
INFORMATION PROCESSING AND SYSTEMS

SYSTEMS CONTROL

AND FLIGHT DYNAMICS DEPARTMENT

Technical Report

User Manual of the Linear Fractional
Representation Toolbox
Version 2.0

J.-F. MAGNI

TR 5/10403.01F DCSD - October, 2005 (revised Feb., 2006)

DEPARTMENT

SYSTEMS CONTROL AND FLIGHT DYNAMICS

Technical Report TR 5/10403.01F DCSD

User Manual of the Linear Fractional Representation Toolbox

Version 2.0

October, 2005 (revised Feb., 2006)

Author

J.-F. MAGNI

Approved by :
P. FABIANI

Interim Head of Systems Control
and Flight Dynamics Department

DCSD-T n◦ 219/2005

Toulouse Center
2, Avenue E. Belin, B.P. 4025

F-31055 TOULOUSE CEDEX 4
Phone (33) 5.62.25.25.25 - Fax 5.62.25.25.64

http://www.onera.fr/dcsd/
French National Aerospace Research Establishment

IDENTIFICATION SHEET of ONERA document # TR 5/10403.01F DCSD

Issuing department: Contracting party: Contract references:

Systems Control RG

and Flight Dynamics
Program record # : Date:

October, 2005 (revised Feb., 2006)

Title: User Manual of the Linear Fractional Representation Toolbox
Version 2.0

Author: J.-F. MAGNI

PROTECTION Level: PROTECTION Release:

Title : Not Protected Title : not applicable

Sheet : Not Protected Sheet : not applicable

Document : Not Protected Document : not applicable

Author abstract

This document is the user manual of Version 2.0 of the Linear Fractional Representation Toolbox authored by S. Hecker,
A. Varga and J.F. Magni.

This toolbox (for use with MATLAB or SCILAB), considers modelling, manipulation, order reduction and approximation
of uncertain systems in LFT-form (LFT: Linear Fractional Transformation).

The representation of systems in LFT-form is considered in two complementary ways: the object-oriented (LFR-objects)
and the symbolic way.

Version 2.0 is very different from version 1.x, all functions have been re-written, there is no backward compatibility. The
main advantage of version 2.0 with respect to version 1.x is that the new LFR-objects can be manipulated like symbolic
objects, in particular there is no more restriction on invertibility and uncertainties do not need to be ordered.

Keywords

Modelling, linear fractional transformation, LFT, order reduction, realization, mu-analysis

Toulouse Center
2, Avenue E. Belin, B.P. 4025

F-31055 TOULOUSE CEDEX 4
Phone (33) 5.62.25.25.25 - Fax 5.62.25.25.64

http://www.onera.fr/dcsd/
French National Aerospace Research Establishment

DISTRIBUTION LIST of ONERA document # TR 5/10403.01F DCSD

Document only

• Outside ONERA
Web publication

• Inside ONERA

CID Toulouse . 1 ex.
C. BARROUIL (DSB/TIS) . 1 ex.
P. FABIANI (Interim Head DCSD) . 2 ex.

DCSD-Toulouse: J.-F. MAGNI . 5 ex.

Identification sheet only

• Outside ONERA
CEDOCAR

• Inside ONERA
ONERA/ISP
(DCSD-Lille) - (DCSD-Salon de Provence) - (DCSD-Toulouse)
SGA Toulouse - DEMR - DESP - DMAE - DOTA - DTIM

