Explicit solutions to Generalized Lyapunov Matrix Inequality

Mario Spirito Daniele Astolfi夫
Université Claude Bernard Lyon 1 - CNRS ${ }^{\star}$, Lyon, France
(e-mail:name.surname@univ-lyon1.fr)

SAGIP 2024 - Lyon (France), 31th May

Presentation Outline

(1) Stability via Lyapunov's direct method

- Lyapunov Equation
- Parameters of the exponential convergence
- Lyapunov Inequality
(2) Explicit solution of the Lyapunov Inequality
- A recap on the Jordan Block form
- A modified Jordan form
- Explicit solutions of Lyapunov Inequality
- An example
(3) Generalized Lyapunov Inequality
- Some explicit solution to Generalized Lyapunov Inequality
(4) Conclusions

Presentation Outline

(1) Stability via Lyapunov's direct method

- Lyapunov Equation
- Parameters of the exponential convergence
- Lyapunov Inequality
(2) Explicit solution of the Lyapunov Inequality
- A recap on the Jordan Block form
- A modified Jordan form
- Explicit solutions of Lyapunov Inequality
- An example
(3) Generalized Lyapunov Inequality
- Some explicit solution to Generalized Lyapunov Inequality

4 Conclusions

Lyapunov Equation

Consider the Linear Time Invariant system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

we study its stability properties via the Lyapunov Inequality

$$
\begin{equation*}
P A+A^{\top} P \prec 0, \quad P=P^{\top} \succ 0 . \tag{2}
\end{equation*}
$$

${ }^{1} Q$ is a degree of freedom, and it can be taken as $Q=2 q I$, for some real $q>0$

Lyapunov Equation

Consider the Linear Time Invariant system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

we study its stability properties via the Lyapunov Inequality

$$
\begin{equation*}
P A+A^{\top} P \prec 0, \quad P=P^{\top} \succ 0 \tag{2}
\end{equation*}
$$

The standard approach to compute such a P involves an additional matrix $Q=Q^{\top} \succ 0^{1}$, so that we can define the so-called Lyapunov Equation

$$
\begin{equation*}
P A+A^{\top} P=-Q \tag{3}
\end{equation*}
$$

[^0]
Lyapunov Equation

Consider the Linear Time Invariant system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

we study its stability properties via the Lyapunov Inequality

$$
\begin{equation*}
P A+A^{\top} P \prec 0, \quad P=P^{\top} \succ 0 \tag{2}
\end{equation*}
$$

The standard approach to compute such a P involves an additional matrix $Q=Q^{\top} \succ 0^{1}$, so that we can define the so-called Lyapunov Equation

$$
\begin{equation*}
P A+A^{\top} P=-Q \tag{3}
\end{equation*}
$$

Fact: Such a solution P to (3), exists and is unique if and only if A has all negative real parts, and such a P is given by

$$
P=\int_{0}^{\infty} \exp \left(A^{\top} s\right) Q \exp (A s) d s
$$

[^1]
Parameters of exponential convergence

Definition (Global Exponential Convergence)

A dynamical system $\dot{x}=A x$ with sate $x \in \mathbb{R}^{n}$ is said to have a Global Exponential Convergence if there exist $\kappa \in \mathbb{R}_{\geq 1}, \alpha \in \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
|x(t)| \leq \kappa \exp (-\alpha t)\left|x_{0}\right|, \quad \forall x(0)=x_{0} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

κ is called the scaling factor and α the convergence rate.

Parameters of exponential convergence

Definition (Global Exponential Convergence)

A dynamical system $\dot{x}=A x$ with sate $x \in \mathbb{R}^{n}$ is said to have a Global Exponential Convergence if there exist $\kappa \in \mathbb{R}_{\geq 1}, \alpha \in \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
|x(t)| \leq \kappa \exp (-\alpha t)\left|x_{0}\right|, \quad \forall x(0)=x_{0} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

κ is called the scaling factor and α the convergence rate.
The pair P, Q, with P solution of (3) can be exploited to determine such a κ and α, i.e., we have

$$
\begin{equation*}
|x(t)| \leq \frac{\sigma_{\max }(P)}{\sigma_{\min }(P)} \exp \left(-\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)} t\right)\left|x_{0}\right| \quad \forall t \geq 0 \tag{5}
\end{equation*}
$$

where $\kappa:=\mu(P)$ and $\alpha=\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)}$.

