Introduction

Stability of impulsive systems

Stabilization of impulsive systems

Sampled-data systems

Conclusion

Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive systems with applications to asynchronous sampled-data systems

Corentin Briat

Nancy, France - 25-26 Mars 2014

Corentin Briat

Stability analysis and stabilization of linear aperiodic impulsive systems

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	00000000000000000	00000	0000000	000
K Sc	BSSE partment of Biosystems ience and Engineering			

Introduction

Linear case

$$\begin{aligned} \dot{x}(t) &= Ax(t), \ t \notin \{t_k\}_{k \in \mathbb{N}_0} \\ x(t) &= Jx(t^-), \ t \in \{t_k\}_{k \in \mathbb{N}_0} \\ x(0) &= x_0 \end{aligned}$$
 (1)

ETH zürich

where $x(t^-) = \lim_{s \uparrow t} x(s)$.

- A continuous part
- A discrete part
- A set of impulse instants $\{t_k\}_{k \in \mathbb{N}_0}, t_0 = 0.$

Jumping rule

- State-dependent jumping instants, e.g. when x enters some sets (internal)
- Time-dependent jumping instants (external)

 Stability depends on the matrices of the system but also on the set of impulse instants!

 Stability depends on the matrices of the system but also on the set of impulse instants!

• How can we characterize stability in an efficient/accurate/tractable way?

 Stability depends on the matrices of the system but also on the set of impulse instants!

- · How can we characterize stability in an efficient/accurate/tractable way?
- · How can we derive tractable conditions for control design?

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	•000000000000000	00000	0000000	000
XX	D-BSSE Department of Bosystems Science and Engineering			

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	0000000000000000000	00000	0000000	000
×××	D-BSSE Department of Biosystems Science and Engineering		Dwel	II-times

Definition

The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Definition

The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Average dwell-time¹

- The number of impulses in any time interval
- Asymptotic notion

Definition

The dwell-time T_k is defined as $T_k = t_{k+1} - t_k$, i.e. $t_{k+1} = t_k + T_k$.

Average dwell-time¹

- The number of impulses in any time interval
- Asymptotic notion

Minimum/maximum/range dwell-time²

- Minimum dwell-time: $T_k \geq \bar{T}$ for some $\bar{T} > 0, k \in \mathbb{N}_0$
- Maximum dwell-time: $T_k \leq \overline{T}$ for some $\overline{T} > \varepsilon > 0, \, k \in \mathbb{N}_0$
- Minimum dwell-time: $T_k \in [T_{min}, T_{max}]$,for some $0 < T_{min} \le T_{max} < \infty$, $k \in \mathbb{N}_0$
- Non-asymptotic notion

2 SC. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

¹ SJ. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

Theorem (1)

Assume that there exist $P \in \mathbb{S}_{\succeq 0}^n$ and scalars $c, d \in \mathbb{R}$, $d \neq 0$, such that

$$\begin{array}{rcl}
A^T P + PA + cP &\prec & 0 \\
J^T PJ - e^{-d}P &\prec & 0.
\end{array}$$
(2)

Then, the system is stable provided that the number of impulses N(t,s) over the interval (s,t] satisfies

$$-dN(t,s) - (c-\lambda)(t-s) \le \mu$$
, for all $t \ge s$

for some arbitrary constants $\lambda, \mu > 0$.

J. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

Theorem (1)

Assume that there exist $P \in \mathbb{S}_{\succ 0}^n$ and scalars c > 0, d < 0, such that

 $\begin{array}{rcl} A^T P + PA + cP &\prec & 0\\ J^T PJ - e^{-d}P &\prec & 0. \end{array} \tag{3}$

Then, the system is stable provided that the number of impulses N(t,s) over the interval (s,t] satisfies

$$N(t,s) \leq \frac{t-s}{\tau^*} + N_0$$
, for all $t \geq s$.

1 SJ. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

Theorem (¹)

Assume that there exist $P \in \mathbb{S}_{\succ 0}^n$ and scalars c < 0, d > 0, such that

 $\begin{array}{rcl} A^T P + PA + cP &\prec & 0\\ J^T PJ - e^{-d}P &\prec & 0. \end{array}$ $\tag{4}$

Then, the system is stable provided that the number of impulses N(t,s) over the interval (s,t] satisfies

$$N(t,s) \ge \frac{t-s}{\tau^*} - N_0$$
, for all $t \ge s$.

