% Illustration of "lfr", "lfrdata", "flup" % K_2 = I_2 (1 d2^2 + 2 d2 + 3 ), from the manual: D11 = [0 0 1 0;0 0 0 1;0 0 0 0;0 0 0 0]; D12 = [0 0;0 0;1 0;0 1]; D21 = [1 0 2 0;0 1 0 2]; D22 = [3 0;0 3]; blk = struct('names',{{'delta_2'}},'desc',[4;4;1;1;1;1;1;2;-1;1;0]); K2 = lfr(D11,D12,D21,D22,blk); % Having such an LFR-object, it is possible to recover the matrices % D11, D12, D21, D22 and blk by typing respectively: K2a = K2.a; K2b = K2.b; K2c = K2.c; K2d = K2.d; K2blk = K2.blk; % For the same objective we can use lfrdata: [K2a,K2b,K2c,K2d,K2blk] = lfrdata(K2); size(K2) % In order to conclude this example we can check the result by closing % the Delta-loop. For that we shall invoke flup. valK2 = uplft(K2,{'delta_2'},10); valK2.d % The result should be 123*eye(2,2)