% This example illustrates the use of Maple for low order realization % of an LFR-object. % First, the object sys_lfr is realized without order reduction (use % of "sym2lfr"). syms d1 d2 d3 Int sys_sym1 = d1^2*Int^2 + d1*d3*Int + d1^2*d3^2; sys_lfr1 = sym2lfr(sys_sym1); % Use of the Maple function "convert" for order reduction sys_sym2 = maple('convert',sys_sym1,'horner',d1); sys_lfr2 = sym2lfr(sys_sym2); % Resulting in: size(sys_lfr1) size(sys_lfr2) % The reduction of the number of times d1 is repeated comes from the % Horner factorization w.r.t. d1. In this simple example we can do % manually the same factorization. sys_sym3 = (d3*Int+(Int^2+d3^2)*d1)*d1 sys_lfr3 = sym2lfr(sys_sym3); size(sys_lfr3)