≺ 0

JTPJ − e−dP ≺ 0.
(2)

Then, the system is stable provided that the number of impulses N(t, s) over the
interval (s, t] satisfies

−dN(t, s)− (c− λ)(t− s) ≤ µ, for all t ≥ s

for some arbitrary constants λ, µ > 0.

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Average dwell-time

Theorem (1)
Assume that there exist P ∈ Sn�0 and scalars c > 0, d < 0, such that

ATP + PA+ cP ≺ 0

JTPJ − e−dP ≺ 0.
(3)

Then, the system is stable provided that the number of impulses N(t, s) over the
interval (s, t] satisfies

N(t, s) ≤
t− s
τ∗

+N0, for all t ≥ s.

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Reverse average dwell-time

Theorem (1)
Assume that there exist P ∈ Sn�0 and scalars c < 0, d > 0, such that

ATP + PA+ cP ≺ 0

JTPJ − e−dP ≺ 0.
(4)

Then, the system is stable provided that the number of impulses N(t, s) over the
interval (s, t] satisfies

N(t, s) ≥
t− s
τ∗
−N0, for all t ≥ s.

1 J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008
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Minimum dwell-time

Theorem (1)
Assume that there exist P ∈ Sn�0 and a scalar T̄ > 0 such that the conditions

ATP + PA ≺ 0

JT eA
T T̄PeAT̄ J − P ≺ 0

(5)

hold.
Then, the system is stable provided that Tk ≥ T̄ ; i.e. tk+1 ≥ tk + T̄ , k ∈ N0.

• A must be Hurwitz
• Stable continuous-time dynamics, potentially unstable discrete-time dynamics
• If we let T̄ → 0, then we obtain a condition for arbitrary impulse times (but we

must deal with Zeno behavior)
• Easy to check

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Maximum dwell-time

Theorem (1)
Assume that there exist P ∈ Sn�0 and a scalar T̄ > 0 such that the conditions

ATP + PA � 0

JT eA
T T̄PeAT̄ J − P ≺ 0

(6)

hold.
Then, the system is stable provided that 0 < ε < Tk ≤ T̄ ; i.e. tk+1 ≤ tk + T̄ , k ∈ N0.

• A must be anti-Hurwitz
• Anti-stable continuous-time dynamics, stable discrete-time dynamics
• Easy to check

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Range dwell-time

Discretization
• We consider here the discrete-time system

x(t−k+1) = eATkJx(t−k ), k ∈ N0 (7)

where t0 = 0 and Tk ∈ [Tmin, Tmax].

Theorem (1)
Assume that there exist P ∈ Sn�0 such that the condition

JT eA
T θPeAθJ − P ≺ 0 (8)

holds for all θ ∈ [Tmin, Tmax].
Then, the system is stable provided that Tk ∈ [Tmin, Tmax], k ∈ N0.

• Robust feasibility problem (due to parametric dependence)
• Not easy to check since non-convex in θ. . .

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Difficulties

Robustness
• Robust LMIs are difficult to check

JT eA
T θPeAθJ − P ≺ 0, θ ∈ [Tmin, Tmax]

• Difficult to extend to uncertain matrices A

JT e(A+∆)T T̄Pe(A+∆)T̄ J − P ≺ 0

• Not directly applicable to systems with time-varying A

JTΦ(T̄ )TPΦ(T̄ )J − P ≺ 0

Control Design

• Not convex
JT e(A+BK)T T̄Pe(A+BK)T̄ J − P ≺ 0
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Convex conditions for periodic impulses

Theorem
Let us consider an impulsive system (A, J) with periodic impulses, i.e. Tk = T̄ , k ∈ N.
Then, the following statements are equivalent:

(a) The impulsive system with T̄ -periodic impulses is asymptotically stable.

(b) There exists a matrix P ∈ Sn�0 such that the LMI

JT eA
T T̄PeAT̄ J − P ≺ 0 (9)

holds.

(c) There exist a differentiable matrix function R : [0, T̄ ] 7→ Sn, R(0) � 0, and a scalar
ε > 0 such that the LMIs

ATR(τ) +R(τ)A+ Ṙ(τ) � 0 and JTR(0)J −R(T̄ ) + εI � 0

hold for all τ ∈ [0, T̄ ].

(d) There exist a differentiable matrix function S : [0, T̄ ] 7→ Sn, S(T̄ ) � 0, and a scalar
ε > 0 such that the LMIs

ATS(τ) + S(τ)A− Ṡ(τ) � 0 and JTS(T̄ )J − S(0) + εI � 0

hold for all τ ∈ [0, T̄ ].
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Convex conditions for range dwell-time

Theorem
Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P ∈ Sn�0 such that the LMI

JT eA
T θPeAθJ − P ≺ 0 (10)

holds for all θ ∈ [Tmin, Tmax].