Parameters of exponential convergence

Definition (Global Exponential Convergence)

A dynamical system $\dot{x}=A x$ with sate $x \in \mathbb{R}^{n}$ is said to have a Global Exponential Convergence if there exist $\kappa \in \mathbb{R}_{\geq 1}, \alpha \in \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
|x(t)| \leq \kappa \exp (-\alpha t)\left|x_{0}\right|, \quad \forall x(0)=x_{0} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

κ is called the scaling factor and α the convergence rate.
The pair P, Q, with P solution of (3) can be exploited to determine such a κ and α, i.e., we have

$$
\begin{equation*}
|x(t)| \leq \frac{\sigma_{\max }(P)}{\sigma_{\min }(P)} \exp \left(-\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)} t\right)\left|x_{0}\right| \quad \forall t \geq 0 \tag{5}
\end{equation*}
$$

where $\kappa:=\mu(P)$ and $\alpha=\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)}$.
We have an explicit solution for P, i.e.,

$$
P=\int_{0}^{\infty} \exp \left(A^{\top} s\right) Q \exp (A s) d s
$$

Parameters of exponential convergence

Definition (Global Exponential Convergence)

A dynamical system $\dot{x}=A x$ with sate $x \in \mathbb{R}^{n}$ is said to have a Global Exponential Convergence if there exist $\kappa \in \mathbb{R}_{\geq 1}, \alpha \in \mathbb{R}_{>0}$ such that

$$
\begin{equation*}
|x(t)| \leq \kappa \exp (-\alpha t)\left|x_{0}\right|, \quad \forall x(0)=x_{0} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

κ is called the scaling factor and α the convergence rate.
The pair P, Q, with P solution of (3) can be exploited to determine such a κ and α, i.e., we have

$$
\begin{equation*}
|x(t)| \leq \frac{\sigma_{\max }(P)}{\sigma_{\min }(P)} \exp \left(-\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)} t\right)\left|x_{0}\right| \quad \forall t \geq 0 \tag{5}
\end{equation*}
$$

where $\kappa:=\mu(P)$ and $\alpha=\frac{\sigma_{\min }(Q)}{2 \sigma_{\max }(P)}$.
We have an explicit solution for P, i.e.,

$$
P=\int_{0}^{\infty} \exp \left(A^{\top} s\right) Q \exp (A s) d s
$$

Question: How do we link the eigenvalues of P to the algebraic properties of A and to the choice of Q ?

Lyapunov Inequality

Another way to get the values of κ and α is to solve the Lyapunov Inequality, i.e.,

$$
\begin{equation*}
P A+A^{\top} P \preceq-2 \alpha P . \tag{6}
\end{equation*}
$$

for some $\alpha \leq\left|\Re \lambda_{\min }(A)\right|$, and thus $\kappa:=\mu(P)$.

Lyapunov Inequality

Another way to get the values of κ and α is to solve the Lyapunov Inequality, i.e.,

$$
\begin{equation*}
P A+A^{\top} P \preceq-2 \alpha P . \tag{6}
\end{equation*}
$$

for some $\alpha \leq\left|\Re \lambda_{\min }(A)\right|$, and thus $\kappa:=\mu(P)$.
We only have to easy cases:

- A is diagonalizable, and $\alpha=\left|\Re \lambda_{\min }(A)\right|$,
- $A^{\top}+A \prec 0$, and $\alpha=\left|\Re \lambda_{\text {min }}\left(A^{\top}+A\right)\right| / 2$.

Lyapunov Inequality

Another way to get the values of κ and α is to solve the Lyapunov Inequality, i.e.,

$$
\begin{equation*}
P A+A^{\top} P \preceq-2 \alpha P . \tag{6}
\end{equation*}
$$

for some $\alpha \leq\left|\Re \lambda_{\min }(A)\right|$, and thus $\kappa:=\mu(P)$.
We only have to easy cases:

- A is diagonalizable, and $\alpha=\left|\Re \lambda_{\min }(A)\right|$,
- $A^{\top}+A \prec 0$, and $\alpha=\left|\Re \lambda_{\text {min }}\left(A^{\top}+A\right)\right| / 2$.

