Contrôle et analyse de stabilité de systèmes de dimension infinie
Approches directes et indirectes par l'interpolation de Loewner

Pauline Kergus1, Charles Poussot-Vassal2, Pierre Vuillemin2

1Department of Automatic Control, Lund University
2DTIS, ONERA, Toulouse

Journées Nationales d’Automatique de la SAGIP

26/11/2020
Overview of the presentation

1. Introduction: Model Order Reduction (MOR) and Control
2. MOR-based control of infinite dimensional systems
3. MOR-based stability analysis
4. Conclusion
Motivations: why use model reduction?

Model approximation/reduction

Data
High/Infinite order model

Reduced-order model
\[\dot{x} = Ax + Bu \]
\[y =Cx + Du \]

- Simulation
- Analysis
- Optimization
- **Control**
Control of high-order systems

\[P: \begin{align*}
 \dot{E} &= Ax + Bu \\
 y &= Cx + Du
\end{align*} \]

Output: \(e^{-\tau s} \)

Input: \(\frac{\partial y}{\partial t}(u, t) = \ldots \)

High-order system \(P \)
Control of high-order systems

\[
P: \begin{align*}
 Ex &= Ax + Bu \\
 y &= Cx + Du \\
 e^{-ts} &
\end{align*}
\]

Use \(P\)

High-order system \(P\)

High-order \(K\) tailored to \(P\)

Control of high-order systems

\[P: \begin{align*}
 \dot{x} &= Ax + Bu \\
 y &= Cx + Du
\end{align*} \]

\[e^{-\tau s} \]

\[\frac{\partial y}{\partial t}(u, t) = \ldots \]

Use \(P \)

High-order \(K \) tailored to \(P \)

Use reduced-model \(P_r \)

\(K_r \), tailored to \(P_r \)

Control of high-order systems

\[\dot{x} = Ax + Bu \\
y = Cx + Du \]

Use \(P \)

Use reduced-model \(P_r \)

High-order \(K \) tailored to \(P \)

\(K_r \) tailored to \(P_r \)

Model-based design
Control of high-order systems

Control of high-order systems

\[P: \begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*} \]

Model reduction is everywhere

MOR-based control of infinite dimensional systems

1. Introduction: Model Order Reduction (MOR) and Control

2. MOR-based control of infinite dimensional systems
 - Illustrative example
 - The Loewner framework
 - Model-based approach
 - Data-driven approach
 - Model-based vs data-driven control

3. MOR-based stability analysis
 - Motivations
 - Loewner-based stability test

4. Conclusion
Illustrative example

\[
\frac{\partial \tilde{y}(x,t)}{\partial x} + 2x \frac{\partial \tilde{y}(x,t)}{\partial t} = 0 \quad \text{(transport equation)}
\]

\[
\tilde{y}(x,0) = 0 \quad \text{(initial condition)}
\]

\[
\tilde{y}(0, t) = \frac{1}{\sqrt{t}} \tilde{u}_f(0, t) \quad \text{(control input)}
\]

\[
\frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} u(0, s) = u_f(0, s) \quad \text{(controller bandwidth)},
\]
Illustrative example

\[y(x, s) = \frac{\sqrt{\pi}}{\sqrt{s}} e^{-x^2 s} \frac{\omega_0^2}{s^2 + m\omega_0 s + \omega_0^2} u(s) = H(x, s)u(0, s) \]

\[x = 1.9592 \]
The Loewner framework

Build \hat{H} such that

$\forall k, \hat{H}(s_k) = H(s_k)$
The Loewner framework

The Loewner framework

The Loewner framework

Model-based approach

Input
Plant's data \(\{\omega_i, H(\omega_i)\}_{i=1}^{N} \)

Step 1
Obtain a reduced-order and rational model \(\hat{H} \) of the system \(H \)

Step 2
Design a controller \(C \)
Model-based approach

Input
Plant's data \(\{ \omega_i, H(\omega_i) \}_{i=1}^{N} \)

Step 1
Obtain a reduced-order and rational model \(\hat{H} \) of the system \(H \)