• Systematic distribution
D - DSG - DTG - DAJ - DSB - DCV

• Electronic distribution
Intranet DCSD : /ARCHIVES/FICHIDENT/T_R-219_05.html

Toulouse Center
2, Avenue E. Belin, B.P. 4025

F-31055 TOULOUSE CEDEX 4
Phone (33) 5.62.25.25.25 - Fax 5.62.25.25.64

http://www.onera.fr/dcsd/
French National Aerospace Research Establishment

5

Contents

1 Introduction 9

1.1 Organization of the manual . 10

1.2 Getting started with the toolbox . 12

1.3 Acknowledgments . 15

1.3.1 Version 1.x . 15

1.3.2 Version 2.0 . 15

2 Notations and generalities 17

2.1 Generalities . 18

2.1.1 Definition of Linear Fractional Representations 18

2.1.2 Special cases . 20

2.2 Feedback loops . 27

2.2.1 Star product and fractional transformations 27

2.2.2 Parameter dependent state-space representations 29

2.2.3 Transfer function matrices . 29

2.3 Normalization . 36

2.3.1 Standard normalization . 36

2.3.2 Normalization with non-centered nominal value 38

2.3.3 Use of a dummy parameter for inversion 38

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 5/181
NP

6 CONTENTS

2.4 Well-posedness and non-singularity . 45

2.4.1 Well-posedness . 45

2.4.2 Non-singularity . 46

2.5 Object-oriented realization of Linear Fractional Representations 50

2.6 Discussion on minimality and commutativity 56

2.7 General principles for parameter dependent system modelling 63

3 Realization of parameter dependent systems 65

3.1 Left and right factorizations . 67

3.2 Input/output and state-space realizations . 71

3.3 Morton’s method . 76

3.4 Realization using Horner factorization . 80

3.5 The structured tree decomposition . 83

3.6 The matrix method . 87

3.7 Comment on normalization . 89

4 Order reduction and approximation after realization 91

4.1 Order reduction: The 1-D approach . 93

4.2 Order reduction: The n-D approach . 99

4.3 Order reduction and approximation: The generalized Gramian approach 104

4.4 Interval of variations of a Linear Fractional Representations 106

4.4.1 Necessity of having a reliable distance 106

4.4.2 Technical result . 108

5 Dynamic uncertainties modelling 115

5.1 Full complex blocks . 115

5.2 Complex scalar uncertainties . 119

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 6/181
NP

CONTENTS 7

6 Extensions to modelling of uncertain nonlinear systems 121

6.1 Introduction . 121

6.2 From a nonlinear model to a Linear Fractional Representation: Part 1 124

6.2.1 Modelling ignoring parameter dependency at equilibrium 124

6.2.2 Differentiation of Linear Fractional Representations 125

6.2.3 Missile model: Equations . 125

6.2.4 Missile model: Computation of the linearized models 127

6.3 From a nonlinear model to a Linear Fractional Representation: Part 2 134

6.3.1 Modelling considering parameter dependency at equilibrium 134

6.3.2 Derivation of the equilibrium surface for a large class of systems 134

6.3.3 Application to the missile model . 135

6.4 Techniques based on a gridding . 139

6.4.1 Interpolation . 139

6.4.2 Elementary system modelling . 140

7 Appendix 147

7.1 Standard operation relative to LFTs . 147

7.1.1 Transposition . 147

7.1.2 Addition. 148

7.1.3 Multiplication. 148

7.1.4 Concatenation. 148

7.1.5 Juxtaposition. 149

7.1.6 Inversion. 149

7.1.7 Feedback . 150

7.1.8 Kernel computation . 150

7.1.9 Real and imaginary parts . 152

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 7/181
NP

8 Version 2.0 (February 2006)

7.1.10 Concatenation and conjugation . 153

7.1.11 Closing partially the upper loop . 155

7.1.12 DC-gain computation . 156

7.1.13 Upper LFT computation without duplication of ∆ 157

7.1.14 Differentiation . 157

7.2 Alternative proof of Lemma 4.4.1 . 159

7.3 From version 1.x to version 2.0 . 161

7.4 List of MATLAB-functions . 163

7.5 Description of uncertainty blocks . 165

7.5.1 Names of variables . 165

7.5.2 Block description . 166

7.6 Installation of the toolbox . 169

7.7 SCILAB specificities . 170

Bibliography 173

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 8/181
NP

9

Chapter 1

Introduction

This document is the user manual of Version 2.0 of the Linear Fractional Representation Tool-
box authored by S. Hecker, A. Varga and myself.

This toolbox, for use with MATLAB (or SCILAB), considers modelling, manipulation, order
reduction and approximation of uncertain systems in LFT-form (LFT: Linear Fractional Trans-
formation). Such systems will be called Linear Fractional Representations (LFR). Briefly, sys-
tems in LFT-form are such that all varying or uncertain parameters are “pulled out” so that the
system appears as a nominal system subject to an artificial feedback. This artificial feedback
is expected to capture all variability and uncertainties. More generally, nonlinear components
and the Laplace variable might also be represented in an artificial feedback form. Such mod-
els are essential in modern control theory for robustness analysis (µ-analysis) and for synthesis
(robust and/or scheduled control design). “Pulling out” the parameters can be viewed as a re-
alization technique similar to the realization of transfer function matrices leading to state-space
representations:

-

-

Realization

Realization

Transfer function
matrix

State-space
representation:
Figure 2.5

Rational multivariate
matrix

Linear fractional
representation:
Figure 2.2

A more synthetic presentation of the techniques and tools discussed in this manual can be found
in [39, 40, 41, 31, 32]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 9/181
NP

10 1. INTRODUCTION

1.1 Organization of the manual

Chapter 2 gives some basic definitions such as “LFT realization” and presents basic manipu-
lations like the “star product”. The objective of this chapter is to give general guidelines for
low order LFT generation. For this purpose, an “object-oriented” approach to LFT generation
is proposed. From the discussions given in this chapter, it turns out that two main steps are
to be considered. First, realization must be done carefully, especially taking advantage of pa-
rameter commutativity (details in Chapter 3). Then, some techniques reminiscent of “minimal
realization” for standard dynamic systems can be applied for further order reduction (details in
Chapter 4).

Chapter 3. This chapter is devoted to LFT realization. First, are considered the conversions
from coprime factorizations and from state-space realizations to input/output LFTs. After this
discussion, only the state-space form is considered. The realization techniques that are treated
are: Morton’s technique ([46]), Horner factorization ([52]) and the structured tree decomposi-
tion ([21, 22, 23]). We also mention without details a graph-based ([26, 30]) and a matrix-based
approach ([12, 13]). It is recommended to use the tree decomposition that is the most natural
and the most efficient one. The object-oriented realization technique described in Chapter 2 is
also an alternative way for low order realization, but in this case the factorizations that reduce
the order must be performed manually.

Chapter 4. This chapter treats the generalization to LFTs of “minimal realization” of standard
dynamic systems. Considering LFTs, the size of what is improperly called a “minimal realiza-
tion” depends on the initial realization considered for oder reduction. The reason for that is that
parameter commutativity is not taken into account, and in fact, minimality is truly attained only
if parameters do not commute. Before presenting specific LFT order reduction techniques, it
is shown how standard system “minimal realization” techniques can be applied to LFTs (1−D
technique [36]). Then the generalized Kalman decomposition ([25, 6, 9]) and the generalized
Gramians approaches ([5, 8, 10, 11, 54]) are briefly presented (n−D techniques). These two
techniques lead to the so-called “minimal realization”, the second one offers the possibility of
further reduction by approximation. We conclude this chapter by describing a technique that
permits us to evaluate precisely LFT approximation errors, and, by the way to model approxi-
mation errors.

Chapter 5. This chapter considers complex uncertainties. Such uncertainties are usually used
for modelling neglected dynamics. In order to use µ-analysis for performance analysis or for
performance robustness analysis, it is also convenient to consider artificial complex uncertain-
ties (Main Loop Theorem).

Chapter 6. This chapter describes the use of LFTs for modelling the continuum of linearized
models of a nonlinear system. The dependency of parameters on the equilibrium surface is also

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 10/181
NP

1.1 ORGANIZATION OF THE MANUAL 11

taken into account: A technique for finding an explicit form of the equilibrium surface equation
is proposed, this technique works for a large class of systems, see §6.3.2, page 134. However,
we have to keep in mind that modelling in that way leads to very high order LFTs. Finally is
considered the problem of transforming tables of numerical data to LFTs.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 11/181
NP

12 1. INTRODUCTION

1.2 Getting started with the toolbox

This toolbox considers modelling, manipulation, order reduction and approximation of uncer-
tain systems in LFT-form (LFT: Linear Fractional Transformation). Such models consists of
a constant interconnection matrix subject to several feedback connections which represent dy-
namics, standard feedback, uncertainties (real parameters or neglected dynamics) and to some
extent, non-linearities. We shall denote these representations as LFR (Linear Fractional Rep-
resentations). LFR models are required for worst case analysis (using µ-analysis) and, to some
extent, for robust or scheduled control design.

