Object Oriented CRONE Toolbox for system identification and control

Rachid MALTI, Stéphane VICTOR, Patrick LANUSSE, Pierre MELCHIOR, and Alain OUSTALOUP

Journées de l’Automatique du GDR MACS
5 et 6 Octobre 2015 – Grenoble

Bordeaux, FRANCE
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Fractional derivatives and integrals

- Grünwald-Letnikov fractional derivatives
 \[D^\nu x(t) = \lim_{h \to 0} \frac{1}{h^\nu} \sum_{k=0}^{\infty} (-1)^k \binom{k}{\nu} x(t - kh). \]
 \[\nu = 1 \Rightarrow \lim_{h \to 0} \frac{x(t - kh) - x(t)}{h}. \]

- Fractional differential equations
 \[y(t) + a_1 D^{\alpha_1} y(t) + \cdots + a_N D^{\alpha_N} y(t) = b_0 D^{\beta_0} u(t) + \cdots + b_M D^{\beta_M} u(t), \]

- Laplace transform
 \[\mathcal{L} \{ D^\nu x(t) \} = s^\nu X(s). \]

- History of the CRONE Toolbox
 - Development started in the late 1990’s as a standard non-OO toolbox,
 - Development of the OO-CRONE toolbox starting from 2004,
 - Free downloads from 2011.
Fractional polynomials

- Fractional explicit polynomials (Cole-Cole transfer functions):

\[p(s) = \sum_{i=0}^{L} c_i s^{\gamma_i} \]

Characterized by two linked sequences:

\([c_0, c_1, \ldots, c_L]\) and \([\gamma_0, \gamma_1, \ldots, \gamma_L]\).

- Fractional implicit polynomials (Havriliak-Negami transfer functions):

\[\tilde{p}(s) = p(s)^\beta = \left(\sum_{i=0}^{L} c_i s^{\gamma_i} \right)^\beta \]

Characterized by

An explicit polynomial and a diff order \(\beta\).
Fractional polynomials

- Fractional explicit polynomials (Cole-Cole transfer functions):

\[p(s) = \sum_{i=0}^{L} c_i s^{\gamma_i} \]

Characterized by two linked sequences

\[[c_0, c_1, \ldots, c_L] \] and \[[\gamma_0, \gamma_1, \ldots, \gamma_L] \].

- Fractional implicit polynomials (Havriliak-Negami transfer functions):

\[\tilde{p}(s) = p(s)^\beta = \left(\sum_{i=0}^{L} c_i s^{\gamma_i} \right)^\beta \]

Characterized by

An explicit polynomial and a diff order \(\beta \).
Fractional system representation

- Fractional transfer function in a developed form:

\[
H(s) = \frac{\sum_{i=0}^{M} b_i s^{\beta_i}}{1 + \sum_{j=1}^{N} a_j s^{\alpha_j}}
\]

- Fractional transfer function in a factorized form:

\[
H(s) = K \frac{\prod_{i=0}^{m} (s^{\nu} + z_i)}{\prod_{j=0}^{n} (s^{\nu} + p_j)}
\]

- Fractional (or pseudo-) state space representation:

\[
D^{\nu} x(t) = A x(t) + B u(t) \\
y(t) = C x(t) + D u(t)
\]
Fractional system representation

- Fractional transfer function in a developed form:
 \[
 H(s) = \frac{\sum_{i=0}^{M} b_i s^{\beta_i}}{1 + \sum_{j=1}^{N} a_j s^{\alpha_j}}
 \]

- Fractional transfer function in a factorized form:
 \[
 H(s) = K \prod_{i=0}^{m} \left(s^{\nu} + z_i \right) \frac{1}{\prod_{j=0}^{n} \left(s^{\nu} + p_j \right)}
 \]

- Fractional (or pseudo-) state space representation:
 \[
 D^\nu x(t) = Ax(t) + Bu(t)
 \]
 \[
 y(t) =Cx(t) + Du(t)
 \]
Fractional system representation

- Fractional transfer function in a developed form:
 \[H(s) = \frac{\sum_{i=0}^{M} b_i s^{\beta_i}}{1 + \sum_{j=1}^{N} a_j s^{\alpha_j}} \]

