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Definition of switched systems

Definition :
Switched systems are the association of a finite set of dynamical systems
(modes) and a switching law σ(·) that indicates at each time which mode is
active.

Let IN = NN = {1; · · · ; N}, where N ∈ N is the number of modes.

Continuous-time

ẋ(t) = fσ(t)(x(t), u(t), t), ∀t ∈ R+,

where
• x(t) ∈ Rn is the state,
• u(t) the input.

• σ the switching law

σ : R→ IN .

Discrete-time

xk+1 = fσ(k)(xk , uk , k), ∀k ∈ N,

where
• xk ∈ Rn is the state,
• uk the input.

• σ the switching law

σ : N→ IN .
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Assumptions for the switching law

Several assumptions :

• σ(·) is arbitrary.
σ(·) is seen as a perturbation. The results should be true for all the switching
laws. Useful when the generation of the signal k 7→ σ(k) could be very
difficult to take into account.

• σ(·) is state dependent.
Here we have σ(k) = g(xk ).

• σ(·) is time dependent or has time constraints.
This is for instance the case when σ(·) is periodic, or has a time constraint
such a dwell time.

• σ(·) is a control input with or without constraints.
The issue here is to design the switching law σ(·).

M. Jungers 6 / 79



Particular case of hybrid systems

Hybrid system :
Heterogenous interaction between continuous and discrete dynamics :{

If z(t) ∈ C, ż(t) ∈ F (z(t), u(t)), (flow map)

If z(t) ∈ D, z(t+) ∈ G(z(t), u(t)), (jump map).

For continuous-time switched systems, we have :

C = D = Rn × IN , z(t) =

(
x(t)
σ(t)

)
∈ Rn+1,

F (z(t)) =

(
{fi (x(t), u(t))}i∈IN

0

)
; G(z(t)) =

(
x(t)
IN

)
.
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Illustrations
Saturated systems :
Let x(t) ∈ R2, with

ẋ(t) =

[
−1 1
0 −5

]
x(t) +

[
0.2
1

]
sat
([

1 −1
]

x(t)
)
.

with

sat(u) =


−1 if u < −1,
+1 if u > +1,
u if − 1 ≤ u ≤ +1.

y

ϕ(y) Ωy

y

ϕ(y) Ωy

1
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Illustrations

Boost converter :

C
dvo

dt
= (2− σ)iL −

1
R

vo, σ(t) ∈ {1; 2}

L
diL
dt

= vin − (2− σ)vo.
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Illustrations

Multiagent systems :
The new position of each agent i is a mean of
the position of agents, who are in the current
neighborhood (depending on time k ). Existence
of a consensus limk→+∞ x (i)

k = x∗ ?
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Illustrations

Switching controllers :

System

Controller 1

Controller N

...

Switched law

M. Jungers 11 / 79



Illustrations
Sliding modes :

Let x(t) ∈ R, with

ẋ(t) = −sign(x(t)) =


−1 if x(t) > 0,
+1 if x(t) < 0,
undefined if x(t)=0.
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Difficulties : Well-posed solution? Possible presence of Zeno phenomenon.
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Typical examples of embedded systems
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Last example : task scheduling
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Framework of the talk

Consider discrete-time switched systems :
• Avoid well-posedness of solutions (different kinds of solutions : Filipov

solution etc),
• Avoid Zeno phenomenon,
• Simplicity and richness of this class of systems.

Assume also for this talk :
• The modes are time invariant,
• The modes are autonomous (or already in their closed-loop form).

To sum up, we consider in the following (with distinct assumptions on σ(·)) :

xk+1 = Aσ(k)xk .
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Outline of the tutorial

What is a switched system?

About stability
Definitions
Stability of time invariant discrete-time linear systems

Sufficient conditions for stability

Stabilization without constraints

Stabilization constrained by a language
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Definitions relative to stability

The definitions are relative to an equilibrium point. Here we assume that the
equilibrium point is the origin x∗ = 0. In addition, the following definitions are
valid for linear switched systems, for which there does not exist finite time
escape.

Global asymptotic stability (GAS) : ensure that, for a given σ(·) :

lim
k 7→+∞

xk = 0, ∀x0 ∈ Rn. (1)

Global uniform asymptotic stability (GUAS) : ensure that

lim
k 7→+∞

xk = 0, ∀x0 ∈ Rn, ∀σ : N 7→ IN . (2)

The term uniform means uniformly in σ(·).
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Geometric approach

We recall stability results for the time invariant discrete-time linear system :

xk+1 = Axk , ∀k ∈ N. (3)

The solution is given by
xk = Ak x0, ∀k ∈ N.

Theorem
The system (3) is GAS if and only if

ρ(A) = max
i∈In
‖λi (A)‖ < 1. (4)
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Lyapunov function approach

Theorem
Consider the system xk+1 = Axk and V : Rn → R, such that
• V (x)→ +∞ as ‖x‖ → +∞. (radially unbounded).
• V (0) = 0 and V (x) > 0 if x 6= 0. (positive definite).
• V (Ax)− V (x) < 0, ∀x 6= 0. (decreasing)

Then the origin x∗ = 0 is GAS.

The function V is called a Lyapunov function and is an extended energy of the
system, which should decrease to zero along all trajectories.
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Converse theorem

Theorem
If the origin x∗ = 0 is GAS for the system xk+1 = Axk , then there exists a
Lyapunov function V (·).

In such a case, the difficulty is to obtain the expression of the Lyapunov function
V (·).
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Stability for linear systems with Lyapunov functions

Theorem : the following statements are equivalent :

1. The linear system xk+1 = Axk is GAS.

2. There is a quadratic Lyapunov function

V (x) = xT Px , (5)

where P is a positive definite matrix P > 0n such that the following Lyapunov
inequality (Linear Matrix Inequality LMI) is satisfied :

AT PA− P < 0. (6)

3. There is a quadratic Lyapunov function

V (x) = xT Px , (7)

where P is the positive definite matrix P > 0n associated with any Q > 0
such that the following Lyapunov equation is satisfied.

