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Definition of switched systems

Definition :

Switched systems are the association of a finite set of dynamical systems
(modes) and a switching law &(+) that indicates at each time which mode is

active.

Let Zy = Ny = {1;---; N}, where N € N is the number of modes.

Continuous-time

X() = forn (x(1), u(t), 1),
where
e x(t) € R" is the state,
e u(t) the input.

e ¢ the switching law

o: R — ZIn.

vt e R,

Discrete-time
Xer1 = oy (Xk, Uk, K), VK EN,

where
e X, € R" is the state,
e U, the input.
e ¢ the switching law

J:N—)ZN.

G
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Assumptions for the switching law

Several assumptions :

e o(-) is arbitrary.
o(-) is seen as a perturbation. The results should be true for all the switching
laws. Useful when the generation of the signal k — o (k) could be very
difficult to take into account.

e o(-) is state dependent.
Here we have o(k) = g(x«).

e o(-) is time dependent or has time constraints.
This is for instance the case when o(-) is periodic, or has a time constraint
such a dwell time.

e o(-) is a control input with or without constraints.
The issue here is to design the switching law o (-).

G
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Particular case of hybrid systems

Hybrid system :

Heterogenous interaction between continuous and discrete dynamics :

Ifz(t) e C, Zz(t) € F(z(t), u(t)), (flow map)
{ If z(t) € D, z(t*) € G(z(t), u(t)), (jump map).

For continuous-time switched systems, we have :

C=D=R"xIn, z(t)= ( Zgg ) e R™,

Fratn = (06O ) ey - (40,

G
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[llustrations

Saturated systems :
Let x(t) € R?, with

X(t) = [ o }x(t)Jr [ 02 }Sat([ 11 ]x(1).
with
—lifu< -1,
sat(u) = ¢ +1ifu> 41,
uif —1 <u<+1.
©(y) Qy ©(y) Lﬁy
Y Y
Ran
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[llustrations

Boost converter :

dvo o1 ,
cF 2-0)i—pgvo,  o(t)€{1:2}
dij
Ld—; = Vo—(2-0)Vo.
L V,
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lllustrations
Multiagent systems :
The new position of each agent i is a mean of @
the position of agents, who are in the current @
neighborhood (depending on time k). Existence
of a consensus lim_, o0 X\ = x* ? b

-04] -04]
L]
-os| -0s|
L]
-0g| -0s| °

I8 s w4 w2 0 02 o0& 08 08 1 o8 08 o2& o2 o o0z o0& 06 08 1

X1 = A1 Xk X1 = A2Xk
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Switching controllers :

G

[llustrations

Controller 1

Switched law

System

Controller N
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[llustrations

Sliding modes :

Let x(t) € R, with z<0
—1if x(t) > 0,

x(t) = —sign(x(t)) = ¢ +1ifx(t) <0,
undefined if x(t)=0. z>0

Difficulties : Well-posed solution ? Possible presence of Zeno phenomenon.
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Typical examples of embedded systems

RAN
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Last example : task scheduling

[[]]] RN
M1 ] ]

[T TTI [T1
M2
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M3 ||
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Framework of the talk

Consider discrete-time switched systems :

¢ Avoid well-posedness of solutions (different kinds of solutions : Filipov
solution etc),

¢ Avoid Zeno phenomenon,
e Simplicity and richness of this class of systems.

Assume also for this talk :
e The modes are time invariant,
e The modes are autonomous (or already in their closed-loop form).

To sum up, we consider in the following (with distinct assumptions on o(-)) :
X1 = Ao (k) Xk- J

R
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Outline of the tutorial

About stability
Definitions
Stability of time invariant discrete-time linear systems
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Definitions relative to stability

The definitions are relative to an equilibrium point. Here we assume that the
equilibrium point is the origin x* = 0. In addition, the following definitions are
valid for linear switched systems, for which there does not exist finite time
escape.

Global asymptotic stability (GAS) : ensure that, for a given o(-) :

lim xx =0, Vxo € R". (1)

ki—+oo

Global uniform asymptotic stability (GUAS) : ensure that

lim xx = 07 VXo € Rn, Vo : N — In. (2)

ki—+o0

The term uniform means uniformly in o(-).

G
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Geometric approach

We recall stability results for the time invariant discrete-time linear system :
X1 = Axk, Vk e N. (3)

The solution is given by
Xk = AkXo, Vk € N.

The system (3) is GAS if and only if

p(A) = max|[A{A)[I< 1. (4)

QA
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Lyapunov function approach

Consider the system xx.1 = Axx and V : R” — R, such that
e V(x) = 400 as || x|| = +oo. (radially unbounded).

e V(0) =0 and V(x) > 0 if x # 0. (positive definite).

e V(Ax) — V(x) <0, Vx # 0. (decreasing)

Then the origin x* = 0 is GAS.

The function V is called a Lyapunov function and is an extended energy of the
system, which should decrease to zero along all trajectories.

QR
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Converse theorem

If the origin x* = 0 is GAS for the system xx1 = Axk, then there exists a
Lyapunov function V(-).

In such a case, the difficulty is to obtain the expression of the Lyapunov function

V().

€T
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Stability for linear systems with Lyapunov functions

Theorem : the following statements are equivalent :
1. The linear system xi,1 = Axy is GAS.
2. There is a quadratic Lyapunov function

V(x) = x"Px, (5)

where P is a positive definite matrix P > 0, such that the following Lyapunov
inequality (Linear Matrix Inequality LMI) is satisfied :

ATPA— P <O. (6)
3. There is a quadratic Lyapunov function
V(x) = x" Px, @)

where P is the positive definite matrix P > 0, associated with any Q > 0
such that the following Lyapunov equation is satisfied.

ATPA—P=-qQ. (8)

A
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3)=2)

2)=1)

Sketch of proof

. Trivial
ATPA-P=-Q<0.