- Fractional transfer function in a factorized form:
 \[H(s) = K \prod_{i=0}^{m} (s^\nu + z_i) \]
 \[\prod_{j=0}^{n} (s^\nu + p_j) \]

- Fractional (or pseudo-) state space representation:
 \[D^\nu x(t) = Ax(t) + Bu(t) \]
 \[y(t) = Cx(t) + Du(t) \]
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Methods based on discrete-time models

- Approximation of a fractional differentiator by its discrete-time equivalent: \(s^\nu \rightarrow \psi(z^{-1}) \)
- As a result a discrete-time transfer function is obtained:

\[
\mathcal{H}(z^{-1}) = H(\psi(z^{-1})) = \frac{\sum_{i=0}^{M} b_i \psi(z^{-1})^{\beta_i}}{1 + \sum_{j=1}^{N} a_j \psi(z^{-1})^{\alpha_j}}
\]

- The discretization operator \(\psi(z^{-1}) \) of analogue circuits can be any of the usual operators. Euler’s operator (Grünwald definition) is implemented in the CRONE toolbox:

\[
\psi(z^{-1}) = \left(\frac{1-z^{-1}}{T_s} \right)^\nu = \left(\frac{1}{T_s} \right)^\nu \sum_{k=0}^{\infty} (-1)^k \binom{\nu}{k} z^{-k},
\]

Characterized by a sampling period \(T_s \).
Methods based on discrete-time models

- Approximation of a fractional differentiator by its discrete-time equivalent: $s^\nu \rightarrow \psi(z^{-1})$
- As a result a discrete-time transfer function is obtained:
 \[
 H(z^{-1}) = H(\psi(z^{-1})) = \frac{\sum_{i=0}^{M} b_i \psi(z^{-1})^{\beta_i}}{1 + \sum_{j=1}^{N} a_j \psi(z^{-1})^{\alpha_j}}
 \]
- The discretization operator $\psi(z^{-1})$ of analogue circuits can be any of the usual operators. Euler’s operator (Grünwald definition) is implemented in the CRONE toolbox:
 \[
 \psi(z^{-1}) = \left(\frac{1-z^{-1}}{T_s}\right)^\nu = \left(\frac{1}{T_s}\right)^\nu \sum_{k=0}^{\infty} (-1)^k \binom{\nu}{k} z^{-k},
 \]

Characterized by
a sampling period T_s.

Methods based on continuous-time models

Based on the approximation of a fractional model by a rational continuous-time one in a given frequency band.

- Let \(s^\gamma = s^{\gamma}_{[\omega_A, \omega_B]} \) \(\forall \omega \in [\omega_A, \omega_B] \) with \(0 < \gamma < 1 \)

- Oustaloup’s approximation: \(s^{\gamma}_{[\omega_A, \omega_B]} \approx A^{(\gamma)}_{\text{Oust}} = C(\gamma) \left(\frac{1 + \frac{s}{\omega_h}}{1 + \frac{s}{\omega_b}} \right)^\gamma \)

 \[\omega_b = \sigma^{-1} \omega_A \text{ and } \omega_h = \sigma \omega_B \text{ (} \sigma \text{ is usually set to 10)} \]

 \(C(\gamma) \) is chosen to get a unit gain at \(\omega = 1 \text{ rad s}^{-1} \):

 \[C(\gamma) = \left| \frac{1 + \frac{j}{\omega_h}}{1 + \frac{j}{\omega_b}} \right|^{-\gamma} = \left(\frac{\omega_h}{\omega_b} \right)^\gamma \left(\frac{1+\omega_b^2}{1+\omega_h^2} \right)^{\frac{\gamma}{2}} \]

- Trigeassou’s variant: \(s^{\gamma}_{[\omega_A, \omega_B]} \approx A^{(\gamma)}_{\text{Trig}} = C(\gamma-1)s \left(\frac{1 + \frac{s}{\omega_h}}{1 + \frac{s}{\omega_b}} \right)^{\gamma-1} \)

Oustaloup’s approximation

\(\omega_A, \omega_B, N \)