AT PA− P = −Q. (8)
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Sketch of proof
3)⇒ 2) . Trivial

AT PA− P = −Q < 0.
2)⇒ 1) If the inequality AT PA− P < 0 has a positive definite solution

P > 0n, then there exists sufficient small 1 > ε > 0 such that

AT PA− P < −εP < 0.

Then, by considering V (x) = xT Px , and xk 6= 0,

V (xk+1)− V (xk ) = xT
k (AT PA− P)xk < −εxT

k Pxk < 0,

which implies, with λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2, that

xT
k Pxk ≤ (1− ε)k V (x0); ‖xk‖2 ≤ λmax(P)

λmin(P)
‖x0‖2(1− ε)k .

1)⇒ 3) If the system xk+1 = Axk is GAS, then the Grammian associated
with the pair (Q,A), with any Q > 0 is well-defined (the sum
converges). ∑

k∈N

(
AT
)k

QAk ,

and is a solution of the Lyapunov equation. To end the proof, we
have only to prove that P > 0.
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Distinct frameworks

Discrete-time switched linear system :

xk+1 = Aσ(k)xk , (9)

with
• xk ∈ Rn the state,
• Ai invertible, i ∈ Nq = {1; · · · , q},
• σ : N→ Nq is the switching law.

Several frameworks depending on σ :

σ is a perturbation : stability analysis and robustness

A1 =

(
0.5 5
0 0.5

)
, and A2 =

(
0.5 0
10 0.5

)
are Schur, but

A1A2 =

(
50.25 2.5

5 0.25

)
is not Schur (λ(A1A2) = {50.49; 0.012}).

• Sufficient conditions for asymptotic stability. Switched Lyapunov function
(Daafouz et al. TAC 2002) ;

• Necessary and sufficient condition for asymptotic stability. Existence of a
polyhedral Lyapunov function (Molchanov & Pyatnitskiy SCL 1989 ; Blanchini
AUT 1995) ; Joint Spectral Radius (R.M. Jungers, Springer, 2009).
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Distinct frameworks

Discrete-time switched linear system :

xk+1 = Aσ(k)xk , (9)

with
• xk ∈ Rn the state,
• Ai invertible, i ∈ Nq = {1; · · · , q},
• σ : N→ Nq is the switching law.

Several frameworks depending on σ :

σ is a controlled input : stabilizability and stabilization.

A1 =

(
1.2 5
0 0.5

)
, and A2 =

(
0.5 0
0 1.4

)
are not Schur, but

A1A2 =

(
0.6 7
0 0.7

)
is Schur.

• Sufficient conditions for stabilizability. Lyapunov–Metzler inequalities
(Geromel & Colaneri IJC 2006) ;

• Necessary and sufficient condition for stabilizability. Geometric approach
(Fiacchini & Jungers, Automatica 2014) and comparison with other
approaches (Fiacchini, Girard, Jungers, TAC 2016).
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Distinct frameworks

Discrete-time switched linear system :

xk+1 = Aσ(k)xk , (9)

with
• xk ∈ Rn the state,
• Ai invertible, i ∈ Nq = {1; · · · , q},
• σ : N→ Nq is the switching law.

Several frameworks depending on σ :

σ is a controlled input with constraints.

A1 =

(
1.2 5
0 0.5

)
, and A2 =

(
0.5 0
0 1.4

)
are not Schur, but

A1A2A2 =

(
0.3 9.8
0 0.98

)
is Schur, with the constraint : mode 2 appears twice

when occuring.

• Large literature for specific classes of switching law.
• Language constrained switching law : CNS by geometrical approach

[Fiacchini, Jungers, Girard, ECC 2016].
• Language constrained switching law : CS by Lyapunov–Metlzer and LMIs

approach [Jungers, Girard, Fiacchini, CDC 2016, ADHS 2018].
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Outline of the talk

What is a switched system?

About stability

Sufficient conditions for stability
The joint spectral radius
The common Lyapunov function approach
Multiple Lyapunov functions

Stabilization without constraints

Stabilization constrained by a language
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Geometric approach : the joint spectral radius

The joint spectral radius of a set of matrices A = {A1, · · · ,AN}, denoted ρ(A) is
an extension of the radius of a matrix A (i.e. ρ(A)) and gives a necessary and
sufficient condition for the stability of the system (15) and solves P1. See [Theys
2005].

We define
ρ(A) = lim supp→+∞ρp(A),

where
ρp(A) = sup

Ai1
,Ai2

,··· ,Aip∈A

∥∥Ai1 Ai2 × · · · × Aip

∥∥ 1
p .

Theorem
The switched system (15) is GAS if and only if

ρ(A) < 1. (10)

Main difficulty : this is difficult in the generic case to practically compute the joint
spectral radius. Several approximations are provided in the literature.
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The common Lyapunov function approach

Theorem
If all the modes share a common Lyapunov function, then the switched system is
GUAS.

Theorem
If the switched system is GUAS, then all the modes share a common Lyapunov
function.

Remark : be careful, there is no assumption concerning the class of the
Lyapunov function. Especially, this Lyapunov function is not necessary on the
form V (x) = xT Px as it will be seen in the following. This existence result does
not help roughly speaking about how to find this Lyapunov function. In addition,
there exists a common Lyapunov function on the form V (x) = xT P(x)x , where
P(λx) = P(x), ∀λ 6= 0 (homogeneous of degree zero).
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The common Lyapunov function approach : sufficient conditions

The previous theorem suggests to look for a common quadratic Lyapunov
function in the class V (x) = xT Px .

Theorem
Consider the discrete-time linear switched system (15). If there exists a matrix
P ∈ Rn×n such that

P > 0n (11)

and
AT

i PAi − P < 0, ∀i ∈ I, (12)

then the system (15) admits the common quadratic Lyapunov function V (x) and
is GUAS.

Remark : the system (15) may be GUAS without feasible LMI (12).
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The common Lyapunov function approach : unfeasibility test

To complete the previous remark, we have the following theorem.