Problem: What happens when A has a non-trivial Jordan Block form?

Presentation Outline

(1) Stability via Lyapunov's direct method

- Lyapunov Equation
- Parameters of the exponential convergence
- Lyapunov Inequality
(2) Explicit solution of the Lyapunov Inequality
- A recap on the Jordan Block form
- A modified Jordan form
- Explicit solutions of Lyapunov Inequality
- An example
(3) Generalized Lyapunov Inequality
- Some explicit solution to Generalized Lyapunov InequalityConclusions

A recap on the Jordan Block form

Given a matrix A of dimensions $n \times n$, its eigenvalues are ordered $\Re\left\{\lambda_{1}\right\} \geq \Re\left\{\lambda_{2}\right\} \geq \ldots \geq \Re\left\{\lambda_{n}\right\}$. Let $m \leq n$ be the total number of linearly independent eigenvectors $T_{i}^{1} \neq 0^{2}$ relative to an eigenvalue $\bar{\lambda}_{i} \in \sigma(A)$,
$i=1, \ldots, m$, such that

$$
A T_{i}^{1}=\bar{\lambda}_{i} T_{i}^{1} \quad \forall i=1, \ldots, m
$$

[^2]
A recap on the Jordan Block form

Given a matrix A of dimensions $n \times n$, its eigenvalues are ordered $\Re\left\{\lambda_{1}\right\} \geq \Re\left\{\lambda_{2}\right\} \geq \ldots \geq \Re\left\{\lambda_{n}\right\}$. Let $m \leq n$ be the total number of linearly independent eigenvectors $T_{i}^{1} \neq 0^{2}$ relative to an eigenvalue $\bar{\lambda}_{i} \in \sigma(A)$, $i=1, \ldots, m$, such that

$$
A T_{i}^{1}=\bar{\lambda}_{i} T_{i}^{1} \quad \forall i=1, \ldots, m
$$

Definition (Jordan blocks dimension)

For each $i \in\{1, \ldots, m\}$, we define the values ${ }^{a} g_{i} \geq 1$ satisfying $\sum_{i=1}^{m} g_{i}=n$, such that there exist $g_{i}-1$ linearly independent generalized eigenvectors $T_{i}^{k} \neq 0$, for $k=2, \ldots, g_{i}$, associated to the corresponding eigenvalue $\bar{\lambda}_{i}$ and satisfying

$$
\left(A-\bar{\lambda}_{i} I\right) T_{i}^{k}=T_{i}^{k-1} \quad \forall k=2, \ldots, g_{i} .
$$

[^3][^4]
A recap on the Jordan Block form

Given a matrix A of dimensions $n \times n$, its eigenvalues are ordered $\Re\left\{\lambda_{1}\right\} \geq \Re\left\{\lambda_{2}\right\} \geq \ldots \geq \Re\left\{\lambda_{n}\right\}$. Let $m \leq n$ be the total number of linearly independent eigenvectors $T_{i}^{1} \neq 0^{2}$ relative to an eigenvalue $\bar{\lambda}_{i} \in \sigma(A)$, $i=1, \ldots, m$, such that

$$
A T_{i}^{1}=\bar{\lambda}_{i} T_{i}^{1} \quad \forall i=1, \ldots, m
$$

Definition (Jordan blocks dimension)

For each $i \in\{1, \ldots, m\}$, we define the values ${ }^{a} g_{i} \geq 1$ satisfying $\sum_{i=1}^{m} g_{i}=n$, such that there exist $g_{i}-1$ linearly independent generalized eigenvectors $T_{i}^{k} \neq 0$, for $k=2, \ldots, g_{i}$, associated to the corresponding eigenvalue $\bar{\lambda}_{i}$ and satisfying

$$
\left(A-\bar{\lambda}_{i} I\right) T_{i}^{k}=T_{i}^{k-1} \quad \forall k=2, \ldots, g_{i} .
$$

[^5]The standard Jordan form is given by

$$
J=T A T^{-1}, \quad J=\operatorname{blckdiag}\left(\bar{\lambda}_{1} I_{g_{1}}+N_{g_{1}}, \quad, \bar{\lambda}_{m} I_{g_{m}}+N_{g_{m}}\right)
$$

where I_{g} is the identity matrix of dimension g and $N_{g} \in \mathbb{R}^{g \times g}$ is the 'shifted' identity matrix $g \in \mathbb{N}$.