1 SJ. P. Hespanha, et al. Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 2008

ETH zürich

Theorem (¹)

Assume that there exist $P \in \mathbb{S}_{\succeq 0}^n$ and a scalar $\overline{T} > 0$ such that the conditions

$$\begin{array}{rcl}
 & A^T P + P A & \prec & 0 \\
 & J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P & \prec & 0
\end{array}$$
(5)

hold.

E I I Zürich

Then, the system is stable provided that $T_k \ge \overline{T}$; i.e. $t_{k+1} \ge t_k + \overline{T}$, $k \in \mathbb{N}_0$.

- A must be Hurwitz
- · Stable continuous-time dynamics, potentially unstable discrete-time dynamics
- If we let $\bar{T}\to 0,$ then we obtain a condition for arbitrary impulse times (but we must deal with Zeno behavior)
- · Easy to check

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Theorem (1)

Assume that there exist $P \in \mathbb{S}_{\succeq 0}^n$ and a scalar $\overline{T} > 0$ such that the conditions

$$A^T P + PA \succ 0$$

$$J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0$$
 (6)

hold.

ETH zürich

Then, the system is stable provided that $0 < \varepsilon < T_k \leq \overline{T}$; i.e. $t_{k+1} \leq t_k + \overline{T}$, $k \in \mathbb{N}_0$.

- A must be anti-Hurwitz
- Anti-stable continuous-time dynamics, stable discrete-time dynamics
- · Easy to check

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Discretization

· We consider here the discrete-time system

$$x(t_{k+1}^{-}) = e^{AT_k} J x(t_k^{-}), \ k \in \mathbb{N}_0$$
(7)

where $t_0 = 0$ and $T_k \in [T_{min}, T_{max}]$.

S

Discretization

· We consider here the discrete-time system

$$x(t_{k+1}^{-}) = e^{AT_k} J x(t_k^{-}), \ k \in \mathbb{N}_0$$
(7)

where
$$t_0 = 0$$
 and $T_k \in [T_{min}, T_{max}]$.

Theorem (1)

Assume that there exist $P \in \mathbb{S}_{\succ 0}^n$ such that the condition

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0 \tag{8}$$

holds for all $\theta \in [T_{min}, T_{max}]$. Then, the system is stable provided that $T_k \in [T_{min}, T_{max}]$, $k \in \mathbb{N}_0$.

- Robust feasibility problem (due to parametric dependence)
- Not easy to check since non-convex in θ...

C. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

• Robust LMIs are difficult to check

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0, \ \theta \in [T_{min}, T_{max}]$$

• Robust LMIs are difficult to check

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0, \ \theta \in [T_{min}, T_{max}]$$

• Difficult to extend to uncertain matrices A

$$J^T e^{(A+\Delta)^T \bar{T}} P e^{(A+\Delta)\bar{T}} J - P \prec 0$$

• Robust LMIs are difficult to check

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0, \ \theta \in [T_{min}, T_{max}]$$

• Difficult to extend to uncertain matrices A

$$J^T e^{(A+\Delta)^T \bar{T}} P e^{(A+\Delta)\bar{T}} J - P \prec 0$$

• Not directly applicable to systems with time-varying A

$$J^T \Phi(\bar{T})^T P \Phi(\bar{T}) J - P \prec 0$$

• Robust LMIs are difficult to check

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0, \ \theta \in [T_{min}, T_{max}]$$

• Difficult to extend to uncertain matrices \boldsymbol{A}

$$J^T e^{(A+\Delta)^T \bar{T}} P e^{(A+\Delta)\bar{T}} J - P \prec 0$$

• Not directly applicable to systems with time-varying A

$$J^T \Phi(\bar{T})^T P \Phi(\bar{T}) J - P \prec 0$$

Control Design

Not convex

$$J^T e^{(A+BK)^T \bar{T}} P e^{(A+BK)\bar{T}} J - P \prec 0$$

ETH zürich

Sampled-data systems

Conclusion 000

Convex conditions for periodic impulses

Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. $T_k = \overline{T}, k \in \mathbb{N}$. Then, the following statements are equivalent:

(a) The impulsive system with \bar{T} -periodic impulses is asymptotically stable.