Trigeassou’s variant

\(\omega_A, \omega_B, N \)
Oustaloup and Trigeassou approximate the irrational part by a recursive distribution of poles and zeros:

\[
\left(\frac{1+\frac{s}{\omega_h}}{1+\frac{s}{\omega_b}} \right)^\gamma \approx \prod_{k=1}^{N} \left(\frac{1+\frac{s}{\omega_k}}{1+\frac{s}{\omega_k'}} \right)
\]

\[
\frac{\omega_{k+1}}{\omega_k} = \frac{\omega'_{k+1}}{\omega'_k} = \alpha \eta, \quad \frac{\omega_k}{\omega_k'} = \alpha, \quad \frac{\omega_{k+1}}{\omega_k} = \eta, \quad \gamma = \frac{\log(\alpha)}{\log(\alpha)+\log(\eta)}
\]

\[
\alpha = \left(\frac{\omega_h}{\omega_b} \right)^{\frac{\gamma}{N}} \quad \text{and} \quad \eta = \left(\frac{\omega_h}{\omega_b} \right)^{1-\frac{\gamma}{N}}
\]

Rational TF, equivalent a fractional TF:

\[
H(s) = \frac{\sum_{i=0}^{M} b_i s^{\beta_i}}{1+\sum_{j=1}^{N} a_j s^{\alpha_j}} \approx \mathcal{H}(s) = \frac{\sum_{i=0}^{M} b_i s^{\lfloor \beta_i \rfloor + A(\beta_i - \lfloor \beta_i \rfloor)}}{1+\sum_{j=1}^{N} a_j s^{\lfloor \alpha_j \rfloor + A(\alpha_j - \lfloor \alpha_j \rfloor)}},
\]

where \(A(\gamma) \) is either of Oustaloup’s or Trigeassou’s approximation of the fractional operators \(s^\gamma \), with \(0 < \gamma < 1 \).
Methods based on continuous-time models

Figure: Approximation of ideal differentiators using Oustaloup’s and Trigeassou’s methods
Methods based on continuous-time models

Figure: Approximation of ideal differentiators using Oustaloup’s and Trigeassou’s methods
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Class diagram of the OO-CRONE toolbox – Attributes
Methods associated to the OO-CRONE toolbox

- **General purpose methods**
 - `get`, `set` used to access data (data encapsulation),
 - `isnan`, `isempty`, `size`, `length`, `iscomplex` for general purpose op,
 - `horzcat`, `vertcat`, `subsref`, `subsasgn` for MIMO system handling,

- **Methods associated to operator overloading**
 - The main operators (+, −, ×, ×, /, \, ′, =, =, ...) are overloaded by rewriting `plus`, `minus`, `uminus`, `mtimes`, `times`, `ldivide`, `rdivide`, `transpose`, `eq`, `ne`, `display` scripts,

- **Methods associated automatic control (many methods developed for fractional TF, some methods implemented for MIMO TF)**
 - Frequency-domain simulation `bode`, `nichols`, `nyquist`,
 - Time-domain simulation `lsim` (with various options),
 - System identification `oe`, `lssvf`, `ivsvf`, `srivcf`, `oosrivcf`,
 - Stability `isstable`.
A focus on `isstable` method in the `frac_tf`-class

Based on Matignon’s stability theorem:

\[
F(s) = \frac{1}{s + s^{0.5} + 1}
\]

must have all its \(s^{0.5}\)-poles in the sector defined by:

\[
|\arg(s^{0.5})| > \pi/4
\]

Figure: Matignon’s stability theorem
An open problem

However, due to floating point arithmetics, the following TF might be coded in computers instead of $F(s)$:

$$F_\epsilon(s) = \frac{1}{s + s^{0.5+\epsilon} + 1}$$

$F_\epsilon(s)$ is comm. of ordre ϵ. Hence all the roots of the (with $p = s^\epsilon$):

$$p^{\frac{1}{\epsilon}} + p^{\frac{0.5}{\epsilon}+1} + 1$$

needs to be evaluated, which is impossible if ϵ is the machine-ϵ.

