% Illustration of the function gmorton (generalized Morton's % realization) and of the function abcd2lfr. % Definition of the coefficients of an expansion sys0 = rss(4,2,3); sys1 = rss(4,2,3); sys2 = rss(4,2,3); % Realization of the system with [A B;C D] of the form % [A B;C D] = [A0 B0;C0 D0] + d1*[A1 B1;C1 D1] + d2*[A2 B2;C2 D2] lfrs d1 d2 sys = gmorton({sys0,sys1,sys2},[1 d1 d2]); % For checking the result abcd = [sys0.a sys0.b;sys0.c sys0.d] + ... d1 * [sys1.a sys1.b;sys1.c sys1.d] + ... d2 * [sys2.a sys2.b;sys2.c sys2.d]; newsys = abcd2lfr(abcd,4); distlfr(sys,newsys) % This function is a generalization of the Morton's method because % we can use complex expansion form: lfrs d1 d2 renewsys = gmorton({sys0,sys1,sys2},[1+d1^2 d1*d2 1/(1+d2)]);