If the inequality AT PA — P < 0 has a positive definite solution
P > 05, then there exists sufficient small 1 > ¢ > 0 such that

ATPA— P < —cP <0.
Then, by considering V(x) = xTPx, and xi # 0,

V(Xks1) — V(xk) = X{ (ATPA — P)x, < —ex{ Pxx < 0,
which implies, with Awia(P)[|x[|? < x7 Px < Amax(P)||x||?, that
Amax (P)
)\min(P)
If the system xx11 = Axx is GAS, then the Grammian associated
with the pair (Q, A), with any Q > 0 is well-defined (the sum

converges). .
3 (AT) QA"
keN

and is a solution of the Lyapunov equation. To end the proof, we
have only to prove that P > 0.

X Pxie < (1 =) V(xo)  x® < I%olI*(1 — €)*.

A
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Distinct frameworks

Discrete-time switched linear system :  with

e xx € R" the state,

e Ajinvertible, i € Ng = {1;--- ,q},
e 0 : N — Ny is the switching law.

Xk+1 = As(k) Xk, (9)

Several frameworks depending on o :

o is a perturbation : stability analysis and robustness

05 5 05 0
A= ( 0 05 ),and Ay = < 10 05 ) are Schur, but

AiAy = ( 0z 2o > is not Schur (\(AsAz) = {50.49; 0.012}).

o Sufficient conditions for asymptotic stability. Switched Lyapunov function
(Daafouz et al. TAC 2002);
e Necessary and sufficient condition for asymptotic stability. Existence of a

polyhedral Lyapunov function (Molchanov & Pyatnitskiy SCL 1989 ; Blanchini
AUT 1995) ; Joint Spectral Radius (R.M. Jungers, Springer, 2009).

A
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Distinct frameworks

Discrete-time switched linear system :  with

e xx € R" the state,

e Ajinvertible, i € Ng = {1;--- ,q},
e 0 : N — Ny is the switching law.

Xk+1 = As(k) Xk, (9)

Several frameworks depending on o :

o is a controlled input : stabilizability and stabilization.

125 05 0
A1—( 0 05 ),andAz—< 0 1.4)arenotSchur,but

06 7 .
AlA = ( 0 07 ) is Schur.
o Sufficient conditions for stabilizability. Lyapunov—Metzler inequalities
(Geromel & Colaneri IJC 2006);
e Necessary and sufficient condition for stabilizability. Geometric approach

(Fiacchini & Jungers, Automatica 2014) and comparison with other
approaches (Fiacchini, Girard, Jungers, TAC 2016).
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Distinct frameworks

Discrete-time switched linear system :  with

e xx € R" the state,

e Ajinvertible, i € Ng = {1;---,q},
e 0 : N — Ny is the switching law.

Xk+1 = As(k) Xk, (9)

Several frameworks depending on o :

o is a controlled input with constraints.

125 05 0
A1—( 0 05 ),andAz—< 0 1.4)arenotSchur,but

03 938
MAefly = ( 0 0.98
when occuring.

) is Schur, with the constraint : mode 2 appears twice

e Large literature for specific classes of switching law.
e Language constrained switching law : CNS by geometrical approach
[Fiacchini, Jungers, Girard, ECC 2016).

e Language constrained switching law : CS by Lyapunov-Metlzer and LMIs
approach [Jungers, Girard, Fiacchini, CDC 2016, ADHS 2018].
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Outline of the talk

What is a switched system ?
About stability

Sufficient conditions for stability
The joint spectral radius
The common Lyapunov function approach
Multiple Lyapunov functions

Stabilization without constraints

Stabilization constrained by a language

CRAN

M. Jungers 24 /79



Geometric approach : the joint spectral radius

The joint spectral radius of a set of matrices A = {Aq,--- , Ax}, denoted p(A) is
an extension of the radius of a matrix A (i.e. p(A)) and gives a necessary and

sufficient condition for the stability of the system (15) and solves P1. See [Theys
2005].

We define
p(.A) =lim Supp~>+oopp(~A)7
where ;
pp(.A) = sup ||A,'1A,'2 X X A"pHE .
Ai AL cA

iy Aig s Al

The switched system (15) is GAS if and only if

p(A) < 1. (10)

Main difficulty : this is difficult in the generic case to practically compute the joint
spectral radius. Several approximations are provided in the literature.

QA
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The common Lyapunov function approach

If all the modes share a common Lyapunov function, then the switched system is
GUAS.

If the switched system is GUAS, then all the modes share a common Lyapunov
function.

Remark : be careful, there is no assumption concerning the class of the
Lyapunov function. Especially, this Lyapunov function is not necessary on the
form V(x) = x" Px as it will be seen in the following. This existence result does
not help roughly speaking about how to find this Lyapunov function. In addition,
there exists a common Lyapunov function on the form V(x) = x” P(x)x, where
P(Ax) = P(x), YA # 0 (homogeneous of degree zero).

QR
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The common Lyapunov function approach : sufficient conditions

The previous theorem suggests to look for a common quadratic Lyapunov
function in the class V/(x) = x' Px.

Consider the discrete-time linear switched system (15). If there exists a matrix
P € R"™" such that
P> 0, (11)

and
ATPA—P <0, VieT, (12)

then the system (15) admits the common quadratic Lyapunov function V(x) and
is GUAS.

Remark : the system (15) may be GUAS without feasible LMI (12).

A
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The common Lyapunov function approach : unfeasibility test

To complete the previous remark, we have the following theorem.

If there exist positive definite matrices R; € R™*", R; > 0, such that

ZA,’R,‘A,T - R > On, (13)

ieT
then there does not exist P > 0, such that

ATPA—P <0, VieT, (14)

Proof : If there exist R; (€ Z) such that Inequalities (13) hold, then for every

P > 0o,
0<Tr |:P <Z ARAT — Ri)

i€

—Tr [FI,- (A,TPA, - P)] ,

then there exists iy € Z such that AT PA; — P > 0.

A
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Multiple Lyapunov functions

Definition : We consider functions of the form

V(o (k), xk) = Vogy(Xk) = xd P(a(K), Xk) Xk. (15)

If there exist P;, i € Zy such that P; > 0 and

ATRA-P <0,  V(ij)eTh, &

then the discrete-time switched system (15) is GUAS.