Theorem

If there exist positive definite matrices Ri ∈ Rn×n, Ri > 0n such that∑
i∈I

AiRiAT
i − Ri > 0n, (13)

then there does not exist P > 0n such that

AT
i PAi − P < 0, ∀i ∈ I, (14)

Proof : If there exist Ri (∈ I) such that Inequalities (13) hold, then for every
P > 00,

0 < Tr

[
P

(∑
i∈I

AiRiAT
i − Ri

)]
= Tr

[
Ri

(
AT

i PAi − P
)]
,

then there exists i0 ∈ I such that AT
i0 PAi0 − P > 0.
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Multiple Lyapunov functions

Definition : We consider functions of the form

V (σ(k), xk ) = Vσ(k)(xk ) = xT
k P(σ(k), xk )xk . (15)

Theorem [Daafouz, Riedinger, Iung, TAC 2002]
If there exist Pi , i ∈ IN such that Pi > 0 and

AT
i PjAi − Pi < 0, ∀(i, j) ∈ I2

N , (16)

then the discrete-time switched system (15) is GUAS.

Sketch of proof : By chosing i = σ(k) and j = σ(k + 1), we have
Vσ(k+1)(xk+1)− Vσ(k)(xk ) < 0, ∀xk 6= 0.
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Outline of the talk

What is a switched system?

About stability

Sufficient conditions for stability

Stabilization without constraints
Lyapunov–Metzler inequalities approach
Geometric approach
LMI approach
Periodic stabilizability

Stabilization constrained by a language
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Stabilization of linear discrete-time switched systems

The problem P3 is to design a switching law that stabilizes the system (15).

Assumption : Ai (∀i ∈ I) are not Schur.

This assumption is to avoid a trivial solution : if there exists i0 such that Ai0 is
Schur, then σ(k) = i0 globally asymptotically stabilizes the system.
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Min-switching strategy : Lyapunov-Metzler inequalities approach
Idea : « min-switching approach » (Wicks & DeCarlo ACC 1997, Liberzon 2003).
Set of Metzler matrices in discrete-time domain (stochastic matrices) :
The matrix Π ∈Md, whereMd is the particular Metzler matrices set :

Md =
{

Π ∈ RN×N , πij ≥ 0,
∑
`∈IN

π`i = 1, ∀(i, j) ∈ I2
N
}
.

Theorem [Geromel & Colaneri, IJC 2006]

If the Lyapunov-Metzler inequalities∑
j∈IN

πjiA′i PjAi − Pi < 0n, ∀i ∈ IN

with Pi = P′i > 0n, Π ∈Md hold then the switched system (9) is stabilized by the
switching law

σ(k) = g(xk ) ∈ arg min
i∈IN

x ′k Pixk . (17)

V min(x) = min
i∈IN

x ′Pix ; ⇒ V min(xk+1) ≤
∑
j∈IN

πjix ′k A′σ(k)PjAσ(k)xk < V min(xk ).
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Sketch of proof
Lyapunov function considered

Vmin :

{
Rn → R,
xk 7→ min

i∈I
xT

k Pixk ,
(18)

Notation : (P)p,i =
∑̀
∈I
π`iP`.

Elements of proof
• By post-multiplying by xk 6= 0 and pre-multiplying by x ′k ,

x ′k+1(P)p,ixk+1 − x ′k Pixk < 0 (19)

• the minimum scalar value of convex polytopes is reached on one of the
vertices

Vmin(xk+1) = min
j∈I

x ′k+1Pjxk+1 = min∑
j∈I λj =1
λj∈R+;

∑
j∈I

λjx ′k+1Pjxk+1. (20)

Each column of the Metzler matrix Π ∈M is in the unit simplex, then

Vmin(xk+1) ≤ x ′k+1(P)p,ixk+1. (21)

⇒ global asymptotic stability holds with

Vmin(xk+1)− Vmin(xk ) < 0, ∀xk 6= 0. (22)
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Example
Consider

A1 =

[
−1.1 0

1 0.4

]
, A2 =

[
0.2 0
0 1.3

]
, x0 =

(
−0.5
0.5

)
A solution to the Lyapunov–Metzler inequalities is given by

Π =

[
0.3 0.7
0.7 0.3

]
,P1 =

[
1.7097 0.3734
0.3734 0.4786

]
, P2 =

[
1.1978 0.6398
0.6398 1.3173

]
.

A′1(π11P1 + π21P2)A1 − P1 < 02

A′2(π12P1 + π22P2)A2 − P2 < 02.
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Sum up

Lyapunov-Metzler
Inequalities

Stabilizability
property
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Geometric tools

Definition
A C-set is a compact, convex set containing the origin in its interior.

A set Ω ⊆ Rn is a C∗-set if it is compact, star-convex with respect to the origin
and 0 ∈ int(Ω).

Notice a set is
• convex if ∀x0 ∈ Ω and ∀x ∈ Ω, then αx0 + (1− α)x ∈ Ω, ∀α ∈ [0, 1].
• star-convex if ∃x0 ∈ Ω, such that ∀x ∈ Ω, then
αx0 + (1− α)x ∈ Ω, ∀α ∈ [0, 1].

Definition
Minkowski function of a C∗-set Ω : ΨΩ(x) = min

α
{α ∈ R : x ∈ αΩ}.

• Any C-set is a C∗-set.
• Given a C∗-set Ω, we have that αΩ is a C∗-set and αΩ ⊆ Ω for all α ∈ [0, 1].
• ΨΩ(·) is : defined on Rn ; homogenous of degree one ; positive definite and

radially unbounded. But nonconvex in general !
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Geometric approach

Algorithm
Control λ-contractive C-set for the switched system (15).

• Initialization : given the C∗-set Ω ⊆ Rn, define
Ω0 = Ω and k = 0 ;

• Iteration for k ≥ 0 :

Ωi
k+1 = A−1

i Ωk , ∀i ∈ IN ,

Ωk+1 =
⋃

i∈IN

Ωi
k+1;

• Stop if Ω ⊆ int

 ⋃
j∈Nk+1

Ωj

 ; denote Ň = k + 1 and

Ω̌ =
⋃

j∈{1;···;Ň}
Ωj .
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Geometric approach

Geometrical interpretation :
• the set Ωi

k is the set of x that can be stirred in Ω in k steps by a switching
sequence beginning with i ∈ IN ;

• then Ωk is the set of points that can be driven in Ω in k steps ;
• and hence Ω̌ the set of those which can reach Ω in Ň or less steps, by an

adequate switching law.