The LFR-object of version 2.0 is very different from the previous one (version 1.x), therefore,
both version are not compatible, see page §7.3 page 161 for details.

The best way to get started with the toolbox is to read the first part of the manual and to run the
numerous illustrative examples therein. See also the HTML tutorial shipped with the toolbox.

First, have a look at the list of functions given on pages 163 to 164. For almost all functions,
the on-line help message contains an illustrative example that can be run by “copy and paste”.

LFR-objects generation. Two kinds of objects are handled by this toolbox: LFR-objects and
symbolic objects. The former can be viewed as realizations of the latter (see the figure of page
1) if only scalar uncertainties are considered.

• Getting started with the object-oriented approach: see Example 2.12, page 53.

• Getting started with the symbolic approach: see Example 2.13, page 54.

• Adding complex full blocks, see Example 5.1, page 118 and scalar complex blocks, see
Example 5.2, page 120.

• Interpolation tables can easily be transformed to LFR-objects, see Example 6.5, page 142.

• LFR-object generation form minimum and maximum values of matrix entries: see the
help file of bnds2lfr.

Some transformations. There are several transformations that are straightforward, as for ex-
ample feedback (see the help files of lfr/feedback, uplft). We shall mention here:

• Transformation for treating rational representations as polynomial ones, and back trans-
formation to be applied to the so obtained LFR-objects: see Example 3.1, page 69.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 12/181
NP

1.2 GETTING STARTED WITH THE TOOLBOX 13

• Transformation from the system matrix [A,B;C,D] LFR-form to an input/output repre-
sentation: see Example 3.2, page 73.

• For normalization of real uncertainties see Example 2.8 page 41.

• It is possible to replace parameters of a given object by a functions of other parameters,
see Example 6.4, page 138.

Modelling of non-linear systems. Modelling of a continuum of linearized models induces
differentiation of some expressions. Two possibilities are treated in details.

• Symbolic approach: see Example 6.1, page 130 plus Example 6.3, page 137.

• Object-oriented approach, see Example 6.2, page 132 plus Example 6.4, page 138.

See 6.3.2, page 134 for the derivation of the equilibrium surface. Note that LFR-objects can
also be used for quasi-LPV modelling rather than linearizing ([49]).

Order reduction and approximations. For order reduction, read first page 63. On this page,
the fact that we distinguish between the following points is justified.

• For low order realization, the tree decomposition is the most efficient one (however poly-
nomial dependency with respect to uncertain parameters is required). For getting started
with the tree decomposition, see Example 3.6 page 86.

• For order reduction after realization, the most efficient technique is the n-D approach. See
Example 4.3, page 102.

• For more heuristic approximation techniques it is suggested to read §4.4.1, page 106. The
following illustrative examples will be helpful: Examples 4.4, 4.5, page 111 and Example
6.6, page 143.

µ-analysis. This toolbox proposes interfaces with commercial toolboxes.

• Interface with the µ-Analysis and Synthesis Toolbox: see help lfr2mu.

• Interface with the LMI Control Toolbox: see of help lfr2mustab and help
lfr2mubnd.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 13/181
NP

14 1. INTRODUCTION

• Interface with the Robust Control Toolbox version 3: see the help file of lfr2mussv (the
functions lfr2mu, lfr2mustab and lfr2mubnd can also be used with this new toolbox).
Note that the function lfr2rob can be used to convert LFR-objects to UMAT or USS-
objects and, conversely, the function lfr can be sused to convert UREAL, UCOMPLEX,
UMAT or USS-objects to LFR-objects.

Steps for LFR-modelling. For moderately complex systems with polynomial dependency,
use symtreed and then reduclfr. In case of rational dependency, read first §3.1, page 67,
alternatively you can use the function sym2lfr rather than symtreed as this function doesn’t
require polynomial dependency.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 14/181
NP

1.3 ACKNOWLEDGMENTS 15

1.3 Acknowledgments

1.3.1 Version 1.x

Many people helped me during the development of Version 1 this toolbox. I would like to
acknowledge the help of:

Stephane Delanoy For having initialized the LFR-object definition and manip-
ulation.

Carsten Döll For having developed the tools that permit Simulink to sup-
port LFR-objects. This work is not yet included in the tool-
box.

Jean-Paul Dijkgraaf For having intensively used the toolbox. This work permit-
ted us to discover and fix several bugs. This work will be
available when the aircraft models he used will be released
in the public domain.

Gilles Ferreres For giving me some ideas such as the differentiation of
LFR-objects.

Christelle Cumer For participating in the earlier development of the tool-
box and for helpful suggestions concerning Gramian-based
techniques.

Andras Varga For helpful discussions relative to order reduction and ap-
proximation.

Carolyn Beck For permitting me to use her MATLAB code for Gramian-
based order reduction.

1.3.2 Version 2.0

A large part of the functions of version 2 have been rewritten from version 1 or from scratch by
Simon Hecker and Adras Varga.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 15/181
NP

EMPTY PAGE

17

Chapter 2

Notations and generalities

In this chapter the notion of LFT Representation (LFR) is defined. Most of notations used later
are described. Our objective is not to present in detail the construction of LFR-objects, we just
describe the “object-oriented” technique (which is an elementary realization technique) to be
able to put in evidence the importance of commutativity of uncertain parameters.

This discussion will allow to distinguish between the (absolute) minimality and the “relative-
minimality”. The conclusions of this chapter justify the structure adopted for the continuation
of this part: At first it is necessary to take advantage of parameter commutativity (realization,
see Chapter 3), then one can use the reduction techniques which concern “relative minimality”
(see Chapter 4).