Sketch of proof : By chosing i = o(k) and j = o(k + 1), we have
V(,(k+1)(Xk+1) — Vo(k)(Xk) < 0, \ 75 0.

€TV
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Stabilization of linear discrete-time switched systems

The problem P3 is to design a switching law that stabilizes the system (15).
Assumption : A; (Vi € Z) are not Schur.

This assumption is to avoid a trivial solution : if there exists iy such that Aj; is
Schur, then o (k) = iy globally asymptotically stabilizes the system.

G

M. Jungers 31/79



Min-switching strategy : Lyapunov-Metzler inequalities approach
Idea : « min-switching approach » (Wicks & DeCarlo ACC 1997, Liberzon 2003).
Set of Metzler matrices in discrete-time domain (stochastic matrices) :

The matrix N € My, where My is the particular Metzler matrices set :

Mg ={NerRVN >0, ¥, mi=1,9(i,)) € I} }-

If the Lyapunov-Metzler inequalities

> wiAPA — P < Op, YieIy

JEZN

with P, = P/ > 0p, I € My hold then the switched system (9) is stabilized by the
switching law

o(k) = g(x) € arg min X Pixk. (17)
IEIN

v

Vmin(X) = m|n X/P[X; = Vmin(Xk+1) S Z Tr/‘I.XIiA:T(k)PjAU(k)Xk < Vmin(Xk)-
i€y

RAN
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Sketch of proof
Lyapunov function considered

R" — R,
Vinin : Xk r_nin X,;rP,'Xk7 (1 8)
i€

Notation : (P)p,i = > m4iPe.
LeT
Elements of proof

e By post-multiplying by xx # 0 and pre-multiplying by x;,

Xks1(P)p,iXes1 — Xk Pix < 0 (19)
e the minimum scalar value of convex polytopes is reached on one of the
vertices
Vinin (Xk41) = ?;Ig X1 PiXks1 = min ZA/'X;QH PiX11. (20)
e

Each column of the Metzler matrix I € M is in the unit simplex, then

Vinin (Xk+1) < Xl,<+1(P)p,iXk+1- (21)
= global asymptotic stability holds with
Vmin (Xk+1) - Vmin (Xk) < O, vXk 7£ 0. (22)

G
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Example

110 02 0 —05
A1—{1 o.4}’A2—[o 1.3]”(0_(0.5)

A solution to the Lyapunov—Metzler inequalities is given by
Mn— {0.3 0.7} P = {1.7097 0.3734} P {1.1978 0.6398} .

Consider

0.7 03 ~10.3734 0.4786 0.6398 1.3173

Al (m11 Py + w21 P2)Ar — Py < 02
A/2(71'12P1 + 722 P2)A2 — P < 02.

Y,=0.3 et y,=0.3

06
035F
05
o
04
®
025 03
02 o 02
01
015
[
01 :
0.1
005 02
?%é@mmwm 03
0 5 10 15 0 % -05 -04 -03 -02 -01 0 01 02 03 04
‘ *
a :
\" AA
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Sum up
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Geometric tools

A C-set is a compact, convex set containing the origin in its interior.

Aset Q CR"is a C*-set if it is compact, star-convex with respect to the origin
and 0 € int(2).

Notice a set is
e convex if Vxp € Q and Vx € Q, then axy + (1 — a)x € Q, Va € [0, 1].

e star-convex if 9xg € €, such that Vx € €, then
axo+ (1 —a)x € Q, Va € [0,1].

Minkowski function of a C*-set Q : Vo (x) = min{a € R : x € aQ2}.

e Any C-setis a C*-set.
e Given a C*-set Q, we have that a2 is a C*-set and aQ2 C Q for all « € [0, 1].

e Wq(-)is : defined on R"; homogenous of degree one ; positive definite and
radially unbounded. But nonconvex in general !

€Y

M. Jungers 36/79



Geometric approach

2
B
15|

Control A-contractive C-set for the switched system (15).

e Initialization : given the C*-set Q C R”, define
Q=0Qand k=0;

e lteration for k > 0:

Qe = A, Vien,
Qeyr = U Qs
i€Tn

e Stopif QCint | | J @ |;denote N=k+1and
JENK 11
Q= U Q.
je{ti-iN}

A
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Geometric approach

Geometrical interpretation :

e the set Q is the set of x that can be stirred in Q in k steps by a switching
sequence beginning with / € Zy ;

e then Q is the set of points that can be driven in Q in k steps;

e and hence 2 the set of those which can reach Q in N or less steps, by an
adequate switching law.

Necessary and sufficient condition for stabilizability.

There exists a control Lyapunov function for the switched system if and only if
the Algorithm 1 ends with finite N.

QR
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Example 1

Non-Schur switched system with N = n = 2.

12 0 -06 -2
A1:[—1 o.e}’ AZZ{ 0 —1.2]’

et
LT ]
& b
B i §
I ; ; ; H | N
o 5 0 5 20 25 30 s5 4 |
o Time N
2 h
F T § T T T NS SR
=
B S 0 = ST SRR DR S SRS 8
o
o0 5 10 15 20 25 30 8 4«

Time k
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Example 2
System with N =4, n=2 and

A1:{1'5 0 ] A, = 1.1R(%)

-12 0 ]

As =1.05R(& — 1), m:{1 13

The matrices A;, with i € N4, are not Schur. Notice : only one stable eigenvalue!

R
R
3 K
£+
2 -
Fes
"
1 Fhoveii,
o 5 10 15 20 25 a0 a4
- Time
0
alx * -
E
3 * x * T e
-
2 2f =
3 R LI S T T e
= 4 0 5 10 15 2 25 a0 3 4
X, Time k
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Example 3
Switched system with

0 —1.01 0 —1.01
A‘—L —1 ] AZ—L —0.5}'

The technique based on Lyapunov-Metzler inequalities has been numerically
checked (gridding) and it results not feasible.