Necessary and sufficient condition for stabilizability.

Theorem [Fiacchini, Jungers, Automatica 2014]
There exists a control Lyapunov function for the switched system if and only if
the Algorithm 1 ends with finite Ň.
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Example 1

Non-Schur switched system with N = n = 2.

A1 =

[
1.2 0
−1 0.8

]
, A2 =

[
−0.6 −2

0 −1.2

]
,
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Example 2

System with N = 4, n = 2 and

A1 =

[
1.5 0
0 −0.8

]
, A2 = 1.1 R( 2π

5 )

A3 = 1.05 R( 2π
5 − 1), A4 =

[
−1.2 0

1 1.3

]
.

The matrices Ai , with i ∈ N4, are not Schur. Notice : only one stable eigenvalue !
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Example 3
Switched system with

A1 =

[
0 −1.01
1 −1

]
, A2 =

[
0 −1.01
1 −0.5

]
.

The technique based on Lyapunov-Metzler inequalities has been numerically
checked (gridding) and it results not feasible.

Nevertheless...
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Example 4

Switched system with

A1 =

[
1.3 0
0 0.9

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, A2 =

[
1.4 0
0 0.8

]
,

for θ = 0 (left) and θ = π
5 (right).
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Sum up

Lyapunov-Metzler
Inequalities

Geometric
condition

Stabilizability
property
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CS for stabilization : Idea of LMI approach

Idea : based on particular sufficient conditions to ensure stabilizability.
• Pi = I ;
• Consider a fictitious switched system with augmented modes as follows.

Notation :
• I = IN : finite set of switching modes.
• I [M:K ] =

⋃K
k=M I

k: all the possible sequences of modes of length from M to K .

• K̄ =
∑K

k=1 qk : given K ∈ N, number of elements i ∈ I [1:K ].

• Given i = (i1, . . . , ik ) ∈ I [1:K ], Ai =
k∏

j=1

Aij = Aik · · ·Ai1 .

Property
The stabilizability of the system xk+1 = Aσ(k)xk with {Ai}i∈I is equivalent to the
one of the system

zk+1 = Aγ(k)zk with γ : N→ I [1:K ].

M. Jungers 44 / 79



CS for stabilization : LMI approach

Theorem [Fiacchini, Girard, Jungers, TAC 2016]

The switched system (9) is stabilizable if there exist K ∈ N and η ∈ RK̄ such that
η ≥ 0,

∑
i∈I[1:K ] ηi = 1 and ∑

i∈I[1:K ]

ηiAT
i Ai < I. (23)

Comments :
• The condition (23) ensures the exponential stabilization of a switched

system (9) ;
• Nevertheless neither the Euclidean norm xT x nor min

i∈I[1:K ]
xTAT

i Aix are Control

Lyapunov Functions ;
• The condition (23) is equivalent to the periodically stabilizability.
• The condition is just sufficient (except for particular cases), is it also

necessary? No !
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CS for stabilization : LMI approach

Idea : modify the later inequality to provide a control Lyapunov function :

Theorem [Fiacchini, Girard, Jungers, TAC 2016]

If there exists µ ∈ [0, 1) and η ∈ RK̄ such that η ≥ 0,
∑

i∈I[1:K ] ηi = 1 such that∑
i∈I[1:K ]

ηiAT
i Ai ≤ µ2I. (24)

The switching law given by

σkp+j−1 = ip,j , ∀j ∈ {1, . . . , l(ip)}. (25)

where {kp}p∈N with k0 = 0, and kp < kp+1 ≤ kp + K , for all p ∈ N and

ip = arg min
i∈I[1:K ]

(xT
kpλ
−l(i)AT

i Aixkp ), kp+1 = kp + l(ip), λ = µ2/K , (26)

with l(ip) length of ip, globally exponentially stabilizes the system and
V (x) = mini∈I[1:K ] (xTλ−l(i)AT

i Aix) is a Control Lyapunov function.
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Periodic stabilizability
A periodic switching law is given by σ(k + K ) = σ(k).

The stabilizability through periodic switching law, i.e. periodic stabilizability, is
formalized below.

Definition
The switched system is periodic stabilizable if there exist a periodic switching law
σ : N→ I, such that the system is stabilizable for all x ∈ Rn.

Notice that for stabilizability the switching function might be state-dependent,
hence a state feedback, whereas for having periodic stabilizability the switching
law must be independent on the state.

Is there an equivalence relation between periodic stabilizability and the LMI
condition? The answer is below.

Theorem
A stabilizing periodic switching law for the switched system exists if and only if
the LMI condition holds.
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Counterexample
Consider the three modes given by the matrices

A1 = AR(0), A2 = AR
(

2π
3

)
, A3 = AR

(
−2π

3

)
, with A =

[
a 0
0 a−1

]
and a = 0.6. The geometric condition holds with N = 1.

−2 −1 0 1 2
−2

−1

0

1

2

For every N and every Bi with i ∈ I, the related Ai is such that det(AT
i Ai ) = 1

and Tr(AT
i Ai ) ≥ 2.

Notice that, for all the matrices Q > 0 in R2×2 such that det(Q) = 1, then
Tr(Q) ≥ 2 and Tr(Q) = 2 if and only if Q = I.

Thus, for every subset K ⊆ I, we have that
∑
i∈K

ηiAT
i Ai < I, cannot hold, since

either Tr(AT
i Ai ) > 2 or AT

i Ai = I.
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Lyapunov-Metzler
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LMI
Condition
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Outline of the talk

What is a switched system?