Sampled-data systems

Conclusion 000

Convex conditions for periodic impulses

Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. $T_k = \overline{T}, k \in \mathbb{N}$. Then, the following statements are equivalent:

- (a) The impulsive system with \bar{T} -periodic impulses is asymptotically stable.
- (b) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0 \tag{9}$$

holds.

Sampled-data systems

Conclusion

Convex conditions for periodic impulses

Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. $T_k = \overline{T}, k \in \mathbb{N}$. Then, the following statements are equivalent:

- (a) The impulsive system with \bar{T} -periodic impulses is asymptotically stable.
- (b) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0 \tag{9}$$

holds.

(c) There exist a differentiable matrix function $R: [0, \overline{T}] \mapsto \mathbb{S}^n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

 $A^T R(\tau) + R(\tau) A + \dot{R}(\tau) \preceq 0 \quad \text{and} \quad J^T R(0) J - R(\bar{T}) + \varepsilon I \preceq 0$

hold for all $\tau \in [0, \overline{T}]$.

Sampled-data systems

Conclusion

Convex conditions for periodic impulses

Theorem

Let us consider an impulsive system (A, J) with periodic impulses, i.e. $T_k = \overline{T}, k \in \mathbb{N}$. Then, the following statements are equivalent:

- (a) The impulsive system with \bar{T} -periodic impulses is asymptotically stable.
- (b) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0 \tag{9}$$

holds.

(c) There exist a differentiable matrix function $R: [0, \overline{T}] \mapsto \mathbb{S}^n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

 $A^T R(\tau) + R(\tau)A + \dot{R}(\tau) \preceq 0 \quad \text{and} \quad J^T R(0)J - R(\bar{T}) + \varepsilon I \preceq 0$

hold for all $\tau \in [0, \overline{T}]$.

(d) There exist a differentiable matrix function $S:[0,\bar{T}] \mapsto \mathbb{S}^n$, $S(\bar{T}) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

$$A^T S(\tau) + S(\tau)A - \dot{S}(\tau) \leq 0$$
 and $J^T S(\bar{T})J - S(0) + \varepsilon I \leq 0$

hold for all $\tau \in [0, \overline{T}]$.

Corentin Briat

Stability analysis and stabilization of linear aperiodic impulsive systems

Sampled-data system

Conclusion 000

Convex conditions for range dwell-time

Theorem

Let us consider an impulsive system (A, J). Then, the following statements are equivalent:

(a) There exists a matrix $P \in \mathbb{S}_{\succ 0}^{n}$ such that the LMI

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0 \tag{10}$$

holds for all $\theta \in [T_{min}, T_{max}]$.

Moreover, when one of the above statements holds, then the aperiodic impulsive system with ranged dwell-time $T_k \in [T_{min}, T_{max}]$ is asymptotically stable.

Corentin Briat

Convex conditions for range dwell-time

Theorem

Let us consider an impulsive system (A, J). Then, the following statements are equivalent:

(a) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMI

$$J^T e^{A^T \theta} P e^{A\theta} J - P \prec 0 \tag{10}$$

holds for all $\theta \in [T_{min}, T_{max}]$.

(b) There exist a differentiable matrix function $R : [0, T_{max}] \mapsto \mathbb{S}^n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

$$A^T R(\tau) + R(\tau)A + \dot{R}(\tau) \leq 0$$
(11)

and

$$J^T R(0)J - R(\theta) + \varepsilon I \preceq 0 \tag{12}$$

hold for all $\tau \in [0, T_{max}]$ and all $\theta \in [T_{min}, T_{max}]$.

Moreover, when one of the above statements holds, then the aperiodic impulsive system with ranged dwell-time $T_k \in [T_{min}, T_{max}]$ is asymptotically stable.

Sampled-data systems

Conclusion

Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider an impulsive system (A, J). Then, the following statements are equivalent:

(a) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMIs

 $A^T P + P A \prec 0 \quad \text{and} \quad J^T e^{A^T \bar{T}} P e^{A \bar{T}} J - P \prec 0$

hold.

Moreover, when one of the above statements holds, the impulsive system is asymptotically stable under minimum dwell-time \overline{T} , i.e. for any sequence $\{t_k\}_{k\in\mathbb{N}}$ such that $T_k \geq \overline{T}$.