Nevertheless...

3 15
e
2 UL
N
o
1 5 ot
N s
0 7 hauassevU
7 o 5 0 15 20 25 a0 35 4
- 4 Time
4 <_
A 25
-2 B R IF = T T SIS ST NP S|
s y =15
B A R E T T TR TS E T PSPPSR
”
05
4 3 =2 4 o 1 2 3 4 s o 5 0 15 20 25 30 35 40

* Time k
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Example 4

Switched system with

=[5 oo ][ ] A= os ]

for 0 = 0 (left) and 0 = £ (right).
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CS for stabilization : Idea of LMI approach

Idea : based on particular sufficient conditions to ensure stabilizability.
[ ) P,' = I;

o Consider a fictitious switched system with augmented modes as follows.
Notation :

e 7 = Ty :finite set of switching modes.

o MKl — | JK_ T* all the possible sequences of modes of length from M to K.
o K=K, qg":given K € N, number of elements j € Z!"*.

1 -

k
o Giveni=(ir,....i) €I, A, = [T Ay = A - A
j=1

The stabilizability of the system xk;1 = A k) Xk With {A;}icz is equivalent to the
one of the system

Zip1 = Az withy : N — 71K,

QM
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CS for stabilization : LMI approach

The switched system (9) is stabilizable if there exist K € Nand n € R¥ such that
n >0,k n =1and

> mAlA <. (23)
ieZl:K]
Comments :
e The condition (23) ensures the exponential stabilization of a switched
system (9);
¢ Nevertheless neither the Euclidean norm x”x nor /er;[i{"ﬂ xTA] A;x are Control

Lyapunov Functions;
e The condition (23) is equivalent to the periodically stabilizability.

e The condition is just sufficient (except for particular cases), is it also
necessary ? No!

QA
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CS for stabilization : LMI approach

Idea : modify the later inequality to provide a control Lyapunov function :

If there exists € [0,1) and 7 € RK such that n >0, >k m = 1 such that

> wATA; < L. (24)
jezl:K]

The switching law given by
Okp+j—1 = ip,/7 V] € {17’/(’p)} (25)
where {kp}pen With kg = 0, and k, < kp41 < Kk, + K, for all p € N and

Ip = arg r1I1[i1r_1K](x,;)\—l(i)A,-TA;ka), Kor1 = ko + 1(ip), A= MZ/K, (26)
ezl

with /(ip) length of ip, globally exponentially stabilizes the system and
V(x) = min, 16 (x"A~"VA] A;x) is a Control Lyapunov function.

RAN
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Periodic stabilizability
A periodic switching law is given by o(k + K) = o(k).

The stabilizability through periodic switching law, i.e. periodic stabilizability, is
formalized below.

The switched system is periodic stabilizable if there exist a periodic switching law
o : N — Z, such that the system is stabilizable for all x € R".

Notice that for stabilizability the switching function might be state-dependent,
hence a state feedback, whereas for having periodic stabilizability the switching
law must be independent on the state.

Is there an equivalence relation between periodic stabilizability and the LMI
condition ? The answer is below.

A stabilizing periodic switching law for the switched system exists if and only if
the LMI condition holds.

€TV
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Counterexample
Consider the three modes given by the matrices

2 —27 . a o0
Ai = AR(0), A= AR (?) , A3 =AR (T) , with A= { 0 4 }

and a = 0.6. The geometric condition holds with N = 1.

For every N and every B; with i € Z, the related A, is such that det(A]A;) = 1
and Tr(A] A)) > 2.

Notice that, for all the matrices Q > 0 in R?*2 such that det(Q) = 1, then
Tr(Q) > 2and Tr(Q) = 2 ifand only if Q = /.

Thus, for every subset K C Z, we have that Z niAl A; < I, cannot hold, since
iekK

'3:?\3{ Tr(ATA) >20r ATA; = 1.
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Sum up
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Outline of the talk

Stabilization constrained by a language
Language constrained switching law
Geometric Necessary and Sufficient Condition for Recursive ECLF
Lyapunov-Metzler inequalities approach
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Language constrained switching law

Constraints : dwell time, modal constraints, ... o belongs to a language specified
by a nondeterministic finite automaton.

A nondeterministic finite automaton is a tuple
A= (S,X%,0,85) where :
e Sis afinite set of p states : S = {ei}ien, ;
e Y = Ny is a finite alphabet (active mode) ;
e §:8 x X — 2% is a set-valued transition map;
e Sp C Sis a subset of initial states.

Notation : o : N — X belongs to the language of A, i.e. o € L(A), if there exists
s” : N — Ssuchthat s € Sp and s;; € §(sg,0x) forall k € N.

RAN
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CRAR A

Additional tools

A transition is a triplet 7 = (8,/,8) € S x X x S such that § € §(8, /). A path of A
is a sequence of transitions p = {($1, i1, 1), (82, iz, S2), - - - } such that 8,1 = 8.
Pm(A) and P (.A) are the sets of m-length and infinite paths.

O ONNO G

For a path p = {(31,/1,51), - , (8m, im, Sm)} € Pm(A),
e w(p) = (i1, k,- - ,im) € £ is a word, admissible of the language L(A) , and
we denote wj(p) = Jj for j € N (Awp) = A Aip_y - A) s

o 1(p) = (31, ,8m, 8m) € S™ is the projection of the path over the set of
automaton states, and we denote 7;j(p) = §; with j € Ny and mn41(p) = 8.

e For two paths p; € Pp, (A) and p» € Pm,(A), if these paths are compatible,
(o)1 (1) = m1(p2)), then we can define the concatenation of these paths
denoted p1 o P> € Pry+m, (A).

im—1
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Examples of language constraints (i).

Automaton 1:p=1, A= ({e1},Nn,0,{er}), where ey € §(ey, i), Vi € Ny.

Automaton2:p=N, A= ({e1,--- ,en},Nn,d,{e1,--- ,en}), where
{ei} = d(ey, 1), V(i.J) € NR.