About stability

Sufficient conditions for stability

Stabilization without constraints

Stabilization constrained by a language
Language constrained switching law
Geometric Necessary and Sufficient Condition for Recursive ECLF
Lyapunov-Metzler inequalities approach
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Language constrained switching law

Constraints : dwell time, modal constraints, ... σ belongs to a language specified
by a nondeterministic finite automaton.

Definition

A nondeterministic finite automaton is a tuple
A = (S,Σ, δ,S0) where :
• S is a finite set of p states : S = {ei}i∈Np ;
• Σ = NN is a finite alphabet (active mode) ;
• δ : S × Σ→ 2S is a set-valued transition map ;
• S0 ⊆ S is a subset of initial states.

e1 e3

e4

e2

e5

2

2

2

1 2

1

1

1

1

Notation : σ : N→ Σ belongs to the language of A, i.e. σ ∈ L(A), if there exists
sσ : N→ S such that sσ0 ∈ S0 and sσk+1 ∈ δ(sσk , σk ) for all k ∈ N.
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Additional tools
Definition

A transition is a triplet τ = (š, i, ŝ) ∈ S × Σ× S such that ŝ ∈ δ(š, i). A path of A
is a sequence of transitions p = {(š1, i1, ŝ1), (š2, i2, ŝ2), · · · } such that šk+1 = ŝk .
Pm(A) and P∞(A) are the sets of m-length and infinite paths.

š ŝ š1 ŝ1 = š2 ŝ2 = š3

i i1 i2

Definition
For a path p = {(š1, i1, ŝ1), · · · , (šm, im, ŝm)} ∈ Pm(A),
• w(p) = (i1, i2, · · · , im) ∈ Σm is a word, admissible of the language L(A) , and

we denote wj (p) = ij for j ∈ Nm (Aw(p) = Aim Aim−1 · · ·Ai1 ) ;

• π(p) = (š1, · · · , šm, ŝm) ∈ Sm+1 is the projection of the path over the set of
automaton states, and we denote πj (p) = šj with j ∈ Nm and πm+1(p) = ŝm.

• For two paths p1 ∈ Pm1 (A) and p2 ∈ Pm2 (A), if these paths are compatible,
(πl(p1)+1(p1) = π1(p2)), then we can define the concatenation of these paths
denoted p1 ◦ p2 ∈ Pm1+m2 (A).
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Examples of language constraints (i).

Automaton 1 : p = 1, A = ({e1},NN , δ, {e1}), where e1 ∈ δ(e1, i), ∀i ∈ NN .

Automaton 2 : p = N, A = ({e1, · · · , eN},NN , δ, {e1, · · · , eN}), where
{ei} = δ(ej , i), ∀(i, j) ∈ N2

N .

e1 e1 e2 e3

1, · · · ,N 1

3

2
2

31

31

2

FIGURE 1 – Automatons 1 with p = 1 (left) and 2 with p = N = 3 (right).
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Examples of language constraints (ii).

Definition
For an integer ∆ ∈ N∗, the set of the switching laws satisfying a dwell time at
least equal to ∆ is defined by

D∆ =
{
σ : N→ I; ∃{`q}q∈N, `q+1 − `q ≥ ∆;

σ(k) = σ(`q),∀`q ≤ k < `q+1;σ(`q) 6= σ(`q+1)
}
.

∆1 = 3; ∆2 = 1

e1

e2

e3

e4

1
2

1

1
1

2
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Language constraints (iii) : intersections.

∆1 = 3 :

e1

e2

e3

e4

1
2

1

1
1

2

+ ∆2 = 2 :

e1

e2

e3

2
1

2
2

1

=

E1

E5

E2

E3

E6

E4

1
2

1

1

2

1

2

2

1
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Language constraints (iv) : intersections.

e1

e2

e3

e4

1
2

1

1
1

2

+

e1

e2

e3

2
1

2
1

2

=

E1 E5 E7

E2

E3

E4

1

2

1

1

1

2

2

1

2
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Problem formulation

Definition
The system is globally exponentially stabilizable relatively to language L(A) if
there are c ≥ 0 and λ ∈ [0, 1) and, for all x ∈ Rn, there exists σ ∈ L(A), such
that : ‖xσk (x)‖ ≤ cλk‖x‖.

Problem :
Let us consider the system (9) and the automaton A defining the language
constraints for the switching laws. Determine a path p ∈ P∞(A) that generates
switching laws w(p) = σ ∈ L(A) verifying the language constraints and that
globally exponentially stabilizes the closed-loop system (9). p is assumed to
depend on the states of the system and automaton.
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Directed graph properties

Based on A : directed graph (digraph) G = (V, E) : with vertices V = S and
edges E = {(s, r) ∈ S2, ∃` ∈ Σ, r ∈ δ(s, `)}.

Definition

Let (s, r) ∈ V2. s and r are strongly
connected if s = r or if there exist a
directed path from s to r and a
directed path from r to s.→
equivalence relation on the nodes.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

Definition

Let G = (V, E) be a finite digraph and C ⊂ V. C is strongly connected if for every
pair of vertices (s, r) ∈ C2, s and r are strongly connected. A strongly connected
component (SCC) of the digraph G is a maximally strongly connected set of
vertices. This is an equivalence class for the relation of strongly connectivity. A
SCC C is called trivial if C = {s} and (s, s) 6∈ E .
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Condensation of the digraph G

Definition
The condensation of G is a digraph
GSCC = (VSCC, ESCC). VSCC one vertex per
SCC. ESCC links between the SCCs that is
a partial order relation between the SCCs
as Ci � Cj if there exists a path between
one vertex in Ci and a vertex in Cj .