Problem formulation

- If $F(s) = \frac{1}{s + s^{0.5} + 1}$ is stable with a certain margin, is it possible to conclude on the stability of $F_\epsilon(s) = \frac{1}{s + s^{0.5+\epsilon} + 1}$?
- How to find that margin?
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
System Identification 1/2

- The toolbox supports transfer function models of the following forms:

\[y(t_k) = \frac{B(D)}{A(D)} u(t_k) + \frac{1}{F(D)} e(t_k), \quad (1) \]

- In the output error context, the following criterion is minimized

\[J = \sum_{k=1}^{K} (y(t_k) - y_m(t_k))^2 \quad (2) \]

\[
H(s) = \frac{\sum_{i=0}^{M} b_i s^{\beta_i}}{1 + \sum_{j=1}^{N} a_j s^{\alpha_j}} \quad \text{and} \quad H(s) = \frac{\sum_{i=0}^{m} \tilde{b}_i s^{i\nu}}{1 + \sum_{j=1}^{n} \tilde{a}_j s^{j\nu}}
\]

\[\nu \in (0, 2) \]
System Identification 2/2

Table:

<table>
<thead>
<tr>
<th>Sys. Id.</th>
<th>OE</th>
<th>ARX</th>
</tr>
</thead>
<tbody>
<tr>
<td>oe</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>lssvf</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ivsvf</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>srivcf</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>oosrivcf</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Methods for system identification using fractional models.

Table:

<table>
<thead>
<tr>
<th>Sys. Id. methods</th>
<th>Coefficients estimation</th>
<th>Commensurate order estimation</th>
<th>All order estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>oe</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>lssvf</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ivsvf</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srivcf</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oosrivcf</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Coefficient and/or order estimation.
Crone Control System Design tools 1/2

Figure: Crone CSD – user interface.
Figure: Crone CSD – user interface.
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Example 1 – Mass-spring-fractor

Figure: Mechanical system including a fractor $\nu \in [0, 1]$.

Constitutive equation in time domain ($x(t) = 0, f(t) = 0 \forall t < 0$):

$$mD^2x(t) + cD^\nu x(t) + kx(t) = f(t)$$

In the Laplace domain (with $\omega_0 = \sqrt{\frac{k}{m}}, \zeta = \frac{ck^\nu}{2m^\nu}$):

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + cs^\nu + k} = \frac{1/k}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta \left(\frac{s}{\omega_0}\right)^\nu + 1}.$$
Example 1 – Matlab code – Frequency domain behaviour

\[
\frac{X(s)}{F(s)} = \frac{1/k}{(\frac{s}{\omega_0})^2 + 2\zeta(\frac{s}{\omega_0})^\nu + 1}.
\]

\[m = 25\text{Kg}, \quad k = 50\text{N/m}, \quad \nu = 0.5, \quad c = 110\text{Kg/s}^\nu.\]

```matlab
m = 25; k = 50; c = 110; nu = 0.5; %Kg, N/m, kg/s^\nu
zeta = c * k^(nu/2 - 1)/(2*m^(nu/2)); w0 = sqrt(k/m)
M = frac_tf(1/k, ...
   frac_poly_exp([1/w0^2 2*zeta/w0^nu 1], ...
   [2, nu, 0]), 10, [1e-3 1e2])
M_Oust = frac2int(M);
set(M, 'sim', 'Trig'); M_Trig = frac2int(M);

[G, Ph, w] = bode(M, [1e-3 1e2]);
[GO, PhO, w] = bode(M_Oust, w);
[GT, PhT, w] = bode(M_Trig, w);
```
Example 1 – Frequency domain behaviour

\[\frac{X(s)}{F(s)} = \frac{1/k}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta \left(\frac{s}{\omega_0}\right)^\nu + 1}. \]

- \(\omega_0 = 1.41, \zeta = 1.31 \)

- Oustaloup’s approx and Trigeassou’s variant
 - \([\omega_a, \omega_b] = [10^{-2}, 10^3]\)
 - \(N = 10\)
Example 1 – Matlab code – Time-domain simulation

\[
\frac{X(s)}{F(s)} = \frac{1/k}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta \left(\frac{s}{\omega_0}\right) + 1}.
\]