(b) There exist a differentiable matrix function R : [0, Tmax] 7→ Sn, R(0) � 0, and a
scalar ε > 0 such that the LMIs

ATR(τ) +R(τ)A+ Ṙ(τ) � 0 (11)

and
JTR(0)J −R(θ) + εI � 0 (12)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax].

Moreover, when one of the above statements holds, then the aperiodic impulsive
system with ranged dwell-time Tk ∈ [Tmin, Tmax] is asymptotically stable.
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Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)
Let us consider an impulsive system (A, J). Then, the following statements are
equivalent:

(a) There exists a matrix P ∈ Sn�0 such that the LMIs

ATP + PA ≺ 0 and JT eA
T T̄PeAT̄ J − P ≺ 0

hold.

(b) There exist a differentiable matrix function R : [0, T̄ ] 7→ Sn, R(0) � 0, and a scalar
ε > 0 such that the LMIs

ATR(0) +R(0)A ≺ 0

ATR(τ) +R(τ)A+ Ṙ(τ) � 0 and JTR(0)J −R(T̄ ) + εI � 0

hold for all τ ∈ [0, T̄ ].

Moreover, when one of the above statements holds, the impulsive system is
asymptotically stable under minimum dwell-time T̄ , i.e. for any sequence {tk}k∈N such
that Tk ≥ T̄ .
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Pros and cons

Benefits
• Convex in the matrices of the system→ robustness analysis possible
• Convex in the matrices of the system→ control design possible
• Applicable to systems with time-varying matrices

Drawbacks
• Infinite-dimensional LMI problems
• Needs relaxation (piecewise linear approximation or SOS)
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Example 1 - Range dwell-time

Let us consider the system1

A =

[
−1 0.1
0 1.2

]
, J =

[
1.2 0
0 0.5

]
. (13)

dR Tmin Tmax

Proposed method
2 0.1834 0.4998
4 0.1824 0.5768
6 0.1824 0.5776

Periodic case – 0.1824 0.5776

• Finds the theoretical bounds
• Also holds in the aperiodic case

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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• Finds the theoretical bounds
• Also holds in the aperiodic case

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Example 2 - Minimum dwell-time

Let us consider the system 1

A =

[
−1 0
1 −2

]
, J =

[
2 1
1 3

]
. (14)

dR Tmin

Proposed approach
2 1.1883
4 1.1408
6 1.1406

Exponential LMI – 1.1406
Periodic case – 1.1406

• Non-conservative dwell-time result

1 C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012
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Robustification

• Let us consider now the system

ẋ(t) = Ax(t), t /∈ {tk}k∈N0

x(t) = Jx(t−), t ∈ {tk}k∈N0

x(0) = x0

(15)

where
A ∈ A := co {A1, . . . , AN} , J ∈ J := co {J1, . . . , JN}

• Define the set

ΦT̄ :=
{

Φ(T̄ ) : Φ(s) solves (16), λ(s) ∈ ΛN , s ∈ [0, T̄ ]
}
.

dΦ(s)

ds
=

(
N∑
i=1

λi(s)Ai

)
Φ(s), Φ(0) = I. (16)

• We can now consider the uncertain discrete-time system

x((k + 1)T̄ ) = ΨJx(kT̄ ), k ∈ N0 (17)

where Ψ ∈ ΦT̄ .
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ẋ(t) = Ax(t), t /∈ {tk}k∈N0

x(t) = Jx(t−), t ∈ {tk}k∈N0

x(0) = x0

(15)

where
A ∈ A := co {A1, . . . , AN} , J ∈ J := co {J1, . . . , JN}

• Define the set

ΦT̄ :=
{

Φ(T̄ ) : Φ(s) solves (16), λ(s) ∈ ΛN , s ∈ [0, T̄ ]
}
.

dΦ(s)

ds
=

(
N∑
i=1

λi(s)Ai

)
Φ(s), Φ(0) = I. (16)

• We can now consider the uncertain discrete-time system

x((k + 1)T̄ ) = ΨJx(kT̄ ), k ∈ N0 (17)

where Ψ ∈ ΦT̄ .