Proposition
Let G be the digraph associated with the
automaton A and its condensation GSCC.
Every trajectory of the constrained
switched system has a projection on the
automaton state that ultimately enters and
does not exit a nontrivial SCC.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

⇓

C1

C4

C2 C3

C1 � C4 � C2 � C3.
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Reformulation on a strongly connected component

Definition
Let C be a nontrivial SCC induced by the automaton A. We define the set of
finite paths of m transitions restricted to C, Pm(A, C) such that

Pm(A, C) = {p ∈ Pm(A), πj (p) ∈ C, ∀j ∈ Nm+1}. (27)

Definition
Let us consider a nontrivial SCC C of the digraph G induced by the automaton A.
A nonnegative continuous function V : Rn × C → R+ is an exponentially
stabilizing control Lyapunov function (ECLF) of the system (9) in C if for any
(x , r) ∈ Rn × C, we have

1. κ1‖x‖2 ≤ V (x , r) ≤ κ2‖x‖2 for some finite positive constants κ1 and κ2 ;

2. There exists pν : Rn × C → P1(A, C), such that π1(pν(x , r)) = r , and
V (Aw(pν (x,r))x , π2(pν(x , r)))− V (x , r) ≤ −κ3‖x‖2, for a constant κ3 > 0.
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Main results

Solution in two steps :
• Check if there exists at least one nontrivial SCC for which a ECLF exists ;
• Check if at least one initial condition can reach a SCC that admits a ECLF.

If d is the number of SCCs, let be Q = {i ∈ Nd , Ci admits an ECLF}, then

S̃0 = S0
⋂( ⋃

j∈Q

⋃
i∈Nd ,
Ci�Cj

Ci

)
(28)

is the set of initial automaton states that can be chosen to reach a SCC that
admits an ECLF. If S̃0 6= ∅, then Problem 1 admits a solution.

Extensions :
• Geometric approach : [Fiacchini, Jungers, Girard, Automatica 2018] ;
• Lyapunov–Metzler inequalities : [Jungers, Girard, Fiacchini, CDC 2016] ;
• LMI approach : [Jungers, Girard, Fiacchini, ADHS 2018] ;
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Geometric Necessary and Sufficient Condition for Recursive
ECLF

Definition
The automaton trajectory rσ : N→ S is recurrent in s ∈ S under the switching
sequence σ ∈ L(A) if there exist N ∈ N and a sequence lk : N→ N such that
l1 = 0 and rσlk = s, and 1 ≤ lk+1 − lk ≤ N, ∀k ∈ N.

Definition

The function V : Rn × R → R+ is a recurrent ECLF in R ⊆ S if it is an ECLF in R
under a control policy ν such that ν ∈ L(A) and it generates trajectories
recurrent in a state s ∈ R.

Objective : we will be searching for contractive C∗-sets such that the related
gauge functions are recurrent ECLF for the switched systems subject to the
language constraints induced by A.
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Sets and algorithm

For every set Ω ⊆ Rn and state s ∈ S, define :
• the one-step operator for every mode i ∈ I

as

Qs
i (Ω) = {(x , r) ∈ Rn × S : Aix ∈ Ω, s ∈ δ(r , i)}.

• the one-step operator as :

Qs(Ω) =
⋃
i∈I

Qs
i (Ω) =

⋃
i∈I

⋃
r∈γ(s,i)

(A−1
i Ω× r).

where γ(s, i) = {r ∈ S : s ∈ δ(r , i)} ;

a c

d

b

e

2

2

2

1 2

1

1

1

1

A1 =

[
1.2 0
0 0.5

]
,A2 = 1.1 R(π/3),

-2 0 2
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0

2

-2 0 2 4

-2

0

2

-2 0 2
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Sets and algorithm
Computation of a contractive C∗-set for the switched system recurrent in s.

Algorithm
• Initialization : given the C∗-set
Ω0 ⊆ Rn and a state s ∈ S, define
Λs

0 = Ω0 × s and k = 0 ;
• Iteration for k ≥ 0 :

Λs
k+1 =

⋃
(Ω×r)⊆Λs

k

Qr (Ω),

Ωs,s
k+1 = {x ∈ Rn : (x , s) ∈ Λs

k+1},

• Stop if Ω0 ⊆ int
( ⋃

j∈Nk+1

Ωs,s
j

)
; denote

Ns = k + 1 and Ωs =
⋃

j∈NNs

Ωs,s
j .

• For every Ω ⊆ Rn and s ∈ S :

Qs(Ω) =
⋃
i∈I

Qs
i (Ω) =

⋃
i∈I

⋃
r∈γ(s,i)

(A−1
i Ω×r).

• Every set Λs
j have the form

Λs
j =

⋃
r∈S

(
Ωr,s

j × r
)
, ∀j ∈ N,

with Ωr,s possibly empty, with

Ωr,s
j = {x ∈ Rn : (x , r) ∈ Λs

j },
Ωr,s =

⋃
j∈NNs

Ωr,s
j

-2 0 2 4

-2

0

2

-2 0 2 4

-2

0

2

-2 0 2 4

-2

0

2

-2 0 2

-2

0

2

-2 0 2 4

-2

0

2

M. Jungers 64 / 79



Sets and algorithm
Computation of a contractive C∗-set for the switched system recurrent in s.

Algorithm
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(Counter)-Example

We take the Example 17 in the paper [F., Girard, Jungers, TAC16] to consider the
relation with periodic stabilizability.

• The matrices are

A1 = AR(0), A2 = AR
(

2π
3

)
, A3 = AR

(
−2π

3

)
,

where A =

[
a 0
0 a−1

]
with a = 0.6 and

R(θ) rotation matrix.
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(Counter)-Example

We take the Example 17 in the paper [F., Girard, Jungers, TAC16] to consider the
relation with periodic stabilizability.

• The matrices are

A1 = AR(0), A2 = AR
(

2π
3

)
, A3 = AR

(
−2π

3

)
,

where A =

[
a 0
0 a−1

]
with a = 0.6 and

R(θ) rotation matrix.