FIGURE 1 — Automatons 1 with p = 1 (left) and 2 with p = N = 3 (right).
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Examples of language constraints (ii).

For an integer A € N*, the set of the switching laws satisfying a dwell time at
least equal to A is defined by

Dp = {O’ N —Z; H{Eq}qu,EQJA - eq > A;
o(k) = a(lq),Veq < k < Lgs1;0(Lq) # o(€qs1)}-

A1:3;A2:1

€T
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Language constraints (iii) : intersections.

M. Jungers
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Language constraints (iv) : intersections.

QR
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Problem formulation

The system is globally exponentially stabilizable relatively to language L(.A) if
there are ¢ > 0 and \ € [0, 1) and, for all x € R”, there exists o € L(.A), such
that : [1x¢ (x) ]| < eA“|Ix]|.

Let us consider the system (9) and the automaton .4 defining the language
constraints for the switching laws. Determine a path p € P (.A) that generates
switching laws w(p) = o € L(.A) verifying the language constraints and that
globally exponentially stabilizes the closed-loop system (9). p is assumed to
depend on the states of the system and automaton.

QR
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Directed graph properties

Based on A : directed graph (digraph) G = (V, £) : with vertices V = S and
edges £ ={(s,r) € 8%, I e %, rei(st)}).

Let (s,r) € V2. sand r are strongly
connected if s = r or if there exist a
directed path from sto r and a
directed path from r to s. —
equivalence relation on the nodes.

Let G = (V, €) be afinite digraph and C C V. C is strongly connected if for every
pair of vertices (s, r) € C2, s and r are strongly connected. A strongly connected
component (SCC) of the digraph G is a maximally strongly connected set of
vertices. This is an equivalence class for the relation of strongly connectivity. A
SCC C is called trivial if C = {s} and (s, s) € £.

GRan _
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Condensation of the digraph G

The condensation of G is a digraph

GSCC = (VSCC, £5€€), VSCC one vertex per
SCC. £5¢€ links between the SCCs that is
a partial order relation between the SCCs
as C; = C;j if there exists a path between
one vertex in C; and a vertex in C;.

Let G be the digraph associated with the ?

automaton A and its condensation G5°¢. @
Every trajectory of the constrained
switched system has a projection on the

automaton state that ultimately enters and @_>@

does not exit a nontrivial SCC.

A
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Reformulation on a strongly connected component

Let C be a nontrivial SCC induced by the automaton .A. We define the set of
finite paths of m transitions restricted to C, Pn(A, C) such that

Pn(A,C) = {p € Pn(A), 7j(p) € C, Vj € Nmy1}. (@7)

v

Let us consider a nontrivial SCC C of the digraph G induced by the automaton .A.
A nonnegative continuous function V : R” x C — R is an exponentially
stabilizing control Lyapunov function (ECLF) of the system (9) in C if for any
(x,r) € R" x C, we have

1. kx| < V(x,r) < ral|x||? for some finite positive constants x4 and kg ;

2. There exists p, : R” x C — P1(A, C), such that = (p.(x,r)) = r, and
V(Aw(p, (x,m X, m2(pv(x,r))) — V(x,r) < —rg||x||?, for a constant k3 > 0.

A
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Main results

Solution in two steps :
o Check if there exists at least one nontrivial SCC for which a ECLF exists;

e Check if at least one initial condition can reach a SCC that admits a ECLF.
If d is the number of SCCs, let be Q = {i € Ny, C; admits an ECLF}, then

F=sN(U Ua) (28)

JEQ iENy,
¢

is the set of initial automaton states that can be chosen to reach a SCC that
admits an ECLF. If $° £ @, then Problem 1 admits a solution.

Extensions :

e Geometric approach : [Fiacchini, Jungers, Girard, Automatica 2018];

e Lyapunov—Metzler inequalities : [Jungers, Girard, Fiacchini, CDC 2016];
e LMI approach : [Jungers, Girard, Fiacchini, ADHS 2018];

A
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Geometric Necessary and Sufficient Condition for Recursive
ECLF

The automaton trajectory r : N — Sis recurrent in s € S under the switching
sequence o € L(A) if there exist N € N and a sequence /k : N — N such that
/1=06.ﬂdf,::S, and 1 < 1 — Ik <N, Vk € N.

The function V : R” x R — R" is a recurrent ECLF in R C Sifitis an ECLF in R

under a control policy v such that v € L(.A) and it generates trajectories
recurrent in a state s € R.

Objective : we will be searching for contractive C*-sets such that the related
gauge functions are recurrent ECLF for the switched systems subject to the
language constraints induced by A.

QR
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Sets and algorithm

For every set Q C R” and state s € S, define :

¢ the one-step operator for every mode i € 7 RN
a
as .

Q(Q) ={(x, ) €ER"x S: AxeQ, sedri)l.

e the one-step operator as :

c;o=Jaro=U U A'axn.

ieT i€ re~(s,i)

where (s, i) ={re S: sei(r,i)}; A

2 2
0 O 0
2 2
2 0 2 4 2 0 2 -2 0 2 2 0 2 4
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Sets and algorithm
For every set Q C R” and state s € S, define : ) )
¢ the one-step operator for every mode i € 7
as @/‘
2
Q) ={(x,r)eR"xS: AxeQ, sedri} 1 2
¢ the one-step operator as : har
1 C‘fi e : )

c;o=Jaro=U U A'axn.

ieT i€ re~(s,i)

where ’y(S,I') = {I’E S: 365(f,i)}; Al = |: 102 005 :| LA =141 R(ﬂ/3)

C?AA M. Jungers
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Sets and algorithm

For every set Q C R” and state s € S, define :

¢ the one-step operator for every mode i € 7 @/-\
as

Q) ={(x, ) €ER"x S: Ax € Q, sedr,i).

e the one-step operator as :

co=Jax@= U A'axn.