[^6]
A modified Jordan form

For any $\lambda \in \mathcal{C}$ and $g \in \mathbb{N}$, we introduce the matrix $D_{g}(\lambda) \in \mathbb{R}^{g \times g}$ as

$$
D_{g}(\lambda):= \begin{cases}\operatorname{diag}\left(1, \lambda, \ldots, \lambda^{g-1}\right), & \text { if } \lambda \neq 0 \tag{7}\\ I_{g}, & \text { if } \lambda=0\end{cases}
$$

and

$$
\begin{equation*}
\mathbb{J}_{g}:=I_{g}+N_{g} . \tag{8}
\end{equation*}
$$

A modified Jordan form

For any $\lambda \in \mathcal{C}$ and $g \in \mathbb{N}$, we introduce the matrix $D_{g}(\lambda) \in \mathbb{R}^{g \times g}$ as

$$
D_{g}(\lambda):= \begin{cases}\operatorname{diag}\left(1, \lambda, \ldots, \lambda^{g-1}\right), & \text { if } \lambda \neq 0 \tag{7}\\ I_{g}, & \text { if } \lambda=0\end{cases}
$$

and

$$
\begin{equation*}
\mathrm{J}_{g}:=I_{g}+N_{g} \tag{8}
\end{equation*}
$$

We can use the matrix $D_{g}(\bar{\lambda})$ defined in (7) to obtain

$$
D_{g}^{-1}(\bar{\lambda}) J_{\bar{\lambda}} D_{g}(\bar{\lambda})=D_{g}^{-1}(\bar{\lambda})\left(\bar{\lambda} I_{g}+N_{g}\right) D_{g}(\bar{\lambda})=\bar{\lambda} I_{g}+\bar{\lambda} N_{g}=\bar{\lambda} J_{g}
$$

because $D_{g}^{-1}(\lambda) N_{g} D_{g}(\lambda)=\lambda N_{g}$.

A modified Jordan form

For any $\lambda \in \mathcal{C}$ and $g \in \mathbb{N}$, we introduce the matrix $D_{g}(\lambda) \in \mathbb{R}^{g \times g}$ as

$$
D_{g}(\lambda):= \begin{cases}\operatorname{diag}\left(1, \lambda, \ldots, \lambda^{g-1}\right), & \text { if } \lambda \neq 0 \tag{7}\\ I_{g}, & \text { if } \lambda=0\end{cases}
$$

and

$$
\begin{equation*}
\mathrm{J}_{g}:=I_{g}+N_{g} \tag{8}
\end{equation*}
$$

We can use the matrix $D_{g}(\bar{\lambda})$ defined in (7) to obtain

$$
D_{g}^{-1}(\bar{\lambda}) J_{\bar{\lambda}} D_{g}(\bar{\lambda})=D_{g}^{-1}(\bar{\lambda})\left(\bar{\lambda} I_{g}+N_{g}\right) D_{g}(\bar{\lambda})=\bar{\lambda} I_{g}+\bar{\lambda} N_{g}=\bar{\lambda} J_{g}
$$

because $D_{g}^{-1}(\lambda) N_{g} D_{g}(\lambda)=\lambda N_{g}$. The extension of $D_{g}(\lambda)$ will be the matrix

$$
\begin{equation*}
\mathbb{D}:=\operatorname{blckdiag}\left(D_{g_{1}}\left(\bar{\lambda}_{1}\right), \ldots, D_{g_{m}}\left(\bar{\lambda}_{m}\right)\right) \tag{9}
\end{equation*}
$$