In fact, there will be nothing concerning “absolute minimality”.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 17/181
NP

18 2. NOTATIONS AND GENERALITIES

2.1 Generalities

The systems considered in control engineering depend usually on uncertain parameters and on
measurable varying parameters. Such parameters will be denoted δi in this report. This section
introduces Linear Fractional Representations that are representation for modelling such systems

2.1.1 Definition of Linear Fractional Representations

In order to introduce the definition of a Linear Fractional Representation (LFR), let us consider
two symbolic objects:

K1(δ1) = In1

b+δ1(bc−ad)
1−aδ1

(2.1)

K2(δ2) = In2(aδ
2
2 +bδ2 + c) (2.2)

in which δ1 and δ2 are 1×1 symbolic objects (a,b,c,d are fixed parameters). It is straightfor-
ward to check that the feedback loops of Figure 2.1 represent respectively y = K1(δ1) u and
y = K2(δ2) u

-

�

- - --

-
-

�

�δ1In1

aIn1 bIn1

dIn1cIn1u y u y

δ2In2

δ2In2

In2

0 In2

0

0

0

aIn2 bIn2 cIn2

Figure 2.1: Representation of K1(δ1) : y = K1(δ1)u and of K2(δ2) : y = K2(δ2)u

The feedback structures of Figure 2.1 are reminiscent of state-space representations. State-
space representations are realizations of transfer function matrices, this remark suggests the
following definition:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 18/181
NP

2.1 GENERALITIES 19

Definition 2.1.1 Let us consider a rational symbolic object

K(1/s,δ1, . . . ,δq)

A Linear Fractional Representation (LFR) is a realization as depicted in Figure 2.2 of such a
symbolic object. In other words, realizing K(1/s,δ1, . . . ,δq) consists of finding the matrices
A,B1,B2,C1,C2,D11,D12,D21,D22 such that

y = K(1/s,δ1, . . . ,δq) u

can be represented by
ẋ = Ax +B1w +B2u
z = C1x +D11w +D12u
y = C2x +D21w +D22u

(2.3)

in which
w = Diag{δ1In1, . . . ,δqInq}z (2.4)

A similar definition holds for discrete time systems (K(1/z,δ1, . . . ,δq)). The continuous time
approach is preferred in this document because in this case, the physical parameters appear
more naturally. However, it is always possible to convert a continuous time LFR-object to an
equivalent discrete one using the Tustin’s transformation (see Example 2.6).

�

-

�

-

--

A B1 B2

D12D11C1

D22D21C2
u y
w z

x ẋ

In
s

∆

Figure 2.2: LFR: realization of K(1/s,δ1, . . . ,δq)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 19/181
NP

20 2. NOTATIONS AND GENERALITIES

Comment 2.1.2 In § 2.5, it will be shown how to build realizations corresponding to the above
definition. In fact, this is very easy because we just need to realize the elementary objects 1/s
and δi’s and then to combine these realizations (object-oriented realization).

Comment 2.1.3 In the above definition, ∆ stands for the matrix

∆ = Diag{δ1In1, . . . ,δqInq} (2.5)

For simplifying notations, we shall also use an alternative notation (which one is used is ex-
pected to be clear from the context)

∆ = Diag{In/s,δ1In1, . . . ,δqInq} (2.6)

in which case, the realization becomes like in Figure 2.3.

-

- -

In/s
δ1In1. . .

M12

M22M21

M11

yu

zw

Figure 2.3: Simplified notation for an LFR realization

Correspondences Figures 2.3 ↔ 2.2

M11 ↔
[

A B1
C1 D11

]
;M12 ↔

[
B2
D12

]
;M21 ↔

[
C2 D21

]
;M22 ↔ D22

2.1.2 Special cases

Using the original notation of Definition 2.1.1 (not the simplified notation of Comment 2.1.3),
we have the following special cases:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 20/181
NP

2.1 GENERALITIES 21

• Uncertain non-dynamic matrices, there is no feedback via I/s: see Figure 2.4.

• A standard linear system, there is no feedback via ∆ see Figure 2.5. (A, B2, C2, D22) is a
realization of a transfer matrix M(s), it means that M(s) = C2(sI−A)−1B2 +D22.

• Constant matrices, there is no feedback via ∆ and I/s: y = D22u.

-

- -

∆

D12

D22D21

D11

yu

zw

Figure 2.4: LFR representation of an uncertain matrix

-

- -

In
s

B2

D22C2

A

yu

ẋx

Figure 2.5: LFR representation of a linear system

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 21/181
NP

22 2. NOTATIONS AND GENERALITIES

Software relative to this section

Illustrated functions:

- lfr for LFR-object generation and for conversion to LFR-objects.

– Example 2.1 illustrates how the function lfr can be used for generating LFR-objects
from the sub-matrices appearing in Figure 2.2.

– Example 2.2 illustrates conversion of objects belonging to other classes (UMAT, SS,
PCK, DOUBLE) into LFR-objects.

– Example 2.3 shows other possibilities offered by the function lfr for generating
elementary LFR-objects.

- lfrdata recovers numerical data from LFR-objects,

- uplft computes Fu(M,∆) (see §2.2),

- size displays size information.

Example 2.1 LFR-object generation using the function lfr: For example let us build the rep-
resentation of (2.2) in which a = 1; b = 2; c = 3, the transfer gain is 2 × 2.

K2(δ2) = I2(1δ
2
2 +2δ2 +3)

the matrices D11, D12, D21, D22 can be identified from Figure 2.1 (right hand side).

>> D11 = [0 0 1 0;0 0 0 1;0 0 0 0;0 0 0 0];
>> D12 = [0 0;0 0;1 0;0 1];
>> D21 = [1 0 2 0;0 1 0 2];
>> D22 = [3 0;0 3];

>> blk = struct(’names’,{{’delta_2’}},’desc’,[4;4;1;1;1;1;1;2;-1;1;0]);

>> K2 = lfr(D11,D12,D21,D22,blk);

The input argument blk requires some explanation, see page 165 for details. Briefly, the
two first entries of blk.desc correspond to the size of the block corresponding to parameter
delta_2. Other entries are standard for scalar real blocks with non specified variation bounds.

Having such an LFR-object, it is possible to recover the matrices D11, D12, D21, D22 and blk
by typing respectively:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 22/181
NP

2.1 GENERALITIES 23

>> K2a = K2.a;
>> K2b = K2.b;
>> K2c = K2.c;
>> K2d = K2.d;
>> K2blk = K2.blk;

For the same purpose we can use lfrdata:

>> [K2a,K2b,K2c,K2d,K2blk] = lfrdata(K2);

The function size applied to an LFR-object give the following information

>> size(K2)

LFR-object with 2 output(s), 2 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
delta_2 4x4 LTI r s [-1,1]

In order to conclude this example we can check the result by closing the ∆-loop. For that we
shall invoke uplft. Let us assume that δ2 = 10

>> valK2 = uplft(K2,{’delta_2’},10);
>> valK2.d

ans =

123 0
0 123

Computing manually we obtain K2(δ2 = 10) = 123I2 as above.