i€T i€T re~(s,i)
where y(s,i) ={re S: sed(r,i)}; A =
2 2 2 2 2
0 & 0 0 0 0 0
2 -2 -2 -2 -2
0o 2 2 0 2 2 0 2 2
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Sets and algorithm
Computation of a contractive C*-set for the switched system recurrent in s.

o Initialization : given the C*-set
Qo C R" and a state s € S, define
A= xsand k =0;

o lteration for k > 0 :

N = U @@
(2xr) CAL
Q= {xeR": (x,8) € Ais1},

e Stop if Qo C int( U vas) : denote

e Forevery Q CR"andse S:

—yUo@=U U @®'axn

ieT i€T re~(s,i)
e Every set Af have the form

A= (2 xr),

res

VjeN,

with Q"° possibly empty, with

JENK 41 Q/Gs - {X ER": (X’ I’) € Af}’
N°=k+1andQ° = |J Q. Q= (Joj°
JENps ) JENps
2 2 2 2 2
0 0 0 0 |’\— :\ 0
2 2 2 -2 ) 2
\'?A’\ 0o 2 4 2 0 2 4 20 4 2 0 2 2 0 2 4
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Sets and algorithm
Computation of a contractive C*-set for the switched system recurrent in s.

o Initialization : given the C*-set
Qo C R" and a state s € S, define
A= xsand k =0;

o lteration for k > 0 :

N = U @@
(2xr) CAL
Q= {xeR": (x,8) € Ais1},

e Stop if Qo C int( U vas) : denote

JENK 1
N*=k+1and Q°= |J Q°.
JENps
2 2

e Forevery Q CR"andse S:

—yUo@=U U @®'axn

iez I€T re~(s,i)
e Every set Af have the form
A= (Q;’S x r), Vj €N,
res
with Q"° possibly empty, with
Q7 ={xeR": (x,r) € Af},

Qr,s _ U Q;,s
2
0 O
-2

2
i O
-2

jGNNs
-2 0 2 -2 0 2
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Sets and algorithm
Computation of a contractive C*-set for the switched system recurrent in s.

o Initialization : given the C*-set
Qo C R" and a state s € S, define
A= xsand k =0;

o lteration for k > 0 :

N = U @@
(2xr) CAL
Q= {xeR": (x,8) € Ais1},

e Stop if Qo C int( U vas) : denote

e Forevery Q CR"andse S:

—yUo@=U U @®'axn

ieT i€T re~(s,i)
e Every set A7 have the form

A= (2 xr),

res

VjeN,

with Q"¢ possibly empty, with

jeNes 1 Q7 ={xeR": (x,r) € Af},
rs _ r,s
N°=k+1and Q= |J Q5*. Q= o
JENps JENps
2 2 2 2 2
0 & 0 0 0

;o

[
N
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(Counter)-Example

We take the Example 17 in the paper [F, Girard, Jungers, TAC16]to consider the
relation with periodic stabilizability.

e The matrices are

A1 = AR(0), A, =AR <2§) , A3=AR (%) ,
a o0 .
where A = 0 g with a = 0.6 and

R(0) rotation matrix.

G
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(Counter)-Example

We take the Example 17 in the paper [F, Girard, Jungers, TAC16]to consider the
relation with periodic stabilizability.

e The matrices are

A = AR(0), A — AR<2;>, A= 2”

where A = { g a91 ] with a = 0.6 and
R(0) rotation matrix.

¢ No constraints on the mode sequences.

e The system is stabilizable but no periodic
(then open-loop) switching law exists that
stabilizes the system.

R
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(Counter)-Example

We take the Example 17 in the paper [F, Girard, Jungers, TAC16]to consider the
relation with periodic stabilizability.

e The matrices are

A = AR(0), A — AR(Z‘,;T), A= 2”

where A = { g a91 ] with a = 0.6 and
R(0) rotation matrix.

¢ No constraints on the mode sequences.

e The system is stabilizable but no periodic
(then open-loop) switching law exists that
stabilizes the system.
Results :
e The system is stabilizable through a recurrent Laypunov function : then
recurrent ECLF are strictly less conservative than periodic
(state-independent) once.

R
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(Counter)-Example

We take the Example 17 in the paper [F, Girard, Jungers, TAC16]to consider the
relation with periodic stabilizability.

e The matrices are

_ 2
A1 = AR(0), A, =AR <2§> , As=AR (%) .-
0 1
where A = g a ] with a = 0.6 and 3 1
3
R(0) rotation matrix. 3

e Two arks removed.

G
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(Counter)-Example

We take the Example 17 in the paper [F, Girard, Jungers, TAC16]to consider the
relation with periodic stabilizability.

e The matrices are

_ 2
A1 = AR(0), A, =AR (%) , As=AR (%) .-
0 1
where A = { g a ] with a = 0.6 and 3 1
3
R(0) rotation matrix. 3

2| 2

o Two arks removed. zgg EE‘: : WL

2 0 2 2 0 2 -2

7N

2 0 2 2 0 2

| 0[\2& ,
ML
N

o

by
i

°

C?AA 2 0 2 2 0 2 2 0 2
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Example 3

. 12 0 2
System with Ay = [ 0 05 } , A =1.1R(x/3), and @/“
stop for N* = 6. N 1
1
] 2 OVZ ] 2 0 2

o

SR S 3
P AT P

NNEEN
A REL /A

0
0
0

Lo rUSIA
VRN R CER

/
/Q

2

ol

2,
2

R
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System with A4
stop for N* = 6.

|

X
o

Xa(K)

1.2
0

Example 3

0 2
05 } A; = 1.1R(x/3), and @/2“
1
1

0 5 10 15 2I0 25 30
+
++ ++ ++ ++ +++ +4
+ + + + +
F++ +++
E L+ + + . + L+ ,
0 5 10 15 20 25 30
Time k

R
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Lyapunov-Metzler inequalities

LetbeC ={ci,:-- ,cn} anontrivial SCC induced by the automaton A. If there
exist a stochastic matrix, admissible with the SCC C, that is I € RN™" with

N’ € Muxnn @and h symmetric positive definite matrices M;, i € Ny, such that the
h bilinear matrix inequalities