Sampled-data systems

Conclusion

Convex conditions for minimum dwell-time

Theorem (Minimum Dwell-Time)

Let us consider an impulsive system $({\cal A},J).$ Then, the following statements are equivalent:

(a) There exists a matrix $P \in \mathbb{S}_{\succ 0}^n$ such that the LMIs

$$A^T P + PA \prec 0$$
 and $J^T e^{A^T \overline{T}} P e^{A \overline{T}} J - P \prec 0$

hold.

(b) There exist a differentiable matrix function $R : [0, \overline{T}] \mapsto \mathbb{S}^n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

$$A^T R(0) + R(0) A \prec 0$$

 $A^T R(\tau) + R(\tau)A + \dot{R}(\tau) \preceq 0 \quad \text{and} \quad J^T R(0)J - R(\bar{T}) + \varepsilon I \preceq 0$

hold for all $\tau \in [0, \overline{T}]$.

Moreover, when one of the above statements holds, the impulsive system is asymptotically stable under minimum dwell-time \bar{T} , i.e. for any sequence $\{t_k\}_{k\in\mathbb{N}}$ such that $T_k \geq \bar{T}$.

Benefits

• Convex in the matrices of the system \rightarrow robustness analysis possible

- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible

Benefits

- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible
- · Applicable to systems with time-varying matrices

Conclusion 000

Pros and cons

- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible
- Applicable to systems with time-varying matrices

Drawbacks

• Infinite-dimensional LMI problems

Conclusion 000

Pros and cons

- Convex in the matrices of the system \rightarrow robustness analysis possible
- Convex in the matrices of the system \rightarrow control design possible
- · Applicable to systems with time-varying matrices

Drawbacks

- Infinite-dimensional LMI problems
- Needs relaxation (piecewise linear approximation or SOS)

Let us consider the system¹

$$A = \begin{bmatrix} -1 & 0.1 \\ 0 & 1.2 \end{bmatrix}, \qquad J = \begin{bmatrix} 1.2 & 0 \\ 0 & 0.5 \end{bmatrix}.$$
(13)

¹ SC. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Let us consider the system¹

$$A = \begin{bmatrix} -1 & 0.1 \\ 0 & 1.2 \end{bmatrix}, \qquad J = \begin{bmatrix} 1.2 & 0 \\ 0 & 0.5 \end{bmatrix}.$$
(13)

	d_R	T_{min}	T_{max}
	2	0.1834	0.4998
Proposed method	4	0.1824	0.5768
	6	0.1824	0.5776
Periodic case	-	0.1824	0.5776

- · Finds the theoretical bounds
- Also holds in the aperiodic case

1 Sec. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Stability analysis and stabilization of linear aperiodic impulsive systems

Let us consider the system ¹

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}, \quad J = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$
(14)

¹ SC. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

Let us consider the system ¹

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}, \qquad J = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$
(14)

	d_R	T_{min}
	2	1.1883
Proposed approach	4	1.1408
	6	1.1406
Exponential LMI	-	1.1406
Periodic case	-	1.1406

• Non-conservative dwell-time result

¹ Sec. Briat et al. A looped-functional approach for robust stability analysis of linear impulsive systems, Systems & Control Letters, 2012

· Let us consider now the system

$$\begin{aligned} \dot{x}(t) &= Ax(t), \ t \notin \{t_k\}_{k \in \mathbb{N}_0} \\ x(t) &= Jx(t^-), \ t \in \{t_k\}_{k \in \mathbb{N}_0} \\ x(0) &= x_0 \end{aligned}$$
 (15)

where

 $A \in \mathcal{A} := \mathbf{co} \{A_1, \dots, A_N\}, \ J \in \mathcal{I} := \mathbf{co} \{J_1, \dots, J_N\}$

· Let us consider now the system

$$\begin{aligned} \dot{x}(t) &= Ax(t), \ t \notin \{t_k\}_{k \in \mathbb{N}_0} \\ x(t) &= Jx(t^-), \ t \in \{t_k\}_{k \in \mathbb{N}_0} \\ x(0) &= x_0 \end{aligned}$$
 (15)

where

$$A \in \mathcal{A} := \mathbf{co} \{A_1, \ldots, A_N\}, \ J \in \mathcal{I} := \mathbf{co} \{J_1, \ldots, J_N\}$$