A modified Jordan form

For any $\lambda \in \mathcal{C}$ and $g \in \mathbb{N}$, we introduce the matrix $D_{g}(\lambda) \in \mathbb{R}^{g \times g}$ as

$$
D_{g}(\lambda):= \begin{cases}\operatorname{diag}\left(1, \lambda, \ldots, \lambda^{g-1}\right), & \text { if } \lambda \neq 0 \tag{7}\\ I_{g}, & \text { if } \lambda=0\end{cases}
$$

and

$$
\begin{equation*}
\mathrm{J}_{g}:=I_{g}+N_{g} \tag{8}
\end{equation*}
$$

We can use the matrix $D_{g}(\bar{\lambda})$ defined in (7) to obtain

$$
D_{g}^{-1}(\bar{\lambda}) J_{\bar{\lambda}} D_{g}(\bar{\lambda})=D_{g}^{-1}(\bar{\lambda})\left(\bar{\lambda} I_{g}+N_{g}\right) D_{g}(\bar{\lambda})=\bar{\lambda} I_{g}+\bar{\lambda} N_{g}=\bar{\lambda} J_{g}
$$

because $D_{g}^{-1}(\lambda) N_{g} D_{g}(\lambda)=\lambda N_{g}$. The extension of $D_{g}(\lambda)$ will be the matrix

$$
\begin{equation*}
\mathrm{D}:=\operatorname{blckdiag}\left(D_{g_{1}}\left(\bar{\lambda}_{1}\right), \ldots, D_{g_{m}}\left(\bar{\lambda}_{m}\right)\right) \tag{9}
\end{equation*}
$$

Modified Jordan form: It is given by

$$
\begin{equation*}
\mathbb{J}:=\mathbb{T}^{-1} A \mathbb{T}, \quad \mathbb{T}:=T \mathbb{D} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{J}=\operatorname{blckdiag}\left(\bar{\lambda}_{1} \mathrm{~J}_{g_{1}}, \ldots, \bar{\lambda}_{m} \mathrm{~J}_{g_{m}}\right)=\Lambda(I+N) \tag{11}
\end{equation*}
$$

with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $N=\operatorname{blckdiag}\left(N_{g_{1}}, \ldots, N_{g_{m}}\right)$.

Explicit solutions of Lyapunov Inequality

Given a Hurwitz matrix A, we can explicitly write the norm of the solution to the system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n} \tag{12}
\end{equation*}
$$

via the Jordan blocks normal form, with $g_{\text {max }}=\max _{i \in\{1, \ldots, m\}}\left\{g_{i}\right\}$, as

$$
|x(t)|=\left|T \exp (\Lambda t) \sum_{k=0}^{g_{\max }} \frac{N^{k} t^{k}}{k!} T^{-1} x(0)\right|
$$

Explicit solutions of Lyapunov Inequality

Given a Hurwitz matrix A, we can explicitly write the norm of the solution to the system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}, \tag{12}
\end{equation*}
$$

via the Jordan blocks normal form, with $g_{\text {max }}=\max _{i \in\{1, \ldots, m\}}\left\{g_{i}\right\}$, as

$$
|x(t)|=\left|T \exp (\Lambda t) \sum_{k=0}^{g_{\max }} \frac{N^{k} t^{k}}{k!} T^{-1} x(0)\right| \leq \kappa \exp (-\alpha t)|x(0)|
$$

such that α dependence explicitly on the eigenstructure (not only on the eigenvalues) of the system.

Explicit solutions of Lyapunov Inequality

Given a Hurwitz matrix A, we can explicitly write the norm of the solution to the system dynamics

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \in \mathbb{R}^{n}, \tag{12}
\end{equation*}
$$

via the Jordan blocks normal form, with $g_{\max }=\max _{i \in\{1, \ldots, m\}}\left\{g_{i}\right\}$, as

$$
|x(t)|=\left|T \exp (\Lambda t) \sum_{k=0}^{g_{\max }} \frac{N^{k} t^{k}}{k!} T^{-1} x(0)\right| \leq \kappa \exp (-\alpha t)|x(0)|
$$

such that α dependence explicitly on the eigenstructure (not only on the eigenvalues) of the system.