ViENn, M> > mie—nnAMA,

(i,€)ENp XX
ci€d(c;,£)NC

are satisfied, then C admits an ECLF on the form

CxR" — R, C xR R
Vipin (¢,x) +——  min _V(c,Ax), V: x — B
(i,)ENp X (ci,x) +— x'Mx.
ci€d(cj,)NC

Moreover, after an (arbitrary) pref/x allowing to reach in finite time an automaton
state ¢;, € C (o € Np) from s € S°, apply

(Sks1,0(k)) = v (xk, 8) € arg  min XA MiAXk. (29)
(i,£)ENpX T

'd Gi€3(sk,0)
RAA
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Links with unconstrained case
Automaton 1 :p=1, A= ({e1},Nn, 6, {e1}), where e; € 6(ey, i), Vi € Ny. We
have the inequality from [Lemma 1, Geromel & Colaneri, IJC 2006]

My > ZZGNN 71’2,1A2M1Az. (30)

Automaton2:p =N, A= ({e1,--- ,en},Nn,d,{e1,--- , en}), where
{ei} = d(ey, 1), V(i.J) € N§.

Vj € NNy My > 3 ey, Tore-1)q jAcMeAe. (31)
By introducing P; = A'M,A;, Vi € Ny, it yields the Lyapunov-Metzler inequalities
P, = AIMA; > A/’-(ZZGNQ t0,jPe)A;j, Vj € Ny. (32)

FIGURE 2 — Automatons 1 with p = 1 (left) and 2 with p = N = 3 (right).
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lllustration: n=2; N =3 modes; p =6

09 0]0o6 0 |12 1 1
[ A A As]—{ 0 0,7‘0 1/0.6‘0 0.8]’ XO_(—1)'

e S°={ej, e, e};
e p = 6 states;
e d =4 SCCs;

C1 = {e1} is a trivial SCC.

R
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lllustration: n=2; N =3 modes; p =6

_[o9 o ]oe o0 |12 1 _( 1
[ A A As]—{ 0 0.7‘0 1/0.6‘0 0.8]’ XO_(—1>'

° SO - {e17e27e4};
e p = 6 states;
Ca e d =4 SCCs;

C> = {es, 65} is a nontrivial SCC. Inequalities (18) admit (at least) a solution.

Ve — | 00407 04665 ] [ 0.0167 0.1668 | Ms > 0.4AMsAs +0.6A3MsAs,
5= 1 01665 24735 |' 6= | 0.1668 6.5058 |' Mg > 0.8A,MsAs + 0.2AL MsAs.
2 3

R
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lllustration: n=2; N =3 modes; p =6

_[o9 o ]oe o0 |12 1 _( 1
[ A A As]—{ 0 0.7‘0 1/0.6‘0 0.8]’ XO_(—1>'

e S°={ej, e, e};
e p = 6 states;
e d =4 SCCs;

Cs = {es} is a nontrivial SCC. A, being unstable, Inequality (18) associated with
Cs cannot admit a solution.
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lllustration: n=2; N =3 modes; p =6

09 0]0o6 0 |12 1 1
[ A A As]—{ 0 0.7‘0 1/0.6‘0 0.8]’ XO_(—1>'

e S°={ej, e, e};
e p = 6 states;
e d =4 SCCs;

Cs = {e2, e3} is a nontrivial SCC. The only possible cycle is a periodic one and
AxAs is not stable. Inequalities (18) associated with C4 cannot admit a solution.

R
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lllustration
Prefix of the stalqilizing policy : S° N (C2 UCs UCy) = {e1, e}, which is not empty.
We select e € Sp and es € Co. The Dijkstra path leads to K = 3 and

o(0)=1 o(1)=2 o(2)=1
e (0) e (1) o5 (2) 6.

Min-switching stabilizing policy : For k > K, apply the min-switching
strategy (29).

D T T T Y

Lh Lo o

The vertical red line split in time the Dijkstra path and the application of
min-switching strategy. (left) : Trajectories k — xx and k — sk. (right) : Functions
k' o(k),fork e Nand k — Vi, for k > K + 1.

G
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Language constrained sufficient condition for stabilizability with
LMI conditions

Let be C a nontrivial SCC of the automaton A, containing h = |C| automaton
states, denoted C = {c1,- - - , cn}. For given h positive integers N; € N, (i € Np);
let us define P; v, (A, C) as the set of paths starting from the state automaton c;,
admissible to the language .4 remaining in the SCC C of length less than or
equal to Nj, that is

ﬁi»Ni(A’ C) = U {p € Pf(Av C)a ™ (p) - Cf} (33)

JENN;

and N; the number of paths in P; n,(A, C).

A
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Modified automaton

12,122,1222,1212
2,21,
1,21,12,11, 22
221,212,211,
121,122,112

2,22,
12,

222, 121,
212, 1221
122, 1,12,121,
112 122, 1221,

1212,1211,
1222

1,21,221,121

G
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Language constrained sufficient condition for stabilizability

If there exist h vectors n; € RN/ (i € Np), such that ; > 0 and S mip=1
PEP; N, (A,C)
and finally such that the h Linear Matrix Inequalities (LMI) are satisfied.

Z Wi,pAvTv(p)Aw(p) < I, €Np, (34)
PEP; n;(A,C)

then the system (9) is exponentially stabilizable with a switching law admissible
to the language L(C).