Example 2.2 Conversion of standard linear systems as SS-objects, PCK-objects and constant
matrices can be converted to LFR-objects by invoking the function lfr.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 23/181
NP

24 2. NOTATIONS AND GENERALITIES

>> sys0 = rss(5,2,3);
>> [a,b,c,d] = ssdata(sys0);

>> sys1 = lfr(a,b,c,d,’c’);
>> sys2 = lfr(sys0);
>> sys3 = lfr(pck(a,b,c,d));

Note that ’c’ must be replaced by ’d’ for generating a discrete time system.

Now, let us illustrate the conversion between LFR-objects and UMAT-objects.

>> x=ureal(’a’,2.2,’Range’,[1 3]);
>> y=ureal(’b’,3.3,’Range’,[2 4]);
>> z=ureal(’c’,5.5,’Range’,[3 7]);
>> s=ucomplex(’d’,1,’Radius’,2);
>> t=ucomplex(’e’,i,’Radius’,3);
>> A=[x*y+2 z*y;s 1+t*z]

UMAT: 2 Rows, 2 Columns
a: real, nominal = 2.2, range = [1 3], 1 occurrence
b: real, nominal = 3.3, range = [2 4], 2 occurrences
c: real, nominal = 5.5, range = [3 7], 2 occurrences
d: complex, nominal = 1, radius = 2, 1 occurrence
e: complex, nominal = 0+1i, radius = 3, 1 occurrence

>> B = lfr(A);
>> size(B)

LFR-object with 2 output(s), 2 input(s) and 0 state(s).
Uncertainty blocks (globally (7 x 7)):
Name Dims Type Real/Cplx Full/Scal Bounds
a 1x1 LTI r s [1,3], nominal=2.2
b 2x2 LTI r s [2,4], nominal=3.3
c 2x2 LTI r s [3,7], nominal=5.5
d 1x1 LTI c s |1 - d| < 2
e 1x1 LTI c s |0+1i - e| < 3

Note that the nominal values are not centered in the ranges of variations (see functions lfrs
and normalizelfr). The converse of the above conversion is A = lfr2rob(B).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 24/181
NP

2.1 GENERALITIES 25

Example 2.3 The function lfr permits us to define directly elementary LFR-objects with var-
ious features, the syntax is syslfr = lfr(NAME,TYPE,DIMS,BOUND,BTYPE) where

• NAME: string with name of the uncertainty block

• TYPE: composite string defining the uncertainty properties:

– nature:

∗ ’lti’→ linear time-invariant (Default)
∗ ’ltv’→ linear time-varying
∗ ’nl’→ arbitrary nonlinear
∗ ’nlm’→ nonlinear memoryless

– structure:

∗ ’s’→ scalar block (Default)
∗ ’f’→ full block

– value:

∗ ’r’→ real-valued (Default)
∗ ’c’→ complex-valued

(e.g., ’ltifc’ means LTI full complex block)

• DIMS: dimension of uncertainty block, e.g., DIMS = [1,2] or DIMS = 2 (for 2×2).

• BOUND: quantitative information about the uncertainty:

– minmax-bounded uncertainty (for real scalar uncertainties): set BOUND =
[min,max] or BOUND = max (if min = - max).

– frequency weighted bound: BOUND is the SISO system W (s) for frequency-
weighted bounds: |∆(jω)|< |W (jw)| (e.g., BOUND = ltisys(-1,1,1,0))

– sector-bounded uncertainty: set BOUND = [a,b] for uncertainties valued in the
sector {a,b}

– disc-bounded uncertainty (for complex scalar uncertainties): set BOUND = [a,b]
for uncertainties valued in the disc of center a (possibly complex) and radius b.

• BTYPE:

– ’minmax’→ min/max-values bound

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 25/181
NP

26 2. NOTATIONS AND GENERALITIES

– ’freq’→ frequency dependent bound

– ’sec’→ sector bounded

– ’disc’→ disc bounded

Let us consider three examples. First, generation of a real scalar uncertainty repeated 4 times,
the uncertain parameter x varies in the interval [2 8].

>> X = lfr(’x’,’ltisr’,4,[2 8],’minmax’);
>> size(X)

LFR-object with 4 output(s), 4 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
x 4x4 LTI r s [2,8]

Then, a complex scalar uncertainty y in the disc of center 1+i and radius 2.2.

>> Y = lfr(’y’,’ltisc’,1,[1+i 2.2],’disc’);
>> size(Y)

LFR-object with 1 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (1 x 1)):
Name Dims Type Real/Cplx Full/Scal Bounds
y 1x1 LTI c s |1+1i - y| < 2.2

Finally, generation of a full complex block of size 2×4 bounded by the filter W (s) = 1
1+0.1s .

>> Z = lfr(’z’,’ltifc’,[2 4],ltisys(-10,-10,1,0),’freq’);
>> size(Z)

LFR-object with 2 output(s), 4 input(s) and 0 state(s).
Uncertainty blocks (globally (2 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
z 2x4 LTI c f freq. dependent

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 26/181
NP

2.2 FEEDBACK LOOPS 27

2.2 Feedback loops

The general case of Figure 2.2 is often represented in a simplified way, the meaning of notations
has to be understood according to the context. Often, ∆ represents both parameter variations
and integrations, see Comment 2.1.3 and Figure 2.3 on page 20. We shall also consider parame-
ter dependent state-space representations (see §2.2.2) or parameter dependent transfer function
matrices (see §2.2.3).