1. \(Ts = 0.001; u = \text{[zeros}(0, 1); \text{ones}(10000, 1)]\);
2. \(t = ((0:\text{length}(u)-1)\ast Ts)'\);
3. \(\text{set}(\text{M}, \text{'sim'}, \text{'Oust'}); yO = \text{lsim}(\text{M}, u, t)\);
4. \(\text{set}(\text{M}, \text{'sim'}, \text{'Trig'}); yT = \text{lsim}(\text{M}, u, t)\);
5. \(\text{set}(\text{M}, \text{'sim'}, \text{'grun'}); yG = \text{lsim}(\text{M}, u, t)\);
6. \(\text{figure, plot}(t, yO, t, yT, t, yG, [0; t], ... \)
7. \([0; u]\ast 1\text{e-}2, [0, 10], [1/k \ 1/k], '--'\)
Example 1 – Time domain simulation

\[\frac{X(s)}{F(s)} = \frac{1/k}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta \left(\frac{s}{\omega_0}\right)^\nu + 1} . \]

- \(\omega_0 = 1.41, \zeta = 1.31 \)

- Oustaloup’s approx and Trigeassou’s variant
 - \([\omega_a, \omega_b] = [10^{-2}, 10^3] \)
 - \(N = 10 \)
Example 2 – Thermal diffusion

Figure: Thermal aluminium rod heated at one end.

Assumptions

1. The rod is perfectly isolated,
2. the rod is considered as a semi-infinite homogeneous plane medium with conductivity λ and diffusivity α,
3. at rest, the rod is at ambient temperature,
4. losses on the surface where the thermal flux is applied are neglected.
Example 2 – Thermal diffusion – Physical modeling

\[\frac{\partial^2 T(x, t)}{\partial x^2} - \frac{s}{\alpha} T(x, s) = 0, \]

where \(T(x, s) = \mathcal{L}\{T(x, t)\} \).

Evaluating the Laplace transform:

\[\frac{\partial^2 \tilde{T}(x, s)}{\partial x^2} - \frac{s}{\alpha} \tilde{T}(x, s) = 0, \]

Solving with respect to \(x \) yields:

\[\tilde{T}(x, s) = K_1(s) e^{-x\sqrt{\frac{s}{\alpha}}} + K_2(s) e^{x\sqrt{\frac{s}{\alpha}}}. \]

Taking into account limit conditions, the following transfer function is obtained:

\[H(x, s) = \frac{\tilde{T}(x, s)}{\tilde{\varphi}(s)} = \frac{\sqrt{\alpha}}{\lambda \sqrt{s}} e^{-x\sqrt{\frac{s}{\alpha}}}. \]

Figure: Semi-infinite planar medium

[Battaglia et al, 2001]
Example 2 – Thermal diffusion – Physical modeling

P^{th}-order Padé approximation of $H(x, s)$, at $x = x^*$:

$$H(x^*, s) \approx H_P(s) = \frac{\sqrt{\alpha}}{\lambda \sqrt{s}} \sum_{k=0}^{P} \frac{(2P-k)!}{k!(P-k)!} \left(-x^* \sqrt{\frac{s}{\alpha}}\right)^k$$

The integrator $H_0(s)$ and a first order order Padé approximation $H_1(s)$:

$$H_0(s) = \frac{4.21 \times 10^{-5}}{s^{0.5}},$$

$$H_1(s) = \frac{10^{-5}}{s^{0.5}} \left(\frac{-2.11s^{0.5} + 8.43}{0.50s^{0.5} + 2.00}\right).$$

Figure: Physical model $H(x, s)$ and its Padé approximations $H_0(s)$ and $H_1(s)$
Example 2 – System Identification from experimental data

- The aluminium rod is driven to a steady state by injecting a constant heat flux.
- A PRBS signal is generated around the constant flux.

```matlab
1 load('ThermalRodData.mat')
2 data = iddata(y,u,Ts);
3 sys_init = frac_tf(1, frac_poly_exp([1 1 1], ...
4     [1.2 0.6 0]), 24, [1e-5 5e1]);
5 sys_oe_coef = oe(sys_init, data,[],'coef');
6 sys_oe_comm = oe(sys_oe_coef, data,[],'comm');
7 sys_oe_all = oe(sys_oe_comm, data,[],'all');
8 figure, subplot(211),plot(t,y,'b',...
9     t,lsim(sys_oe_coef,u,t),'r--',...
10    t,lsim(sys_oe_comm,u,t),'g-.',...
11    t,lsim(sys_oe_all,u,t),'m')
```