€T
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Language constrained sufficient condition for stabilizability
Algorithm designing p*
Let us define iteratively as follows a sequence of indexes of automaton states
{i}jen € (Np)Y and a sequence of instants {k;}jen € N, with ki < ki1, j € N. The
algorithm to build p* is as follows :
Initialization : Choose ko = 0, arbitrarily iy € Np, Xo € R" and finally p* = 0.
Iteration j : Select p such that
~ . TAT
p € arg Peﬂmﬁf"c) X A (o) Aw(p) Xk (35)
and define /1 as the unique value in N, such that ¢;_, is the last
automaton state of p :

Tipy+1(P) = Cjq,s (36)
and ki1 = k;j + I(p). Build p;_; by pi o p, because the definition
of ij;1 by equation (36) ensures the compatibility of the paths and
allows the concatenation. The state is then given by

Xi+z = sz(i))xl(/+z—17 ze{l,-- k1 — Kk}, (37)

and in closed form
ijJr1 = Aw(ﬁ)Xk/. (38)

A
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Links with unconstrained case

Automaton : p =1, A= ({e1},Nn,d,{e1}), where e; € 5(ey, i), Vi € Np.
We recover only one LMI: Y~ niAlA; < 1.
ieZlK]

FIGURE 3 — Automaton 1 with p = 1

A
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Links with the periodically stabilization

The system (9) is periodic stabilizable with the language constraint L(A) if there
exist an automaton state s € S° (or ultimately periodic stabilizable if there exists
a reachable automaton state s € S from S°) and a cyclic path ppe: € Pm(A) with
1 (Pper) = S such that Ay (p,,,) is Schur.

A cyclic path belongs to a SCC. Only a SCC C of the automaton A and a
periodic stabilizability restricted to this SCC C are considered.

The system (9) is periodic stabilizable on a SCC C of A if and only if there exist
h = |C| natural integers N;, (i € N») and vectors n; in the simplex of dimensions
N;, such that LMIs (34) are satisfied.

€T
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lllustration
Let us consider the switched system (9) with N = 3 modes, xo = ( 2 —1 )T
and

0.6 0
04 -1/0.6

13 08
[AWAZ‘A”:{ 0 05

The automaton A defining the constrained language is the one in Figure 4, with
all the automaton states as initial ones : S° = {ey, e:}. We select the automaton
state ey as the initial one in the simulation.

The inequalities (34) are feasible with Ny = 3, and N> = 4, leading to the
following number of terms in the LMIs : Ny = 48 and N, = 192.

1,3
s (e (e 03
2,3

FIGURE 4 — Automaton related to the numerical example.

1.1 0
0 -09 |-

The constant mode 3 is admissible, roughly speaking there exists (at least) a
path p € P (A) such that wk(p) = 3, but the matrix As is not Schur.

A
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Illustration

25 N
, 25
21 2%
B =~
)
05 L L L &
o s 10 15 20 2 N
. o
Time k . 05
=
35 = o
. 5
2e * o5
==
. ’
15
: 15
05 2
o 5 10 . 15 e L 0 5 10 15 20 25
Time k Time k

Solution :
. . TAT
pearg  min X AypAwpX,
Py ac) O

Choix : p = {(e1,1, €2),(&2,2,€1)}
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Illustration

25 3
2F % 25
& 15 ae*
% 15
~
05 " . . = | *
0 5 10 15 20 25 &
. o
Time k ’ o5
as = ) o
3 5
*
25 05FO
T :
15
¥ 15
05
2
o s 10 T 20 2 o . = = P =
Time k Time k

Solution :

= . TAT
€ ar min X Ay Awip) X,
P gpeﬂmm,@ wip)=wip)

Choix : p = {(e1,3, e2),(€2,2, €1), (&1, 1, €2)}

R
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Illustration

25 3
2Pk k¥ 25
&5 e
N *
Bo* * o
< *
s . . . = | *
0 5 10 15 20 25 5 *x%
Time k © s
as =, oO
F]— N o°
25 05FO
= ook % X
© 15
I * 15
050 5 10 15 20 25 2
. o s 10 15 20 2
Time k Time k

Solution :

= . TAT
€ ar min X Ay Awip) X,
P gpefz,Nz(A,@ wip)=wip)

Choix : p = {(e2,2, e1),(e1,3, €2),(e2,2,e1),(e1,1,€2)}

R

M. Jungers

78179



Illustration

s
ek ok kR o 25
s o
. *
oK * * % 15
c *
o5 . . . I | = L *
[ 5 10 15 20 25 5 *
Time k © s ***
= *
=
a5 = of © co ¥
sl % * & O 0~ 7" p0
25 * 0s5tO
e L
° 15
1% * * 15
0s R
f s o s 2 2 s - " -
Time k Time k
Solution :
= . TAT
p € arg min XAy p)Awp) X,

PEP2, N, (A,C)

Choix :ﬁ = {(62727 61)3 (91737 e1)a (e1a1592)7 (eZaza e1)}
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Illustration

ek ok kR o

*

Bk ok k¥ kR ¥

o s 0 15 2 3
Time k
a5
sbo¥ * *
28
Lok * * o * ¥* *
° 15
* * *
0s
o s 3 = 2 2
Time k
Solution :
p&€arg min

PEP Ny (A.C)

* 21,(1), o x1(2)
*
*

X" Aoy Bup) X,

Choix : p = {(e1,3, e1),(e1,1,€2),(e2,2,€1)}

RAN

15

Time k
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Illustration

3
I I 25
s 2
» *
Bk K K K KK KF ¥ 15
< *
[ 5 10 15 20 25 5 *
Time k ° os ***
= %y
s F of Yo 500,0%58%s8e
- * * ok = o ©
N * 050
S T T T S "
S}
15
% * * * e
0s 2
o s 3 i 2 2 o . o I B =
Time k Time k
Solution :
~ . TAT
p€E€arg _min XAy p)Awp) X,

PEP Ny (A.C)

Choix : p = {(e1,3, &), (&2,2,e1)}
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Illustration

bk K K Kk Kk ok ok 25 4
&1 =, ]
T o 4
s | | | | | = L #* ]
[ 5 10 15 20 25 5 *
Time k © s *** 1
= * 5
> F of 9 400 _oPikessese 1
3P * * % x 8 o o
s * osto 4
Y T T e X ]
° 15
g * * ok ok e 1
% 5 10 s 20 25 2 - o P P P
Time k Time k

Solution :
= . TAT
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Conclusion

Questions ?

Thank you very much for your attention!
Marc.Jungers@univ-lorraine.fr
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