· Define the set

$$\Phi_{\bar{T}} := \left\{ \Phi(\bar{T}) : \Phi(s) \text{ solves (16)}, \lambda(s) \in \Lambda_N, s \in [0, \bar{T}] \right\}.$$
$$\frac{d\Phi(s)}{ds} = \left(\sum_{i=1}^N \lambda_i(s) A_i \right) \Phi(s), \ \Phi(0) = I.$$
(16)

ETH zürich

· Let us consider now the system

$$\begin{aligned} \dot{x}(t) &= Ax(t), \ t \notin \{t_k\}_{k \in \mathbb{N}_0} \\ x(t) &= Jx(t^-), \ t \in \{t_k\}_{k \in \mathbb{N}_0} \\ x(0) &= x_0 \end{aligned}$$
 (15)

where

$$A \in \mathcal{A} := \mathbf{co} \{A_1, \dots, A_N\}, \ J \in \mathcal{J} := \mathbf{co} \{J_1, \dots, J_N\}$$

Define the set

$$\Phi_{\bar{T}} := \left\{ \Phi(\bar{T}) : \Phi(s) \text{ solves (16)}, \lambda(s) \in \Lambda_N, s \in [0, \bar{T}] \right\}.$$
$$\frac{d\Phi(s)}{ds} = \left(\sum_{i=1}^N \lambda_i(s) A_i \right) \Phi(s), \ \Phi(0) = I.$$
(16)

· We can now consider the uncertain discrete-time system

$$x((k+1)\bar{T}) = \Psi J x(k\bar{T}), k \in \mathbb{N}_0$$
(17)

where $\Psi \in \mathbf{\Phi}_{\bar{T}}$.

Stability analysis and stabilization of linear aperiodic impulsive systems

Theorem

Let us consider an uncertain (time-varying) impulsive system $(A, J), A \in \mathcal{A}, J \in \mathcal{I}$, with \overline{T} -periodic impulses. Then, the following statements are equivalent:

(a) The uncertain (time-varying) impulsive system with \bar{T} -periodic impulses is quadratically stable

Theorem

Let us consider an uncertain (time-varying) impulsive system $(A, J), A \in \mathcal{A}, J \in \mathcal{I}$, with \overline{T} -periodic impulses. Then, the following statements are equivalent:

- (a) The uncertain (time-varying) impulsive system with \bar{T} -periodic impulses is quadratically stable
- (b) There exists a matrix $P \in \mathbb{S}_{\succ 0}^{n}$ such that the LMI

 $J^T \Psi^T P \Psi J - P \prec 0$

holds for all $(\Psi, J) \in \mathbf{\Phi}_{\bar{T}} \times \mathcal{I}$.

Theorem

Let us consider an uncertain (time-varying) impulsive system $(A, J), A \in \mathcal{A}, J \in \mathcal{I}$, with \overline{T} -periodic impulses. Then, the following statements are equivalent:

- (a) The uncertain (time-varying) impulsive system with \bar{T} -periodic impulses is quadratically stable
- (b) There exists a matrix $P \in \mathbb{S}_{\succ 0}^{n}$ such that the LMI

$$J^T \Psi^T P \Psi J - P \prec 0$$

holds for all $(\Psi, J) \in \mathbf{\Phi}_{\bar{T}} \times \mathcal{I}$.

(c) There exist a differentiable matrix function $R: [0, \overline{T}] \mapsto \mathbb{S}^n$, $R(0) \succ 0$, and a scalar $\varepsilon > 0$ such that the LMIs

$$A_i^T R(\tau) + R(\tau)A_i + \dot{R}(\tau) \preceq 0$$
, and $J_i^T R(0)J_i - R(\bar{T}) + \varepsilon I \preceq 0$

hold for all $\tau \in [0, \overline{T}]$ and all $i = 1, \ldots, N$.

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	00000000000000000	●0000	0000000	000
×××	D-BSSE Department of Biosystems Science and Engineering			

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	000000000000000000000000000000000000000	0000	0000000	000
×××	D-BSSE Department of Biosystems Science and Engineering		Stabilization p	roblem

$$\dot{x}(t) = Ax(t) + B_c u_c(t), \ t \neq t_k$$

$$x(t) = Jx(t^-) + B_d u_d(t), \ t = t_k$$
(18)

where $u_c \in \mathbb{R}^{m_c}$ and $u_d \in \mathbb{R}^{m_d}$ are the control inputs.