2.2.1 Star product and fractional transformations

Definition of Fu(M,∆). Let us consider the M−∆ form of Figure 2.3. The transfer between u
and y that is obtained after closing the loop ∆ is denoted Fu(M,∆) :

Fu(M,∆) = M21∆(I−M11∆)−1M12 +M22 (2.7)

where

M =
[

M11 M12
M21 M22

]
Fu(): upper Linear Fractional Transformation

Definition of Fl(M,K). Let us consider the feedback loop of Figure 2.3. After closing the loop
y = Ku, the transfer “seen from ∆” is denoted Fl(M,K) :

Fl(M,K) = M12K(I−M22K)−1M21 +M11 (2.8)

Fl(): lower Linear Fractional Transformation

The star product. This product consists of replacing the ∆ block by an LFR-object. Examples:

• It can be useful when an LFR-object is generated without taking parameter normalization
into account. Assume that the admissible variation of a real uncertain parameter δ1 are
δ
−
1 ≤ δ1 ≤ δ

+
1 . Therefore, if we want variation between −1 and +1 (as recommended for

using µ-analysis) δ1 must be replaced by

δ1 →
δ
+
1 +δ1

1
2

+
δ
+
1 −δ1

1
2

δ
′
1 (2.9)

A similar transformation must also be applied to the other real uncertain parameters.
Clearly, that means that the δi’s of the original ∆-matrix must be replaced by an LFR-
object as depicted in Figure 2.6.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 27/181
NP

28 2. NOTATIONS AND GENERALITIES

• An other case where such a transformation is useful will be considered in Chapter 6:
continuum of the linearized models of a non-linear system modelled as an LFR-object.
Briefly, such a model can be computed ignoring first the dependency of the parameters on
the equilibrium surface. In a second step, a subset of parameters is expressed as a function
of the other parameters in order to take into account the equilibrium surface constraint.
The parameters of the first subset become in that way LFR-objects depending on the other
ones. Here again the star product can be used.

- -

-

-

!!!!!!!!!!!

aaaaaaaaaaa

�

-

M21 M22

M11 M12

Q11 Q12

Q21 Q22

∆′

∆

u y

Figure 2.6: The star product

Let us consider two LFR-objects as in Figure 2.3 denoted respectively Fu(M,∆) and Fu(Q,∆′)
where

M =
[

M11 M12
M21 M22

]
and Q =

[
Q11 Q12
Q21 Q22

]
The star product is equal to Fu(R,∆′) where the sub-matrices of R in a natural partitioned form
are:

R11 = Q11 +Q12M11(I−Q22M11)−1Q21;
R12 = Q12(I−M11Q22)−1M12;
R21 = M21(I−Q22M11)−1Q21;
R22 = M22 +M21Q22(I−M11Q22)−1M12;

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 28/181
NP

2.2 FEEDBACK LOOPS 29

2.2.2 Parameter dependent state-space representations

The loop ∆ of Figure 2.2 can be considered as being closed. In that case we obtain the parameter
dependent matrices (A(∆), B(∆), C(∆), D(∆)) of the system. These objects are used in the
context of multi-model synthesis.

-

- -

In
s

B(∆)

D(∆)C(∆)

A(∆)

yu

ẋx

Figure 2.7: Parameter dependent state-space representation

After closing the ∆ loop of Figure 2.2, the uncertain matrices of figure 2.7 can be written:

A(∆) = A+B1∆(I−D11∆)−1C1
B(∆) = B2 +B1∆(I−D11∆)−1D12
C(∆) = C2 +D21∆(I−D11∆)−1C1
D(∆) = D22 +D21∆(I−D11∆)−1D12

(2.10)

However, it is generally more convenient to use the parameter dependent form of[
A B
C D

]
(∆) (2.11)

as in (3.5) on page 72, because in this case, the complexity of ∆ is not repeated in A, B, C and
D as above but is repeated only once.

2.2.3 Transfer function matrices

In the context of the µ-analysis (see also page 57), the I/s loop is considered as being closed.
After closing the I/s loop of Figure 2.2, the transfers Mi j of Figure 2.8 can be written as:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 29/181
NP

30 2. NOTATIONS AND GENERALITIES

-

- -

∆

M12(s)

M22(s)M21(s)

M11(s)

yu

zw

Figure 2.8: M−∆ form

M11(s) = C1(sI−A)−1B1 +D11
M12(s) = C1(sI−A)−1B2 +D12
M21(s) = C2(sI−A)−1B1 +D21
M22(s) = C2(sI−A)−1B2 +D22

(2.12)

For µ-analysis, the feedback loop is closed and s is fixed to s = jωi.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 30/181
NP

2.2 FEEDBACK LOOPS 31

Software relative to this section

Illustrated functions:

- uplft computes Fu(M,∆) (see Example 2.4), note that there is no function available for
computing Fl(M,∆) as this operation is almost treated by the function feedback (see
Example 2.5).

- eval might be used instead of uplft (see the end of Example 2.4) but it is much more
powerful:

– it is also an advanced star product, for example useful for applying the Tustin’s
transformation (see Example 2.6),

– it permits us to manipulate LFR-objects in which sub-matrices are themselves LFR-
objects (see Example 2.7).

- rlfr random LFR-object generation (see Example 2.4).

Example 2.4 We have already briefly illustrated the use of the function uplft in Example 2.1.
This function corresponds to Fu(M,∆) as defined in Equation (2.7). In fact it is more general as
it permits us to fix some of the δi’s in ∆, while other parameters remain uncertainties, leading to
a new matrix ∆ of lower size containing only the non fixed parameters on its diagonal. For an
illustrative purpose let us generate a random LFR-object using the function rlfr. This random
object has 2 inputs, 3 outputs, 4 states, a first parameter δ1 repeated 5 times (name ’d_1’), a
second parameter δ2 repeated 6 times (name ’d_2’)

>> G = rlfr(4,2,3,5,6,’d_’);

LFR-object corresponding to s = 10 j and ’d_2’ = 20:

>> Gred1 = uplft(G,{’1/s’,’d_2’},[1/(10*j),20]);

Resulting in

>> size(G)

LFR-object with 2 output(s), 3 input(s) and 4 state(s).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 31/181
NP

32 2. NOTATIONS AND GENERALITIES

Uncertainty blocks (globally (11 x 11)):
Name Dims Type Real/Cplx Full/Scal Bounds
d_1 5x5 LTI r s [-1,1]
d_2 6x6 LTI r s [-1,1]

>> size(Gred)

LFR-object with 2 output(s), 3 input(s) and 0 state(s).
Uncertainty blocks (globally (5 x 5)):
Name Dims Type Real/Cplx Full/Scal Bounds
d_1 5x5 LTI r s [-1,1]

Instead of using the function uplft, it is also possible to use the function eval that evaluates
and LFR-object from values in the workspace. For example

>> Int = 1/(10*j);
>> d_2 = 20;
>> Gred2 = eval(G);

Gred2 is the same object as Gred1.

