Invariance and symbolic control on monotone systems
application to intelligent buildings

Pierre-Jean Meyer Antoine Girard Emmanuel Witrant

University of Grenoble, France

MOSAR-SDH, March 26th 2014
Outline

1. Temperature model and monotonicity
2. Invariance (CDC13)
3. Application (BuildSys13, ECC14)
4. Stabilization
5. Symbolic control
Underfloor Air Distribution

- Underfloor air cooled down
- Sent into the rooms by fans
- Air excess pushed through the ceiling exhausts
- Returned to the underfloor
- Disturbances: heat sources; opening of doors
Model

Temperature variations in room i:

- energy conservation;
- mass conservation.
Temperature variations in room i:

\[
\frac{dT_i}{dt} = \sum_j a_{i,j} (T_j - T_i) + b_i u_i (T_u - T_i) + \sum_j \delta_{dij} c_{i,j} * h(T_j - T_i) + \delta_{s_i} d_i (T_{s_i} - T_i^4) \]

Conduction through walls

Controlled fan air flow u_i

Open doors (flow hot→cold)

Radiation from heat sources
Model

Temperature variations in room i:

\[
\frac{dT_i}{dt} = \sum_j a_{i,j} (T_j - T_i) + b_i u_i (T_u - T_i) + \sum_j \delta_{d_{ij}} c_{i,j} \ast h(T_j - T_i) + \delta_{s_i} d_i (T_{s_i}^4 - T_i^4)
\]

- $a, b, c, d > 0$
- δ_s, δ_d: discrete state of the disturbances (heat sources and doors);
- \[
\begin{cases}
 h(x \leq 0) = 0 \\
 h(x > 0) = x^{3/2}
\end{cases}
\] : door heat transfer only in the colder room.
Generic system $\dot{x} = f(x, v)$ with trajectories $\Phi(t, x, v)$.

Definition (Monotonicity)

The system Φ is monotone if its trajectories preserve some partial orders:

\[v \preceq_v v', \ x \preceq_x x' \Rightarrow \forall t \geq 0, \ \Phi(t, x, v) \preceq_x \Phi(t, x', v') \]
Monotonicity

Generic system $\dot{x} = f(x, v)$ with trajectories $\Phi(t, x, v)$.

Definition (Partial order)

$x \succeq_x x' \iff \forall i, (-1)^{\varepsilon_i} (x_i - x'_i) \geq 0$, with $\varepsilon_i \in \{0, 1\}$
Monotonicity

Generic system $\dot{x} = f(x, \nu)$ with trajectories $\Phi(t, x, \nu)$.

Definition (Partial order)

$x \succeq x' \iff \forall i, (-1)^{\varepsilon_i} (x_i - x'_i) \geq 0$, with $\varepsilon_i \in \{0, 1\}$

Proposition (Angeli and Sontag, 2003)

The system defined by $\dot{x} = f(x, \nu)$ is monotone if and only if,

$$
\forall x \in \mathbb{R}^n, \forall \nu \in \mathbb{R}^m, \left\{ \begin{array}{l}
(-1)^{\varepsilon_i + \varepsilon_j} \frac{\partial f_i}{\partial x_j}(x, \nu) \geq 0, \hspace{1cm} \forall i, \forall j \neq i, \\
(-1)^{\varepsilon_i + \gamma_k} \frac{\partial f_i}{\partial \nu_k}(x, \nu) \geq 0, \hspace{1cm} \forall i, \forall k.
\end{array} \right.
$$

Where $\varepsilon \in \{0, 1\}^n$ and $\gamma \in \{0, 1\}^m$ define the partial orders for x and ν.
Monotonicity

Our model: \(\dot{T} = f(T, u, w, \delta) \)
- \(T \): state (temperature);
- \(u \): controlled input (fan air flow);
- \(w \): exogenous input (other temperatures);
- \(\delta \): discrete disturbance embedded in a continuous space.
Monotonicity

Our model: \(\dot{T} = f(T, u, w, \delta) \)
- \(T \): state (temperature);
- \(u \): controlled input (fan air flow);
- \(w \): exogenous input (other temperatures);
- \(\delta \): discrete disturbance embedded in a continuous space.