ETH zürich

$$\dot{x}(t) = Ax(t) + B_c u_c(t), \ t \neq t_k$$

$$x(t) = Jx(t^-) + B_d u_d(t), \ t = t_k$$
(18)

where $u_c \in \mathbb{R}^{m_c}$ and $u_d \in \mathbb{R}^{m_d}$ are the control inputs.

Control law

We consider the following class of control-laws:

$$u_{c}(t_{k}+\tau) = K_{c}(\tau)x(t_{k}+\tau), \ \tau \in [0, T_{k}), u_{d}(t_{k}) = K_{d}x(t_{k}^{-})$$
(19)

$$\dot{x}(t) = Ax(t) + B_c u_c(t), \ t \neq t_k$$

$$x(t) = Jx(t^-) + B_d u_d(t), \ t = t_k$$
(18)

where $u_c \in \mathbb{R}^{m_c}$ and $u_d \in \mathbb{R}^{m_d}$ are the control inputs.

Control law

We consider the following class of control-laws:

$$\begin{aligned} u_c(t_k + \tau) &= K_c(\tau) x(t_k + \tau), \ \tau \in [0, T_k), \\ u_d(t_k) &= K_d x(t_k^-) \end{aligned}$$
 (19)

Minimum dwell-time case

$$K_{c}(\tau) = \begin{cases} \tilde{K}_{c}(\tau) & \text{if } \tau \in [0, \bar{T}) \\ \tilde{K}_{c}(\bar{T}) & \text{if } \tau \in [\bar{T}, T_{k}) \end{cases}$$
(20)

where $T_k \geq \bar{T}$, $k \in \mathbb{N}$ and $\tilde{K}_c(\tau)$ is some matrix function to be determined.

Theorem (Minimum dwell-time)

Assume that here exist a differentiable matrix function $S : [0, \overline{T}] \mapsto \mathbb{S}^n$, $S(\overline{T}) \succ 0$, a matrix function $U_c : [0, \overline{T}] \mapsto \mathbb{R}^{m_c \times n}$, a matrix $U_d \in \mathbb{R}^{m_d \times n}$ and a scalar $\varepsilon > 0$ such that the LMIs

$$\operatorname{Sym}[AS(\bar{T}) + B_c U_c(\bar{T})] \prec 0, \tag{21}$$

$$\operatorname{Sym}[AS(\tau) + B_c U_c(\tau)] + \dot{S}(\tau) \leq 0$$
(22)

and

$$\begin{bmatrix} -S(0) + \varepsilon I & JS(\bar{T}) + B_d U_d \\ \star & -S(\bar{T}) \end{bmatrix} \leq 0$$
(23)

hold for all $\tau \in [0, \bar{T}]$. Then, the closed-loop system is asymptotically stable with minimum dwell-time \bar{T} and suitable controller gains are retrieved using

$$\tilde{K}_c(\tau) = U_c(\tau)S(\tau)^{-1}$$
 and $K_d = U_dS(\bar{T})^{-1}$. (24)

Theorem (Range dwell-time)

Assume that here exist a differentiable matrix function $S : [0, \overline{T}] \mapsto \mathbb{S}^n$, $S(0) \succ 0$, a matrix function $U_c : [0, \overline{T}] \mapsto \mathbb{R}^{m_c \times n}$, a matrix $U_d \in \mathbb{R}^{m_d \times n}$ and a scalar $\varepsilon > 0$ such that the LMIs

$$\operatorname{Sym}[AS(\tau) + B_c U_c(\tau)] + \dot{S}(\tau) \leq 0$$
(25)

and

$$\begin{bmatrix} -S(\theta) + \varepsilon I & JS(0) + B_d U_d \\ \star & -S(0) \end{bmatrix} \leq 0$$
(26)

hold for all $\tau \in [0, T_{max}]$ and all $\theta \in [T_{min}, T_{max}]$. Then, the closed-loop system is asymptotically stable with range dwell-time $[T_{min}, T_{max}]$ and suitable controller gains are retrieved using

$$\tilde{K}_c(\tau) = U_c(\tau)S(\tau)^{-1}$$
 and $K_d = U_dS(0)^{-1}$. (27)

Let us consider the system with matrices

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } J = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
(28)

• We want to compute $\tilde{K}_c(\tau)$ such that the minimum dwell-time is, at most, $\bar{T} = 0.1$.