Example 2.5 Now let us illustrate the transformation that corresponds to Equation (2.8).

>> K = rand(3,2);
>> Gfb = zeros(0,2)*feedback(G,K,1)*zeros(3,0);

Resulting in

>> size(Gfb)

LFR-object with 0 output(s), 0 input(s) and 4 state(s).
Uncertainty blocks (globally (11 x 11)):
Name Dims Type Real/Cplx Full/Scal Bounds
d_1 5x5 LTI r s [-1,1]
d_2 6x6 LTI r s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 32/181
NP

2.2 FEEDBACK LOOPS 33

The matrix K plays here the role of a proportional feedback. K could also be a dynamic sys-
tem (dynamic feedback) or an LFR-object (scheduled possibly dynamic feedback gain). It is
worth noting that the new system has no longer inputs and outputs. In other words, this sys-
tem is ready for µ-analysis (this transformation is already performed inside the functions for
µ-analysis: lfr2mu, lfr2mubnd, lfr2mustab and lfr2mussv).

Example 2.6 Illustration of eval used as an elaborated star product. Instead of replacing glob-
ally the matrix ∆ as in Figure 2.6, it is possible to replace selected entries of ∆. In this example,
an LFR-object M1 depending on d1 and d2 is defined, then, d2 is replaced by a function of d1.

>> M1 = rlfr(4,2,3,4,4,’d’);
>> size(M1)

LFR-object with 2 output(s), 3 input(s) and 4 state(s).
Uncertainty blocks (globally (8 x 8)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 4x4 LTI r s [-1,1]
d2 4x4 LTI r s [-1,1]

In order to define d2 as a function of d1, these elementary LFR-object must be defined in the
workspace

>> d1 = lfr(’d1’,’ltisr’);
>> d2 = lfr(’d2’,’ltisr’);
>> d2 = d1^2;
>> M2 = eval(M1);
>> M2.blk.names

ans =

’1/s’ ’d1’

Next step the Tustin’s transformation is applied to M2. The operators 1/s and 1/z are denoted
by default Int and Delay. First, 1/z is defined in the workspace and then, the Tustin’s transfor-
mation is applied:

s−1 = 0.1
1+ z−1

1− z−1

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 33/181
NP

34 2. NOTATIONS AND GENERALITIES

>> Delay = lfr(0,1,1,0,’d’);
>> Int =0.1 * (1+Delay) / (1-Delay);
>> M3 = eval(M2);
>> M3.blk.names

ans =

’1/z’ ’d1’

Example 2.7 Illustration of eval used in case sub-matrices of an LFR-object are themselves
LFR-object’s

>> A = rlfr(0,4,4,2,2,’a’);
>> B = rlfr(0,4,2,2,2,’b’);
>> C = rlfr(0,2,4,2,2,’c’);
>> D = zeros(2,2);
>> blk = struct(’names’,{{’1/s’}},’desc’,[4;4;0;1;1;1;0;0;0;0]);
>> sys = lfr(A,B,C,D,blk);
>> size(sys)

LFR-object with 2 output(s), 2 input(s) and 4 state(s).
Uncertainty blocks (globally (0 x 0)):

In order to pull out the matrices ∆ of the sub-matrices, it suffices to invoke the function eval:

>> sys = eval(sys);
>> size(sys)

LFR-object with 2 output(s), 2 input(s) and 8 state(s).
Uncertainty blocks (globally (12 x 12)):
Name Dims Type Real/Cplx Full/Scal Bounds
a1 2x2 LTI r s [-1,1]
a2 2x2 LTI r s [-1,1]
b1 2x2 LTI r s [-1,1]
b2 2x2 LTI r s [-1,1]
c1 2x2 LTI r s [-1,1]
c2 2x2 LTI r s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 34/181
NP

2.2 FEEDBACK LOOPS 35

As expected, the uncertainties of the sub-matrices are now in the global matrix ∆. Note that the
function abcd2lfr can also be used: sys = abcd2lfr([A B;C D],4);.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 35/181
NP

36 2. NOTATIONS AND GENERALITIES

2.3 Normalization

For µ-analysis, it is generally better to normalize the parameter variations between −1 and +1.
This problem is considered in § 2.3.1 as a special case of a more general transformation applied
to the matrix ∆. In § 2.3.2 is considered the problem of normalizing when the nominal value is
not centered in the variation range. The problem of “inverting” a non-invertible LFR-object is
also somewhat related to normalization, i.e., to nominal values, it is treated in § 2.3.3.

2.3.1 Standard normalization

For µ-analysis, it is generally better to normalize the parameter variations between −1 and +1.
For example if an LFR-object depends on two parameters δ1 and δ2 with

δ1 ∈ [δ−1 δ
+
1]

δ2 ∈ [δ−2 δ
+
2]

normalizing consists of replacing δ1, δ2 by δ′1, δ′2 where

δ1 = δ
+
1 +δ

−
1

2 + δ
+
1 −δ

−
1

2 δ′1

δ2 = δ
+
2 +δ

−
2

2 + δ
+
2 −δ

−
2

2 δ′2

because in this case, the variations of δ1 ∈ [δ−1 δ
+
1] and δ2 ∈ [δ−2 δ

+
2] are equivalent to

δ′1 ∈ [−1 +1]
δ′2 ∈ [−1 +1]

More generally, normalization consists of replacing ∆ by P∆′Q+R. The expression of P,Q and
R in the above example is

P =
[

In1 0
0 In2

]
;Q =

[
In1

δ
+
1 −δ

−
1

2 0

0 In2
δ
+
2 −δ

−
2

2

]
;R =

[
In1

δ
+
1 +δ

−
1

2 0

0 In2
δ
+
2 +δ

−
2

2

]
which has a trivial extension in the general case.

The following lemma computes the new equivalent LFR realization in which ∆ is replaced by
∆′.