\[
T \succeq_T T' \iff \forall i, T_i \geq T'_i \\
u \succeq_u u' \iff \forall t \geq 0, \forall k, u_k(t) \leq u'_k(t) \\
w \succeq_w w' \iff \forall t \geq 0, \forall k, w_k(t) \geq w'_k(t) \\
\delta \succeq_\delta \delta' \iff \forall t \geq 0, \forall k, \delta_k(t) \geq \delta'_k(t)
\]

\[
\Phi(t, T, u, w, \delta) \succeq_T \Phi(t, T', u', w', \delta')
\]
Outline

1. Temperature model and monotonicity
2. Invariance (CDC13)
3. Application (BuildSys13, ECC14)
4. Stabilization
5. Symbolic control

Pierre-Jean Meyer (Grenoble)
Robust Invariance

Definition (Robust Invariance)

The system is *Robust Invariant* in an interval \([T_r, \overline{T}_r]\) if,

\[
\forall T_0 \in [T_r, \overline{T}_r], \forall w \in [\underline{w}, \overline{w}], \forall \delta \in [\underline{\delta}, \overline{\delta}], \forall u \in [\underline{u}, \overline{u}], \\
\forall t \geq 0, \Phi(t, T_0, u, w, \delta) \in [T_r, \overline{T}_r].
\]

Proposition

The minimal Robust Invariant interval \([T_r, \overline{T}_r]\) *is given by*

\[
\begin{align*}
\left\{ f(T_r, u, \overline{w}, \delta) &= 0 \\
f(T_r, \overline{u}, w, \delta) &= 0
\right.
\end{align*}
\]
Robust Controlled Invariance

Definition (Robust Controlled Invariance)

The system is *Robust Controlled Invariant* in $[\underline{T}, \overline{T}]$ if,

$$\forall T_0 \in [\underline{T}, \overline{T}], \forall w \in [\underline{w}, \overline{w}], \forall \delta \in [\underline{\delta}, \overline{\delta}],$$

$$\exists u \in [\underline{u}, \overline{u}] \mid \forall t \geq 0, \Phi(t, T_0, u, w, \delta) \in [\underline{T}, \overline{T}].$$
Robust Controlled Invariance

Definition (Robust Controlled Invariance)

The system is *Robust Controlled Invariant* in \([T, \overline{T}]\) if,

\[
\forall T_0 \in [T, \overline{T}], \ \forall w \in [\underline{w}, \overline{w}], \ \forall \delta \in [\underline{\delta}, \overline{\delta}],
\exists u \in [\underline{u}, \overline{u}] \mid \forall t \geq 0, \ \Phi(t, T_0, u, w, \delta) \in [T, \overline{T}].
\]
Definition (Robust Controlled Invariance)

The system is *Robust Controlled Invariant* in $[T, \overline{T}]$ if,

$$\forall T_0 \in [T, \overline{T}], \forall w \in [w, \overline{w}], \forall \delta \in [\delta, \overline{\delta}],$$

$$\exists u \in [u, \overline{u}] \mid \forall t \geq 0, \Phi(t, T_0, u, w, \delta) \in [T, \overline{T}].$$
Robust Controlled Invariance

Definition (Robust Controlled Invariance)

The system is Robust Controlled Invariant in \([T, \overline{T}]\) if,

\[
\forall T_0 \in [T, \overline{T}], \ \forall w \in [w, \overline{w}], \ \forall \delta \in [\delta, \overline{\delta}],
\exists u \in [u, \overline{u}] \mid \forall t \geq 0, \ \Phi(t, T_0, u, w, \delta) \in [T, \overline{T}].
\]
Proposition

The system is Robust Controlled Invariant in $[T, \overline{T}]$ if and only if

$$\forall i, \begin{cases} f_i(T, \bar{u}_i, \bar{w}, \delta) \leq 0 \\ f_i(T, \underline{u}_i, \underline{w}, \delta) \geq 0 \end{cases}$$
Proposition

The system is Robust Controlled Invariant in $[\underline{T}, \overline{T}]$ if and only if

$$\forall i, \begin{cases} f_i(\overline{T}, \overline{u_i}, \overline{w}, \delta) \leq 0 \\ f_i(\underline{T}, \underline{u_i}, \overline{w}, \delta) \geq 0 \end{cases}$$