Corentin Briat Stability analysis and stabilization of linear aperiodic impulsive systems 20/36



Introduction Stability of impulsive systems Stabilization of impulsive systems Sampled-data systems Conclusion

Robustification

Theorem
Let us consider an uncertain (time-varying) impulsive system (A, J), A ∈ A , J ∈ J ,
with T̄ -periodic impulses. Then, the following statements are equivalent:

(a) The uncertain (time-varying) impulsive system with T̄ -periodic impulses is
quadratically stable

(b) There exists a matrix P ∈ Sn�0 such that the LMI

JTΨTPΨJ − P ≺ 0

holds for all (Ψ, J) ∈ ΦT̄ × J .

(c) There exist a differentiable matrix function R : [0, T̄ ] 7→ Sn, R(0) � 0, and a scalar
ε > 0 such that the LMIs

ATi R(τ) +R(τ)Ai + Ṙ(τ) � 0, and JTi R(0)Ji −R(T̄ ) + εI � 0

hold for all τ ∈ [0, T̄ ] and all i = 1, . . . , N .
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Stabilization of impulsive systems
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Stabilization problem

System

ẋ(t) = Ax(t) +Bcuc(t), t 6= tk
x(t) = Jx(t−) +Bdud(t), t = tk

(18)

where uc ∈ Rmc and ud ∈ Rmd are the control inputs.

Control law
We consider the following class of control-laws:

uc(tk + τ) = Kc(τ)x(tk + τ), τ ∈ [0, Tk),

ud(tk) = Kdx(t−k )
(19)

Minimum dwell-time case

Kc(τ) =

{
K̃c(τ) if τ ∈ [0, T̄ )

K̃c(T̄ ) if τ ∈ [T̄ , Tk)
(20)

where Tk ≥ T̄ , k ∈ N and K̃c(τ) is some matrix function to be determined.
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Minimum dwell-time result

Theorem (Minimum dwell-time)
Assume that here exist a differentiable matrix function S : [0, T̄ ] 7→ Sn, S(T̄ ) � 0, a
matrix function Uc : [0, T̄ ] 7→ Rmc×n, a matrix Ud ∈ Rmd×n and a scalar ε > 0 such
that the LMIs

Sym[AS(T̄ ) +BcUc(T̄ )] ≺ 0, (21)

Sym[AS(τ) +BcUc(τ)] + Ṡ(τ) � 0 (22)

and [
−S(0) + εI JS(T̄ ) +BdUd

? −S(T̄ )

]
� 0 (23)

hold for all τ ∈ [0, T̄ ]. Then, the closed-loop system is asymptotically stable with
minimum dwell-time T̄ and suitable controller gains are retrieved using

K̃c(τ) = Uc(τ)S(τ)−1 and Kd = UdS(T̄ )−1. (24)
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Range dwell-time result

Theorem (Range dwell-time)
Assume that here exist a differentiable matrix function S : [0, T̄ ] 7→ Sn, S(0) � 0, a
matrix function Uc : [0, T̄ ] 7→ Rmc×n, a matrix Ud ∈ Rmd×n and a scalar ε > 0 such
that the LMIs

Sym[AS(τ) +BcUc(τ)] + Ṡ(τ) � 0 (25)

and [
−S(θ) + εI JS(0) +BdUd

? −S(0)

]
� 0 (26)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax]. Then, the closed-loop system is
asymptotically stable with range dwell-time [Tmin, Tmax] and suitable controller gains
are retrieved using

K̃c(τ) = Uc(τ)S(τ)−1 and Kd = UdS(0)−1. (27)
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Example

Let us consider the system with matrices

A =

[
1 0
1 2

]
, B =

[
1
0

]
and J =

[
1 1
1 3

]
(28)

• We want to compute K̃c(τ) such that the minimum dwell-time is, at most, T̄ = 0.1.
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Example

Let us consider the system with matrices

A =

[
1 0
1 2

]
, B =

[
1
0

]
and J =

[
1 1
1 3

]
(28)

• We want to compute K̃c(τ) such that the minimum dwell-time is, at most, T̄ = 0.1.
• We obtain

K̃c(τ) =
1

d(τ)

[
1.4750481 + 3.2714889τ − 41.011914τ2

3.9063911− 1.6733059τ − 37.472443τ2

]T
where d(τ) = −0.19767438 + 0.78454217τ + 7.6562219τ2.
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Sampled-data systems
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Sampled-data systems

System
Let us consider now the continuous-time system

ẋ(t) = Ax(t) +Bu(t) (29)

where x ∈ Rn and u ∈ Rm are the state of the system and the control input,
respectively.

Controller
The control input is assumed to be computed from a sampled-data state-feedback
control law given by

u(t) = K1x(tk) +K2u(tk−1), t ∈ [tk, tk+1) (30)

where K1 ∈ Rm×n and K2 ∈ Rm×m are the control gains to be determined.