Let us consider the system with matrices

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } J = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
(28)

- We want to compute $\tilde{K}_c(\tau)$ such that the minimum dwell-time is, at most, $\bar{T} = 0.1$.
- We obtain

$$\tilde{K}_{c}(\tau) = \frac{1}{d(\tau)} \begin{bmatrix} 1.4750481 + 3.2714889\tau - 41.011914\tau^{2} \\ 3.9063911 - 1.6733059\tau - 37.472443\tau^{2} \end{bmatrix}^{T}$$

where $d(\tau) = -0.19767438 + 0.78454217\tau + 7.6562219\tau^2$.

Let us consider the system with matrices

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } J = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
(28)

• We want to compute $\tilde{K}_c(\tau)$ such that the minimum dwell-time is, at most, $\bar{T} = 0.1$.

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	00000000000000000	00000	000000	000
De Sc	-BSSE partment of Biosystems ience and Engineering			

Sampled-data systems

Let us consider now the continuous-time system

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{29}$$

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ are the state of the system and the control input, respectively.

Let us consider now the continuous-time system

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{29}$$

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ are the state of the system and the control input, respectively.

Controller

The control input is assumed to be computed from a sampled-data state-feedback control law given by

$$u(t) = K_1 x(t_k) + K_2 u(t_{k-1}), \ t \in [t_k, t_{k+1})$$
(30)

where $K_1 \in \mathbb{R}^{m \times n}$ and $K_2 \in \mathbb{R}^{m \times m}$ are the control gains to be determined.

Let us consider now the continuous-time system

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{29}$$

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ are the state of the system and the control input, respectively.

Controller

The control input is assumed to be computed from a sampled-data state-feedback control law given by

$$u(t) = K_1 x(t_k) + K_2 u(t_{k-1}), \ t \in [t_k, t_{k+1})$$
(30)

where $K_1 \in \mathbb{R}^{m \times n}$ and $K_2 \in \mathbb{R}^{m \times m}$ are the control gains to be determined.

Objectives

Find a control law of the form (30) such that the closed-loop system is robustly stable for all sampling-periods in the range $[T_{min}, T_{max}]$.

Any sampled-data system can be equivalently reformulated as an impulsive system:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{z}(t) \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ z(t) \end{bmatrix}, t \neq t_k$$

$$\begin{bmatrix} x(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} I & 0 \\ K_1 & K_2 \end{bmatrix} \begin{bmatrix} x(t^-) \\ z(t^-) \end{bmatrix}, t = t_k$$
(31)

where $z(t) = u(t_k)$, $t \in [t_k, t_{k+1})$.

• Let $\overline{J} = J_0 + B_0 K$ where

$$J_0 = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}, B_0 = \begin{bmatrix} 0\\ I \end{bmatrix} \text{ and } K = \begin{bmatrix} K_1 & K_2 \end{bmatrix}.$$
(32)

ETH zürich

Theorem (Aperiodic sampled-data systems)

The following statements are equivalent:

(a) There exists a control law of the form (30) that quadratically stabilizes the system
 (29) for any aperiodic sampling instant sequence {t_k} such that
 T_k ∈ [T_{min}, T_{max}].

Theorem (Aperiodic sampled-data systems)

The following statements are equivalent:

- (a) There exists a control law of the form (30) that quadratically stabilizes the system (29) for any aperiodic sampling instant sequence {t_k} such that T_k ∈ [T_{min}, T_{max}].
- (b) There exist a differentiable matrix function $R : [0, T_{max}] \mapsto \mathbb{S}^{n+m}$, $S(0) \succ 0$, a matrix $Y \in \mathbb{R}^{m \times (n+m)}$ and a scalar $\varepsilon > 0$ such that the conditions

$$\bar{A}(\tau)S(\tau) + S(\tau)\bar{A}(\tau)^T + \dot{S}(\tau) \leq 0$$
(33)

and

$$\begin{bmatrix} -S(\theta) + \varepsilon I & J_0 S(0) + B_0 Y \\ \star & -S(0) \end{bmatrix} \leq 0$$
(34)

hold for all $\tau \in [0, T_{max}]$ and all $\theta \in [T_{min}, T_{max}]$. Moreover, when this statement holds, a suitable stabilizing control gain can be obtained using the expression $K = YS(0)^{-1}$.