Theorem

Consider an asymptotically stable system (12), and the transformation matrix \mathbb{T} that puts A into its Modified Jordan form J. Then the scaling factor κ and the convergence rate α are given by

$$
\begin{equation*}
\kappa=\mu(\mathbb{T}), \alpha=-\Re\left\{\lambda_{\max }(\operatorname{sym}(\mathbb{J}))\right\} \tag{13}
\end{equation*}
$$

Where $\lambda_{\max }(\operatorname{sym}(\mathbb{J}))$ can be written as an explicit function of $\bar{\lambda}_{i}$ and g_{i}, with $i=1, \ldots, m$. $P=\mathbb{T}^{-\top} \mathbb{T}^{-1}$ is solution of the Lyapunov Inequality (6).

An example

Take $A=-1(I+N) \in \mathbb{R}^{10 \times 10}$, i.e., there is an eigenvalue $\lambda=-1$, with geometric multiplicity $g=n=10$.

An example

Take $A=-1(I+N) \in \mathbb{R}^{10 \times 10}$, i.e., there is an eigenvalue $\lambda=-1$, with geometric multiplicity $g=n=10$. We depict the evolution of the state norm $|z(t)|$, from initial conditions

$$
\begin{align*}
z_{0}= & {[0.01001979,0.02185996,-0.01413963,0.08315555,-0.14693675,0.31947075} \\
& -0.4683713,0.59627956,-0.4827674,0.24631203]^{\top} . \tag{14}
\end{align*}
$$

Figure: Evolution of the norm of $z(t)$ and its upper bounds.

[^7]M. Spirito \& D. Astolfi - Generalized Lyapunov Inequality - May 31, 2024 7|10

Presentation Outline

(1) Stability via Lyapunov's direct method

- Lyapunov Equation
- Parameters of the exponential convergence
- Lyapunov Inequality
(2) Explicit solution of the Lyapunov Inequality
- A recap on the Jordan Block form
- A modified Jordan form
- Explicit solutions of Lyapunov Inequality
- An example
(3) Generalized Lyapunov Inequality
- Some explicit solution to Generalized Lyapunov Inequality

Generalized Lyapunov Inequality

Definition (Matrix inertia)

The inertia of a matrix P with respect to the imaginary axis (c-inertia) is defined by the triplet of integers

$$
\operatorname{In}_{c}(P)=\left\{\pi_{-}(P), \pi_{0}(P), \pi_{+}(P)\right\}
$$

where $\pi_{-}(P), \pi_{0}(P)$ and $\pi_{+}(P)$, denote the numbers of eigenvalues of P, counted with their algebraic multiplicities, with negative, zero, and positive real part, respectively.

Generalized Lyapunov Inequality

Definition (Matrix inertia)

The inertia of a matrix P with respect to the imaginary axis (c-inertia) is defined by the triplet of integers

$$
\operatorname{In}_{c}(P)=\left\{\pi_{-}(P), \pi_{0}(P), \pi_{+}(P)\right\}
$$

where $\pi_{-}(P), \pi_{0}(P)$ and $\pi_{+}(P)$, denote the numbers of eigenvalues of P, counted with their algebraic multiplicities, with negative, zero, and positive real part, respectively.

For a real matrix $A \in \mathbb{R}^{n \times n}$, we take its $m \leq n$ Jordan-distinct eigenvalues in order withh decreasing real part, i.e.,

$$
\begin{equation*}
\Re\left\{\bar{\lambda}_{1}\right\} \geq \ldots \geq \Re\left\{\bar{\lambda}_{q}\right\}>0>\Re\left\{\bar{\lambda}_{q+1}\right\} \geq \ldots \geq \Re\left\{\bar{\lambda}_{m}\right\} \tag{15}
\end{equation*}
$$

where $q \in[0, n]$ and we let $p=\sum_{i=1}^{q} g_{i}$.

Generalized Lyapunov Inequality

Definition (Matrix inertia)

The inertia of a matrix P with respect to the imaginary axis (c-inertia) is defined by the triplet of integers

$$
\operatorname{In}_{c}(P)=\left\{\pi_{-}(P), \pi_{0}(P), \pi_{+}(P)\right\}
$$

where $\pi_{-}(P), \pi_{0}(P)$ and $\pi_{+}(P)$, denote the numbers of eigenvalues of P, counted with their algebraic multiplicities, with negative, zero, and positive real part, respectively.