Figure: Matlab script showing the use of oe routine (system identification) of the CRONE toolbox
Example 2 – System Identification from experimental data

Figure: Comparison among the three outputs of the oe routine. Similar results are obtained with oosrivoce routine.
Example 3 – MIMO systems

\[\text{sys} = \frac{1}{5s^{1.5} + 1}, \quad [\omega_b, \omega_h] = [10^{-2}, 10^2] \Rightarrow [\omega_A, \omega_B] = [10^{-1}, 10^1], \quad N = 4 \]

Are the approximations satisfactory in the frequency-domain?
Example 3 – MIMO systems

\[\text{sys} = \frac{1}{5s^{1.5}+1}, \quad [\omega_b, \omega_h] = [10^{-2}, 10^2] \Rightarrow [\omega_A, \omega_B] = [10^{-1}, 10^1], \ N = 4 \]

Are the approximations satisfactory in the frequency-domain?

```matlab
1  \% Frequency plot -- bode --
2  set(sys,'sim','Oust'); ApproxOust=frac2int(sys);
3  set(sys,'sim','Trig'); ApproxTrig=frac2int(sys);
4
5  [G, ph, w] = bode(sys, [1e-2 1e1]);
6  [GOust, phOust] = bode(ApproxOust, w);
7  [GTrig, phTrig] = bode(ApproxTrig, w);
8  figure(2), subplot(211)
9  semilogx(w, 10*log10(squeeze(GOust)), '--', ... 
10     w, 10*log10(squeeze(GTrig)), '-.', ... 
11     w,10*log10(squeeze(G))),grid,
12  subplot(212), semilogx(w,squeeze(phOust),w,...
13     squeeze(phTrig), w, squeeze(ph)), grid,
```
Example 3 – MIMO systems

\[\text{sys} = \frac{1}{5s^{1.5} + 1}, \quad [\omega_b, \omega_h] = [10^{-2}, 10^2] \Rightarrow [\omega_A, \omega_B] = [10^{-1}, 10^1], \quad N = 4 \]

Are the approximations satisfactory in the frequency-domain?

Figure: Approximations using Oustaloup’s and Trigeassou’s methods in the frequency band \([10^{-1}10^1]\) with \(N = 4\)
Overloading operators and MIMO time-response

```
1  % Example of operator overloading
2  sys2=(-sys^3+5*sys)
3
4    Frac_tf transfer function :
5        ( 625 s^4.5 + 375 s^3 + 70 s^1.5 + 4 )
6----------------------------------------
7        ( 625 s^6 + 500 s^4.5 + 150 s^3 + 20 s^1.5 + 1 )
8
9  % MIMO example
10  sysMIMO = [sys, sys ; sys2, sys2]
11  figure(3), lsim(sysMIMO, [u ; u], t);
12
13  Frac tf from input 1 to output:
14  #1 : Frac_tf transfer function :
15        ( 1 )
16-----------------------
17        ( 5 s^1.5 + 1 )
18  #2 : Frac_tf transfer function :
```
Example 3

\[sys = \left(-\left(\frac{1}{5s^{1.5}+1} \right)^3 + 5 \times \frac{1}{5s^{1.5}+1} \right) - \left(\frac{1}{5s^{1.5}+1} \right)^3 + 5 \times \frac{1}{5s^{1.5}+1} \]

Time-domain simulation of a fractional MIMO system
Outline

1. From fractional derivatives to fractional systems
2. Time-domain simulation of fractional systems
3. Class diagram of the OO-CRONE toolbox
4. Special scripts
5. Examples
6. Prospectives – General Information
Prospectives – General information

- Provide technical manuals
- Develop a GUI

Download

Any question, bug report, etc.

A forum is provided.

Test functions

Every developed function is tested with multiple cases. All test functions are provided for the users.

Enjoy!
Prospectives – General information

- Provide technical manuals
- Develop a GUI

Download

Any question, bug report, etc.

A forum is provided.

Test functions

Every developed function is tested with multiple cases. All test functions are provided for the users.

Enjoy!
Website – Free downloads

Figure: http://cronetoolbox.ims-bordeaux.fr