Objectives
Find a control law of the form (30) such that the closed-loop system is robustly stable
for all sampling-periods in the range [Tmin, Tmax].
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Sampled-data systems as impulsive systems

• Any sampled-data system can be equivalently reformulated as an impulsive
system: [

ẋ(t)
ż(t)

]
=

[
A B
0 0

]
︸ ︷︷ ︸

Ā

[
x(t)
z(t)

]
, t 6= tk

[
x(t)
z(t)

]
=

[
I 0
K1 K2

]
︸ ︷︷ ︸

J̄

[
x(t−)

z(t−)

]
, t = tk

(31)

where z(t) = u(tk), t ∈ [tk, tk+1).
• Let J̄ = J0 +B0K where

J0 =

[
I 0
0 0

]
, B0 =

[
0
I

]
and K =

[
K1 K2

]
. (32)
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Stabilization

Theorem (Aperiodic sampled-data systems)
The following statements are equivalent:

(a) There exists a control law of the form (30) that quadratically stabilizes the system
(29) for any aperiodic sampling instant sequence {tk} such that
Tk ∈ [Tmin, Tmax].

(b) There exist a differentiable matrix function R : [0, Tmax] 7→ Sn+m, S(0) � 0, a
matrix Y ∈ Rm×(n+m) and a scalar ε > 0 such that the conditions

Ā(τ)S(τ) + S(τ)Ā(τ)T + Ṡ(τ) � 0 (33)

and [
−S(θ) + εI J0S(0) +B0Y

? −S(0)

]
� 0 (34)

hold for all τ ∈ [0, Tmax] and all θ ∈ [Tmin, Tmax].
Moreover, when this statement holds, a suitable stabilizing control gain can be
obtained using the expression K = Y S(0)−1.
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Example 1

Let us consider the sampled-data system (29) with matrices

A =

[
0 1
0 −0.1

]
and B =

[
0

0.1

]
. (35)
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Example 1

Let us consider the sampled-data system (29) with matrices

A =

[
0 1
0 −0.1

]
and B =

[
0

0.1

]
. (35)

• Fixed control law: K1 =
[
−3.75 −11.5

]
and K2 = 0.

dR
System (35)

Tmax

Proposed result 4 1.7279
6 1.7252

(Fridman et al., 2004) – 0.869
(Naghshtabrizi et al., 2008) – 1.113

(Fridman, 2010) – 1.695
(Liu et al., 2010) – 1.695
(Seuret, 2012) – 1.723

(Seuret and Peet, 2013) 3 1.7294
5 1.7294
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Example 1

Let us consider the sampled-data system (29) with matrices

A =

[
0 1
0 −0.1

]
and B =

[
0

0.1

]
. (35)

• Designed control law for some given [Tmin, Tmax].

Tmin Tmax K1 K2 dR

0.001 10
[
−0.1145 −0.8088

]
-0.0024 2

50
[
−0.0202 −0.1560

]
-0.0030 2

0.001 10
[
−0.0310 −0.3222

]
0 3

50
[
−0.0259 −0.2726

]
0 4
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Example 2

• Let us consider the following sampled-data system (29) with matrices

A =

[
0 1
−2 0.1

]
and B =

[
0
1

]
. (36)

• Let K1 =
[

1 0
]

and K2 = 0.

dR
System (36)

Tmin Tmax

Proposed result 4 0.4 1.6316
6 0.4 1.8270

(Seuret, 2012) – 0.400 1.251

(Seuret and Peet, 2013) 3 0.4 1.820
5 0.4 1.828
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Example 3

Let us consider the uncertain sampled-data system (29) with matrices

A ∈ A = co

{[
0 1
0 −0.1

]
, δ

[
0 1
0 −0.1

]}
and B =

[
0
1

]
(37)

where δ is a positive parameter.

δ Tmin Tmax K1 K2 dR

5 0.001 10
[
−0.0757 −0.7306

]
-0.0006 2

5 20
[
−0.0411 −0.3835

]
-0.0022 2

20 0.001 10
[
−0.0578 −0.5560

]
-0.0025 2

20 20
[
−0.0339 −0.3121

]
-0.0019 2
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Concluding remarks
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Conclusions

Concluding statements

• Robust stability under minimum, maximum and range dwell-time
• Robust stabilization possible
• Can be extended to homogeneous Lyapunov functions easily

Possible extensions
• Switched systems, time-dependent hybrid systems
• Dynamic output feedback?
• Nonlinear systems
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Thank you for your Attention
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