Let us consider the sampled-data system (29) with matrices

$$A = \begin{bmatrix} 0 & 1\\ 0 & -0.1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0\\ 0.1 \end{bmatrix}.$$
(35)

Let us consider the sampled-data system (29) with matrices

$$A = \begin{bmatrix} 0 & 1\\ 0 & -0.1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0\\ 0.1 \end{bmatrix}.$$
(35)

• Fixed control law:
$$K_1 = \begin{bmatrix} -3.75 & -11.5 \end{bmatrix}$$
 and $K_2 = 0$.

	d_{R}	System (35)
		T_{max}
Bropood rogult	4	1.7279
Froposed result	6	1.7252
(Fridman et al., 2004)	-	0.869
(Naghshtabrizi et al., 2008)	-	1.113
(Fridman, 2010)	-	1.695
(Liu et al., 2010)	-	1.695
(Seuret, 2012)	-	1.723
(Sourct and Poot 2012)	3	1.7294
(Seurer and Feer, 2013)	5	1.7294

Let us consider the sampled-data system (29) with matrices

$$A = \begin{bmatrix} 0 & 1\\ 0 & -0.1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0\\ 0.1 \end{bmatrix}.$$
(35)

• Designed control law for some given $[T_{min}, T_{max}]$.

T_{min}	T_{max}	K_1			K_2	d_R
0.001	10	-0.1145	-0.8088		-0.0024	2
0.001	50	-0.0202	-0.1560	ĺ	-0.0030	2
0.001	10	-0.0310	-0.3222		0	3
0.001	50	-0.0259	-0.2726	ĺ	0	4

• Let us consider the following sampled-data system (29) with matrices

$$A = \begin{bmatrix} 0 & 1 \\ -2 & 0.1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
(36)

• Let
$$K_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 and $K_2 = 0$.

	<i>d</i> -	System (36)		
	u_R	T_{min}	T_{max}	
Bronood rooult	4	0.4	1.6316	
Froposed result	6	0.4	1.8270	
(Seuret, 2012)	-	0.400	1.251	
(Sourct and Poot 2012)	3	0.4	1.820	
(Seurer and Feel, 2013)	5	0.4	1.828	

Let us consider the uncertain sampled-data system (29) with matrices

$$A \in \mathcal{A} = \mathbf{co} \left\{ \begin{bmatrix} 0 & 1\\ 0 & -0.1 \end{bmatrix}, \delta \begin{bmatrix} 0 & 1\\ 0 & -0.1 \end{bmatrix} \right\} \text{ and } B = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$
(37)

ETH zürich

where δ is a positive parameter.

δ	T_{min}	T_{max}	K_1	K_2	d_R
5	0.001	10	$\begin{bmatrix} -0.0757 & -0.7306 \end{bmatrix}$	-0.0006	2
5	0.001	20	$\begin{bmatrix} -0.0411 & -0.3835 \end{bmatrix}$	-0.0022	2
20	0.001	10	-0.0578 -0.5560	-0.0025	2
20	0.001	20	$\begin{bmatrix} -0.0339 & -0.3121 \end{bmatrix}$	-0.0019	2

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	00000000000000000	00000	0000000	000
	D-BSSE Department of Biosystems Science and Engineering			

Concluding remarks

Concluding statements

- Robust stability under minimum, maximum and range dwell-time
- Robust stabilization possible
- Can be extended to homogeneous Lyapunov functions easily

Possible extensions

- · Switched systems, time-dependent hybrid systems
- Dynamic output feedback?
- Nonlinear systems

Corentin Briat

Introduction	Stability of impulsive systems	Stabilization of impulsive systems	Sampled-data systems	Conclusion
000	000000000000000000000000000000000000000	00000	000000	000
D-F Det Sci	ISSE wartment of Biosystems ande and Engineering			

ETH zürich

Thank you for your Attention