• No constraints on the mode sequences.
• The system is stabilizable but no periodic

(then open-loop) switching law exists that
stabilizes the system.

a b

c

2

1

3
1

2

3

2

3

1

M. Jungers 65 / 79



(Counter)-Example
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• The system is stabilizable but no periodic

(then open-loop) switching law exists that
stabilizes the system.
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Results :
• The system is stabilizable through a recurrent Laypunov function : then

recurrent ECLF are strictly less conservative than periodic
(state-independent) once.
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Example 3

System with A1 =

[
1.2 0
0 0.5

]
, A2 = 1.1 R(π/3), and

stop for Ns = 6.
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Example 3

System with A1 =

[
1.2 0
0 0.5

]
, A2 = 1.1 R(π/3), and

stop for Ns = 6.
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Lyapunov-Metzler inequalities
Theorem

Let be C = {c1, · · · , ch} a nontrivial SCC induced by the automaton A. If there
exist a stochastic matrix, admissible with the SCC C, that is Π ∈ RNh×h with
Π′ ∈Mh×Nh and h symmetric positive definite matrices Mi , i ∈ Nh, such that the
h bilinear matrix inequalities

∀j ∈ Nh, Mj >
∑

(i,`)∈Nh×Σ
ci∈δ(cj ,`)∩C

πi+(`−1)h,jA
′
`MiA`,

are satisfied, then C admits an ECLF on the form

Vmin :


C × Rn −→ R+,
(cj , x) 7−→ min

(i,`)∈Nh×Σ
ci∈δ(cj ,`)∩C

V (ci ,A`x), V :

{
C × Rn −→ R+,
(ci , x) 7−→ x ′Mix .

Moreover, after an (arbitrary) prefix allowing to reach in finite time an automaton
state ci0 ∈ C (i0 ∈ Nh) from s0 ∈ S̃0, apply

(sk+1, σ(k)) = νC(xk , sk ) ∈ arg min
(i,`)∈Nh×Σ
ci∈δ(sk ,`)

x ′k A′`MiA`xk . (29)
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Links with unconstrained case
Automaton 1 : p = 1, A = ({e1},NN , δ, {e1}), where e1 ∈ δ(e1, i), ∀i ∈ NN . We
have the inequality from [Lemma 1, Geromel & Colaneri, IJC 2006]

M1 >
∑
`∈NN

π`,1A′`M1A`. (30)

Automaton 2 : p = N, A = ({e1, · · · , eN},NN , δ, {e1, · · · , eN}), where
{ei} = δ(ej , i), ∀(i, j) ∈ N2

N .

∀j ∈ NN , Mj >
∑
`∈Nh

π`+(`−1)q,jA′`M`A`. (31)

By introducing Pi = A′i MiAi , ∀i ∈ NN , it yields the Lyapunov-Metzler inequalities

Pj = A′j MjAj > A′j (
∑
`∈Nq

π̃`,jP`)Aj , ∀j ∈ NN . (32)

e1 e1 e2 e3

1, · · · ,N 1

3

2
2

31

31

2

FIGURE 2 – Automatons 1 with p = 1 (left) and 2 with p = N = 3 (right).
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Illustration : n = 2 ; N = 3 modes ; p = 6

[
A1 A2 A3

]
=

[
0.9 0 0.6 0 1.2 1
0 0.7 0 1/0.6 0 0.8

]
, x0 =

(
1
−1

)
.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

2

1

3

2

2

1

1

3

2

1

3

2

• S0 = {e1, e2, e4} ;
• p = 6 states ;
• d = 4 SCCs ;

C1 = {e1} is a trivial SCC.
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Illustration : n = 2 ; N = 3 modes ; p = 6

[
A1 A2 A3

]
=

[
0.9 0 0.6 0 1.2 1
0 0.7 0 1/0.6 0 0.8

]
, x0 =

(
1
−1

)
.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

2

1

3

2

2

1

1

3

2

1

3

2

• S0 = {e1, e2, e4} ;
• p = 6 states ;
• d = 4 SCCs ;

C2 = {e5, e6} is a nontrivial SCC. Inequalities (18) admit (at least) a solution.

M5 =

[
0.0407 0.1665
0.1665 2.4735

]
; M6 =

[
0.0167 0.1668
0.1668 6.5058

]
;

M5 > 0.4A′1M6A1 + 0.6A′3M5A3,
M6 > 0.8A′2M5A2 + 0.2A′3M6A3.
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Illustration : n = 2 ; N = 3 modes ; p = 6

[
A1 A2 A3

]
=

[
0.9 0 0.6 0 1.2 1
0 0.7 0 1/0.6 0 0.8

]
, x0 =

(
1
−1

)
.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

2

1

3

2

2

1

1

3

2

1

3

2

• S0 = {e1, e2, e4} ;
• p = 6 states ;
• d = 4 SCCs ;

C3 = {e4} is a nontrivial SCC. A2 being unstable, Inequality (18) associated with
C3 cannot admit a solution.
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Illustration : n = 2 ; N = 3 modes ; p = 6

[
A1 A2 A3

]
=

[
0.9 0 0.6 0 1.2 1
0 0.7 0 1/0.6 0 0.8

]
, x0 =

(
1
−1

)
.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

2

1

3

2

2

1

1

3

2

1

3

2

• S0 = {e1, e2, e4} ;
• p = 6 states ;
• d = 4 SCCs ;

C4 = {e2, e3} is a nontrivial SCC. The only possible cycle is a periodic one and
A2A3 is not stable. Inequalities (18) associated with C4 cannot admit a solution.
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Illustration

Prefix of the stabilizing policy : S0⋂ (C2 ∪ C4 ∪ C1) = {e1, e2}, which is not empty.
We select e1 ∈ S̃0 and e6 ∈ C2. The Dijkstra path leads to K = 3 and

e1
σ(0)=1−−−−→ e3

σ(1)=2−−−−→ e5
σ(2)=1−−−−→ e6.

Min-switching stabilizing policy : For k ≥ K , apply the min-switching
strategy (29).