For a real matrix $A \in \mathbb{R}^{n \times n}$, we take its $m \leq n$ Jordan-distinct eigenvalues in order withh decreasing real part, i.e.,

$$
\begin{equation*}
\Re\left\{\bar{\lambda}_{1}\right\} \geq \ldots \geq \Re\left\{\bar{\lambda}_{q}\right\}>0>\Re\left\{\bar{\lambda}_{q+1}\right\} \geq \ldots \geq \Re\left\{\bar{\lambda}_{m}\right\} \tag{15}
\end{equation*}
$$

where $q \in[0, n]$ and we let $p=\sum_{i=1}^{q} g_{i}$.

Problem (Generalized Lyapunov Inequality)

Given a matrix A of c-inertia $\{n-p, 0, p\}$, Find a solution P to the generalized Lyapunov matrix inequality

$$
\begin{equation*}
P A+A^{\top} P \preceq 2 \alpha P, \quad \alpha \in \mathbb{R}, \quad P=P^{\top}, \tag{16}
\end{equation*}
$$

for some $\alpha \in \mathbb{R}$ such that P is a symmetric matrix of c-inertia $\{p, 0, n-p\}$.

Some explicit solution to Generalized Lyapunov Inequality

Define the matrix

$$
\begin{equation*}
\mathbb{D}_{\varepsilon}:=\operatorname{blckdiag}\left(D_{g_{1}}(\varepsilon), \ldots, D_{g_{m}}(\varepsilon)\right) \tag{17}
\end{equation*}
$$

Some explicit solution to Generalized Lyapunov Inequality

Define the matrix

$$
\begin{equation*}
\mathbb{D}_{\varepsilon}:=\operatorname{blckdiag}\left(D_{g_{1}}(\varepsilon), \ldots, D_{g_{m}}(\varepsilon)\right) \tag{17}
\end{equation*}
$$

Given $\delta \in(0,1)$, we let ε_{δ} be defined as $\varepsilon_{\delta}=\min \left\{\varepsilon_{+}^{*}, \varepsilon_{-}^{*}\right\}$,

$$
\begin{align*}
& \varepsilon_{+}^{*}=\min _{i \in\{1, \ldots, q\}}\left\{\cos \left(\pi \frac{g_{i}}{g_{i}+1}\right)^{-1}\left[\frac{\left|\Re\left\{\bar{\lambda}_{q}\right\}\right|}{\left|\Re\left\{\bar{\lambda}_{i}\right\}\right|}(1-\delta)-1\right]\right\}, \\
& \varepsilon_{-}^{*}=\min _{i \in\{q+1, \ldots, m\}}\left\{\cos \left(\pi \frac{g_{i}}{g_{i}+1}\right)^{-1}\left[\frac{\left|\Re\left\{\bar{\lambda}_{q+1}\right\}\right|}{\left|\Re\left\{\bar{\lambda}_{i}\right\}\right|}(1-\delta)-1\right]\right\} . \tag{18}
\end{align*}
$$

Some explicit solution to Generalized Lyapunov Inequality

Define the matrix

$$
\begin{equation*}
\mathbb{D}_{\varepsilon}:=\operatorname{blckdiag}\left(D_{g_{1}}(\varepsilon), \ldots, D_{g_{m}}(\varepsilon)\right) \tag{17}
\end{equation*}
$$

Given $\delta \in(0,1)$, we let ε_{δ} be defined as $\varepsilon_{\delta}=\min \left\{\varepsilon_{+}^{*}, \varepsilon_{-}^{*}\right\}$,

$$
\begin{align*}
& \varepsilon_{+}^{*}=\min _{i \in\{1, \ldots, q\}}\left\{\cos \left(\pi \frac{g_{i}}{g_{i}+1}\right)^{-1}\left[\frac{\left|\Re\left\{\bar{\lambda}_{q}\right\}\right|}{\left|\Re\left\{\bar{\lambda}_{i}\right\}\right|}(1-\delta)-1\right]\right\}, \\
& \varepsilon_{-}^{*}=\min _{i \in\{q+1, \ldots, m\}}\left\{\cos \left(\pi \frac{g_{i}}{g_{i}+1}\right)^{-1}\left[\frac{\left|\Re\left\{\bar{\lambda}_{q+1}\right\}\right|}{\left|\Re\left\{\bar{\lambda}_{i}\right\}\right|}(1-\delta)-1\right]\right\} . \tag{18}
\end{align*}
$$