Definition (Decentralized Bang-Bang Controller)

$$\forall i, \begin{cases} \underline{T_i} \geq \overline{T_i} \Rightarrow u_i = \overline{u_i} \\ \underline{T_i} \leq \overline{T_i} \Rightarrow u_i = \underline{u_i} \end{cases}$$
Controllable Spaces (2-room example)
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_2(T, u_2, w, \delta) \leq 0 \]

\[f_1(T, u_1, w, \delta) \geq 0 \]

\[f_2(T, u_2, w, \delta) \geq 0 \]

\[f(T, u, w, \delta) \leq 0 \]

\[f(T, u, w, \delta) \geq 0 \]
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_2(T, u_2, w, \delta) \leq 0 \]

\[f_1(T, u_1, w, \delta) \geq 0 \]

\[f_2(T, u_2, w, \delta) \geq 0 \]
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_2(T, u_2, w, \delta) \leq 0 \]

\[f_1(T, u_1, w, \delta) \geq 0 \]

\[f_2(T, u_2, w, \delta) \geq 0 \]
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_2(T, u_2, w, \delta) \leq 0 \]
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_2(T, u_2, w, \delta) \leq 0 \]

\[f_1(T, u_1, w, \delta) \geq 0 \]

\[f_2(T, u_2, w, \delta) \geq 0 \]

\[\begin{cases} f(T, u, w, \delta) \leq 0 \\ f(T, u, w, \delta) \geq 0 \end{cases} \]
Controllable Spaces (2-room example)

\[f_1(T, u_1, w, \delta) \leq 0 \]

\[f_1(T, u_1, w, \delta) \geq 0 \]

\[f_2(T, u_2, w, \delta) \geq 0 \]
Control simulation

3 discrete disturbances:
- heat source in room 1
- heat source in room 2
- door

8 possible combinations
Control simulation

3 discrete disturbances:
- heat source in room 1
- heat source in room 2
- door

8 possible combinations
Conclusion

Criterion for Robust Controlled Invariance

- for a class of monotone systems,
- with local control,
- and bounded disturbances.

- Independent of the feedback control strategy.
Outline

1. Temperature model and monotonicity
2. Invariance (CDC13)
3. Application (BuildSys13, ECC14)
4. Stabilization
5. Symbolic control
Experimental building

- $\approx 1m^3$
- 3 Peltier coolers
- Heat sources: lamps
- CompactRIO
- LabVIEW
Identification (least-squares) over 57079 data points ($\approx 16h$)

Evaluation on another scenario:

- Room 1
- Room 2
- Room 3
- Room 4

Graphs showing measured data and identified model for each room.
Control

- Linear saturated controller
- Interval satisfying the *Robust Controlled Invariance*:
1 Temperature model and monotonicity

2 Invariance (CDC13)

3 Application (BuildSys13, ECC14)

4 Stabilization

5 Symbolic control
Stabilization
Stabilization
Stabilization

Room 1

Room 2

Room 3

Room 4

Controlled experiment
Stabilization intervals

Temperature (°C)

Time (minutes)
Outline

1 Temperature model and monotonicity
2 Invariance (CDC13)
3 Application (BuildSys13, ECC14)
4 Stabilization
5 Symbolic control
Symbolic model

Discretization of the state space
Symbols: sets defined by the grid
Symbolic model

Next state of the symbol, given u: over-approximation
Automaton: intersection between over-approximation and symbols
Symbolic model

17th state “outside”: unsafe
Symbolic model

Increased memory [Moor and Raisch 2002]
More accuracy, bigger complexity
Symbolic model

Increased memory [Moor and Raisch 2002]
More accuracy, bigger complexity
Symbolic control

Choice of the control interval: not RCI
Symbolic control

Memory span 3
No memory, 4×4 symbols
Symbolic control

No memory, 10×10 symbols
Symbolic control

No memory, 15×15 symbols
No memory, 20×20 symbols
Symbolic control

No memory, 30×30 symbols
Symbolic control

No memory, 40×40 symbols
Conclusion and perspectives

Method

- Discretize the state space
- Generate the automaton for a chosen memory span
- Remove unsafe states to obtain the safe automaton
- Bigger complexity by increasing the memory than the discretization

Perspectives

- Improve efficiency of the algorithm
- Separate controllers for each disturbance condition
- Safe automaton non-deterministic controller: optimization over several future steps
Conclusion and perspectives

Method
- Discretize the state space
- Generate the automaton for a chosen memory span
- Remove unsafe states to obtain the safe automaton
- Bigger complexity by increasing the memory than the discretization

Perspectives
- Improve efficiency of the algorithm
- Separate controllers for each disturbance condition
- Safe automaton non-deterministic
 - controller: optimization over several future steps
Invariance and symbolic control on monotone systems
application to intelligent buildings

Pierre-Jean Meyer Antoine Girard Emmanuel Witrant

University of Grenoble, France

MOSAR-SDH, March 26th 2014