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

1

2

Time k

* x
k(1

), 
o 

x k(2
)

0 5 10 15 20 25 30

1

2

3

4

5

6

Time k

s k

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

Time k

m
(k

)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Time k

V k

The vertical red line split in time the Dijkstra path and the application of
min-switching strategy. (left) : Trajectories k 7→ xk and k 7→ sk . (right) : Functions
k 7→ σ(k), for k ∈ N and k 7→ Vk , for k ≥ K + 1.
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Language constrained sufficient condition for stabilizability with
LMI conditions

Definition
Let be C a nontrivial SCC of the automaton A, containing h = |C| automaton
states, denoted C = {c1, · · · , ch}. For given h positive integers Ni ∈ N, (i ∈ Nh) ;
let us define P i,Ni (A, C) as the set of paths starting from the state automaton ci ,
admissible to the language A remaining in the SCC C of length less than or
equal to Ni , that is

P i,Ni (A, C) =
⋃

j∈NNi

{p ∈ Pj (A, C), π1(p) = ci} (33)

and N i the number of paths in P i,Ni (A, C).
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Modified automaton

c1 c2 c32
1

1

2

2 1

c1 c2 c3

2, 22,
12,

222,
212,
122,
112

1, 21, 12, 11,
221, 212, 211,
121, 122, 112

1, 21, 221, 121

2, 21,
22

2, 22

21

12, 122, 1222, 1212

1, 12, 121,
122, 1221,
1212, 1211,
1222

121,
1221
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Language constrained sufficient condition for stabilizability

Theorem [Jungers, Girard, Fiacchini, ADHS 2018]

If there exist h vectors ηi ∈ RN i (i ∈ Nh), such that ηi ≥ 0 and
∑

p∈P i,Ni
(A,C)

ηi,p = 1

and finally such that the h Linear Matrix Inequalities (LMI) are satisfied.∑
p∈P i,Ni

(A,C)

ηi,pAT
w(p)Aw(p) < In, i ∈ Nh, (34)

then the system (9) is exponentially stabilizable with a switching law admissible
to the language L(C). �
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Language constrained sufficient condition for stabilizability
Algorithm designing p∗

Let us define iteratively as follows a sequence of indexes of automaton states
{ij}j∈N ∈ (Nh)N and a sequence of instants {kj}j∈N ∈ N, with kj < kj+1, j ∈ N. The
algorithm to build p∗ is as follows :
Initialization : Choose k0 = 0, arbitrarily i0 ∈ Nh, x0 ∈ Rn and finally p∗ = ∅.

Iteration j : Select p̃ such that

p̃ ∈ arg min
p∈P ij ,Nij

(A,C)
xT

kj A
T
w(p)Aw(p)xkj , (35)

and define ij+1 as the unique value in Nh such that cij+1 is the last
automaton state of p̃ :

πl(p̃)+1(p̃) = cij+1 , (36)

and kj+1 = kj + l(p̃). Build p∗k+1 by p∗k ◦ p̃, because the definition
of ij+1 by equation (36) ensures the compatibility of the paths and
allows the concatenation. The state is then given by

xkj +z = Awz (p̃)xkj +z−1, z ∈ {1, · · · , kj+1 − kj}, (37)

and in closed form
xkj+1 = Aw(p̃)xkj . (38)
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Links with unconstrained case

Automaton : p = 1, A = ({e1},NN , δ, {e1}), where e1 ∈ δ(e1, i), ∀i ∈ NN .
We recover only one LMI :

∑
i∈I[1:K ]

ηiAT
i Ai < I.

e1 1, · · · ,N

FIGURE 3 – Automaton 1 with p = 1
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Links with the periodically stabilization

Definition

The system (9) is periodic stabilizable with the language constraint L(A) if there
exist an automaton state s ∈ S0 (or ultimately periodic stabilizable if there exists
a reachable automaton state s ∈ S from S0) and a cyclic path pper ∈ Pm(A) with
π1(pper) = s such that Aw(pper) is Schur.

A cyclic path belongs to a SCC. Only a SCC C of the automaton A and a
periodic stabilizability restricted to this SCC C are considered.

Theorem

The system (9) is periodic stabilizable on a SCC C of A if and only if there exist
h = |C| natural integers Ni , (i ∈ Nh) and vectors ηi in the simplex of dimensions
N i , such that LMIs (34) are satisfied.
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Illustration

Let us consider the switched system (9) with N = 3 modes, x0 =
(

2 −1
)T

and [
A1 A2 A3

]
=

[
1.3 0.8 0.6 0 1.1 0
0 0.5 −0.4 −1/0.6 0 −0.9

]
.

The automaton A defining the constrained language is the one in Figure 4, with
all the automaton states as initial ones : S0 = {e1, e2}. We select the automaton
state e1 as the initial one in the simulation.
The inequalities (34) are feasible with N1 = 3, and N2 = 4, leading to the
following number of terms in the LMIs : N1 = 48 and N2 = 192.

e2e1

1, 3
3

2, 3
3

FIGURE 4 – Automaton related to the numerical example.

The constant mode 3 is admissible, roughly speaking there exists (at least) a
path p ∈ P∞(A) such that wk (p) = 3, but the matrix A3 is not Schur.
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Illustration
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Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 1, e2), (e2, 2, e1)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 3, e2), (e2, 2, e1), (e1, 1, e2)}
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Illustration
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Solution :
p̃ ∈ arg min

p∈P2,N2
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e2, 2, e1), (e1, 3, e2), (e2, 2, e1), (e1, 1, e2)}
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Solution :
p̃ ∈ arg min

p∈P2,N2
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e2, 2, e1), (e1, 3, e1), (e1, 1, e2), (e2, 2, e1)}
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Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 3, e1), (e1, 1, e2), (e2, 2, e1)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 3, e2), (e2, 2, e1)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 3, e2), (e2, 2, e1)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :
p̃ ∈ arg min

p∈P1,N1
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e1, 3, e2), (e2, 2, e1), (e1, 1, e2)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :
p̃ ∈ arg min

p∈P2,N2
(A,C)

xTAT
w(p)Aw(p)x ,

Choix : p̃ = {(e2, 2, e1), (e1, 3, e1), (e1, 1, e2), (e2, 2, e1)}

M. Jungers 78 / 79



Illustration

0 5 10 15 20 25
0.5

1

1.5

2

2.5

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Solution :

Choix : p̃ = {(e1, 3, e2), (e2, 2, e1), (e1, 1, e2)}
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Conclusion

Questions?

Thank you very much for your attention !
Marc.Jungers@univ-lorraine.fr
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