\(\forall i, \; \hat{H}(\omega_i) = H(\omega_i) \)

Loewner framework

Step 2
Design a controller \(C \)

Graphs
- Normalized singular value of the Loewner matrix
- Chosen order \(r = 33 \)
- Gain vs. Frequency
- \(H(s, x) \)
- \(\hat{H}(s, x) \), with \(r = 33 \)
Model-based approach

Input
Plant's data \(\{ \omega_i, H(\omega_i) \}_{i=1}^N \)

Step 1
Obtain a reduced-order and rational model \(\hat{H} \) of the system \(H \)

Step 2
Design a controller \(C \)

\[C(s) = k_p + \frac{k_i}{s} \quad k_p = 0.191 \quad k_i = 0.0252 \]

\(\mathcal{H}_\infty \)-structured synthesis (hinfstruct)

![Graph showing \(\mathcal{H}_\infty \)-structured synthesis](image)

- Weight function \(W_e \)
- Sensitivity function \(\dot{S} \)
- Sensitivity function \(S \)

![Graph showing frequency response](image)

- Complementary sensitivity function \(\dot{M} \)
- Complementary sensitivity function \(M \)
Data-driven approach

\[K^* = H^{-1}M(1 - M)^{-1} \]
Data-driven approach

Input
- Plant's data \(\{\omega_i, H(\omega_i)\}_{i=1}^{N}\)
- Reference model \(M\)

Step 1
Define the ideal controller \(K^*\)

Step 2
Obtain a reduced order controller \(K\)

\[
K^* = H^{-1}M(1-M)^{-1}
\]

Risk of instability compensation in the open-loop:

\[
\begin{align*}
H(0) &= \infty & M(0) &= 1 \\
H(\infty) &= 0 & M(\infty) &= 0
\end{align*}
\]
Data-driven approach

Input
- Plant's data \(\{\omega_i, H(\omega_i)\}_{i=1}^N \)
- Reference model \(M \)

Step 1
Define the ideal controller \(K^* \)

Step 2
Obtain a reduced order controller \(K \)

\[
K^* = H^{-1}(1 - M)^{-1}
\]

Risk of instability compensation in the open-loop

\[
\begin{align*}
H(0) &= \infty & \Rightarrow & & M(0) &= 1 \\
H(\infty) &= 0 & & M(\infty) &= 0
\end{align*}
\]

\[
M_1(s) = \frac{1}{\frac{s^2}{\omega_0^2} + \frac{2s}{\omega_0} + 1} \\
M_2 = \frac{\hat{HC}}{1 + \hat{HC}}
\]

\(\omega_0 = 0.5 \text{rad} / s \)
Data-driven approach

- Plant's data \(\{\omega_i, H(\omega_i)\}_{i=1}^{N}\)
- Reference model \(M\)

Step 1
Define the ideal controller \(K^*\)

\[
K^* = H^{-1}M(1-M)^{-1}
\]

Risk of instability compensation in the open-loop

\[
\begin{align*}
H(0) &= \infty & M(0) &= 1 \\
H(\infty) &= 0 & M(\infty) &= 0
\end{align*}
\]

\[
M_1(s) = \frac{1}{\frac{s^2}{\omega_0^2} + \frac{2s}{\omega_0} + 1}
\]

\[
M_2 = \frac{\hat{HC}}{1 + \hat{HC}}
\]

\(\omega_0 = 0.5\text{rad/s}\)

Step 2
Obtain a reduced order controller \(K\)

\[
K_1(s) = \frac{0.1347s + 0.009259}{s + 0.001303}
\]

\[
K_2(s) = \frac{0.1914s + 0.02517}{s + 1.526 \cdot 10^{-5}} \approx C(s)
\]

Loewner framework
Data-driven approach

\[K^* = H^{-1}M(1 - M)^{-1} \]