Theorem

Let A be a matrix with c-inertia $\{n-p, 0, p\}$. For any $\delta \in(0,1)$ there exists $\varepsilon_{\delta}>0$ defined in (18), such that, for any $\varepsilon \in\left(0, \varepsilon_{\delta}\right]$, the following P with c-inertia $\{p, 0, n-p\}$

$$
\begin{align*}
P & :=\mathbb{T}^{-\top} \mathbb{I D} \bar{\varepsilon}^{-2} \mathbb{T}^{-1}, \quad \mathbb{T}:=T \mathbb{D}, \\
\mathbb{I} & :=\operatorname{blckdiag}\left(-I_{p}, I_{n-p}\right), \tag{19}
\end{align*}
$$

is a solution to the generalized Lyapunov matrix inequality (16) with $\alpha \in \mathbb{R}$ satisfying

$$
\begin{equation*}
(1-\delta) \Re\left\{\bar{\lambda}_{q}\right\} \geq \alpha \geq(1-\delta) \Re\left\{\bar{\lambda}_{q+1}\right\} . \tag{20}
\end{equation*}
$$

Presentation Outline

(1) Stability via Lyapunov's direct method

- Lyapunov Equation
- Parameters of the exponential convergence
- Lyapunov Inequality
(2) Explicit solution of the Lyapunov Inequality
- A recap on the Jordan Block form
- A modified Jordan form
- Explicit solutions of Lyapunov Inequality
- An example
(3) Generalized Lyapunov Inequality
- Some explicit solution to Generalized Lyapunov Inequality
(4) Conclusions

Conclusions

$$
\text { M. Spirito \& D. Astolfi - Generalized Lyapunov Inequality - May 31, } 2024 \text { 10|10 }
$$

Conclusions

- We recalled the Lyapunov approach to study the stability of Linear systems.

Conclusions

- We recalled the Lyapunov approach to study the stability of Linear systems.
- Lyapunov Equation
- Lyapunov Inequality
- Exponential convergence parameters
- We gave some explicit parameters of exponential convergence

Conclusions

- We recalled the Lyapunov approach to study the stability of Linear systems.
- Lyapunov Equation
- Lyapunov Inequality
- Exponential convergence parameters
- We gave some explicit parameters of exponential convergence
- Modified Jordan form
- Explicit solution to Lyapunov Inequality
- An example for comparison
- Extension to the Generalized Lyapunov Inequality

Conclusions

- We recalled the Lyapunov approach to study the stability of Linear systems.
- Lyapunov Equation
- Lyapunov Inequality
- Exponential convergence parameters
- We gave some explicit parameters of exponential convergence
- Modified Jordan form
- Explicit solution to Lyapunov Inequality
- An example for comparison
- Extension to the Generalized Lyapunov Inequality

Thank you for your attention.

Conclusions

- We recalled the Lyapunov approach to study the stability of Linear systems.
- Lyapunov Equation
- Lyapunov Inequality
- Exponential convergence parameters
- We gave some explicit parameters of exponential convergence
- Modified Jordan form
- Explicit solution to Lyapunov Inequality
- An example for comparison
- Extension to the Generalized Lyapunov Inequality

Thank you for your attention. Any Questions?

[^0]: ${ }^{1} Q$ is a degree of freedom, and it can be taken as $Q=2 q I$, for some real $q>0$

[^1]: ${ }^{1} Q$ is a degree of freedom, and it can be taken as $Q=2 q I$, for some real $q>0$

[^2]: ${ }^{2}$ Associated to different Jordan Blocks

[^3]: ${ }^{a} g_{i}$ is not a geometric multiplicity.

[^4]: ${ }^{2}$ Associated to different Jordan Blocks

[^5]: ${ }^{a} g_{i}$ is not a geometric multiplicity.

[^6]: ${ }^{2}$ Associated to different Jordan Blocks

[^7]: Spirito \& Astolfi "Explicit convergence rate parameters for linear autonomous systems", submitted to MICNON 2024