Risk of instability compensation in the open-loop

\[
\begin{align*}
H(0) &= \infty & \Rightarrow & & M(0) = 1 \\
H(\infty) &= 0 & \Rightarrow & & M(\infty) = 0
\end{align*}
\]

\[
M_1(s) = \frac{1}{\frac{s^2}{\omega_0^2} + \frac{2s}{\omega_0} + 1} \quad M_2 = \frac{\hat{HC}}{1 + \hat{HC}}
\]

\[\omega_0 = 0.5 \text{ rad/s} \]
Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- Model based approach

- Data-driven approach
Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- **Model based approach**
 - more steps

- **Data-driven approach**
 + direct control design
 - less flexible specifications
Model-based vs data-driven control

The Loewner framework can be used as a central tool for the control of infinite dimensional transfer functions

- Model based approach
 - more steps
 - guaranteed stability but for the reduced-order model \hat{H}
- Data-driven approach
 + direct control design
 - less flexible specifications
 + conservative data-driven stability test
MOR-based stability analysis

1. Introduction: Model Order Reduction (MOR) and Control

2. MOR-based control of infinite dimensional systems
 - Illustrative example
 - The Loewner framework
 - Model-based approach
 - Data-driven approach
 - Model-based vs data-driven control

3. MOR-based stability analysis
 - Motivations
 - Loewner-based stability test

4. Conclusion
Motivations

Does the controller stabilise the real system?

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable $\Delta = K - K^*$ such that $\|\Delta\|_\infty \leq \gamma^{-1}$ if and only if $\|(1 - M)P\|_\infty < \gamma$

Motivations

Does the controller stabilise the real system?

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable \(\Delta = K - K^* \) such that \(\| \Delta \|_\infty \leq \gamma^{-1} \) if and only if \(\| (1 - M)P \|_\infty < \gamma \)

Loewner-based stability test

Loewner-based stability test

1. Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}$
Loewner-based stability test

1. Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}$

2. Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$
Loewner-based stability test

1. Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}$

2. Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$

3. Compute \hat{T}_s

$$\hat{T}_s = \arg\min_{\hat{T} \in \mathcal{S}_{n,n_i,n_o}^{\dagger}} \|T - \hat{T}\|_{\infty}$$

On the closest stable descriptor system in the respective spaces \mathcal{RH}_2 and \mathcal{RH}_∞, Kähler, M., Linear Algebra and its Applications, 2014.
Loewner-based stability test

1. Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}$

2. Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$

3. Compute \hat{T}_s

$$\hat{T}_s = \arg\min_{T \in \mathbb{S}^+_{n_i,n_o}} \|T - \hat{T}\|_\infty$$

4. Compute the stability index as $S = \|\hat{T}_s - \hat{T}\|_\infty$
Loewner-based stability test

1. Compute samples $T(j\omega_i) = \frac{C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}{1+C(j\omega_i)H(j\omega_i)e^{-\tau j\omega_i}}$

2. Obtain a minimal realisation \hat{T} through the Loewner framework such that $\hat{T}(j\omega_i) = T(j\omega_i)$

3. Compute \hat{T}_s

 \[
 \hat{T}_s = \arg\min_{T \in \mathbb{S}^+_{n_i,n_o}} \|T - \hat{T}\|_\infty
 \]

4. Compute the stability index as $S = \|\hat{T}_s - \hat{T}\|_\infty$

 IF $S < \epsilon$ then T is stable

 ELSE $S > \epsilon$ then T is unstable
Results

Stability tag as a function of the delay τ in the loop.
Nyquist diagram for varying values of τ: $S < 10^{-10}$ (stable configuration) and $S > 10^{-10}$ (unstable configuration).
The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems.
The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems.

It provides a stability test when used with a projection on \mathcal{RH}_∞.
The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems.

- It provides a stability test when used with a projection on \mathcal{RH}_∞.
- Move toward robustness analysis.

Model-based design:
- Use P
- High-order K tailored to P

Data-driven design:
- Use reduced-model P_r
- K_r tailored to P_r
- Use data
- Reduced controller
The Loewner framework is a versatile and efficient tool for the control of high/infinite-order systems.

- It provides a stability test when used with a projection on \mathcal{RH}_∞
- Move toward robustness analysis
- Which frequencies to use? What about noise?