Lemma 2.3.1 If the matrix ∆ is replaced by P∆′Q+R, we have

Fu

([
M11 M12
M21 M22

]
,∆

)
= Fu

([
M′

11 M′
12

M′
21 M′

22

]
,∆′

)
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 36/181
NP

2.3 NORMALIZATION 37

provided that
M′

11 = Q(I−M11R)−1M11P
M′

12 = Q(I−M11R)−1M12
M′

21 = M21P+M21R(I−M11R)−1M11P
M′

22 = M22 +M21R(I−M11R)−1M12

Proof. The matrix ∆ is replaced by P∆′Q+R. Let us consider Fu(M,∆) as in (2.7):

y = (M22 +M21∆(I−M11∆)−1M12)u

with z and w defined as input and output of ∆ (see Figure 2.8), we have

z = M11w+M12u
y = M21w+M22u
w = ∆z

(2.13)

We shall split w = ∆z considering ∆ = P∆′Q+R as follows

w = Pw′+Rz
z′ = Qz
w′ = ∆′z′

Therefore, after substitution of w

z = (I−M11R)−1M11Pw′+(I−M11R)−1M12u

it follows that
z′ = Q(I−M11R)−1M11Pw′+Q(I−M11R)−1M12u

and
y = (M21P+M21R(I−M11R)−1M11P)w′+(M22 +M21R(I−M11R)−1M12)u

Finally, Equation (2.13) is replaced by:

z′ = Q(I−M11R)−1M11Pw′+Q(I−M11R)−1M12u
y = (M21P+M21R(I−M11R)−1M11P)w′+(M22 +M21R(I−M11R)−1M12)u
w′ = ∆′z′

(2.14)

comparing term by term (2.13) and (2.14) we obtain

M′
11 = Q(I−M11R)−1M11P

M′
12 = Q(I−M11R)−1M12

M′
21 = M21P+M21R(I−M11R)−1M11P

M′
22 = M22 +M21R(I−M11R)−1M12

as stated in the lemma.

Note that Lemma 2.3.1 can also be used in several other cases, for example when the order of
the parameters is modified.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 37/181
NP

38 2. NOTATIONS AND GENERALITIES

2.3.2 Normalization with non-centered nominal value

It is often necessary to consider parameters for which the nominal value is not centered
in the range of variations. For example consider V ∈ [Vmin,Vmax], with nominal value
Vnom = 1/2(Vmin +Vmax). If V is replaced by 1/V , the nominal value of this new param-
eter is 1/Vnom, it is not in the middle of the new variation range [1/Vmax,1/Vmin].

So, for recentering the nominal value when an LFR-object is being normalized, we shall use a
monotonous function f (δ) such that

f (δmin) = −1
f (δmax) = 1
f (δnom) = 0

Such a function f was reported by J. Cockburn in the comments concerning Reference [31]:

α = (δmin δnom +δmax δnom−2 δmin δmax)/(δmax−δmin)
β = (2 δnom−δmin−δmax)/(δmax−δmin)
γ = δnom

f (δ) =
α+βx
1+ γδ

(2.15)

This function can be rewritten in such a way that δ appears only once so that replacing δ by
f (δ) will not encrease the size of the considered LFR-object.

It is more difficult than in the previous section to identify the transformations to apply to the
matrices Mi j for such a normalization. However, a very simple trick can be used: it suffices
to define the new form of the parameters in the workspace (δ = f (δ)) and then to invoke the
function eval.

2.3.3 Use of a dummy parameter for inversion

In this section introduces a trick proposed by Hecker and Varga in [31] for inversion of LFR-
objects when the nominal value is zero or singular (MIMO case). Let us consider an LFT

M(∆) = Fu

([
A B
C D

]
,∆

)
(2.16)

the inverse is given by (see (7.7))

M(∆)−1 = Fu

([
A−BD−1C BD−1

−D−1C D−1

]
,∆

)
(2.17)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 38/181
NP

2.3 NORMALIZATION 39

so, for inverting (2.16) with the above classical formula it is required that D is invertible. In
order to introduce a trick that will permit us to avoid this difficulty, let us consider a very simple
example (generalization straightforward).

Let a be a real parameter. We can write a in LFT form as

a = Fu

([
0 1
1 0

]
,a

)
but 1/a cannot be written directly in LFT form because the corresponding “D” matrix is zero,
so, “D” cannot be inverted. The normalization of §2.3.1 can be used to move the nominal value
of a around some non-zero value a0. It means that a is replaced by the user by a0 + δa before
inversion. Then,

a = Fu

([
0 1
1 a0

]
,δa

)
this LFT form of a can be inverted using (2.17).

It is suggested here to proceed in a different way by introducing a dummy parameter (that will
be denoted x): a is replaced by

a′ = (a+1)x−1 (2.18)

Clearly, a′ has the following properties

• For x = 1, we have a′ = a.

• a′ has a simple LFT form:

a′ = Fu

 0 0 1
1 0 0
1 1 −1

 ,

[
x 0
0 a

] (2.19)

• For a = x = 0, a′ =−1 is non-zero so, can be inverted (or equivalently, the “D” matrix in
the above LFT is invertible)..

These remarks justify the following strategy for inverting an LFR object: use formula (2.17) if
the “D” matrix is invertible, otherwise, introduce the dummy parameter x as in (2.18), transform
the result to an LFT form like in (2.19)1 and then, invert using (2.17). Evaluation at x = 1 will
eliminate the dummy parameter.

1In the matrix case, the 1’s of (2.19) become identity matrices, a is the square LFR-object to be inverted and so
on.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 39/181
NP

40 2. NOTATIONS AND GENERALITIES

When an LFR-object is (partly) evaluated (functions uplft or eval) or normalized (function
normalizelfr), if there is no more division by zero, it becomes possible to close the loop
through xI with x = 1. In that way all the block corresponding to the dummy parameter will
vanish. In fact, the toolbox reduces this block to its minimum size if it cannot vanish completely.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 40/181
NP

2.3 NORMALIZATION 41

Software relative to this section

Illustrated functions:

- normalizelfr: normalization of parameter variations see Example 2.8.

- set: for modifying the block structure of an LFR-object, here. In Examples 2.8 and 2.9
the parameter variation bounds are modified.

- unormalize and actualval: see Example 2.9.

Example 2.9 shows how the “constant block” may vanishes using normalizelfr after modify-
ing the parameter variation bounds (using set) so that the nominal value becomes non-zero.

Example 2.8 An LFR-object is generated first without lower and an upper bound for parameter
variation (using rlfr):

>> S = rlfr(4,2,2,4,1,1,1,’d’);
>> size(S)

LFR-object with 2 output(s), 2 input(s) and 4 state(s).
Uncertainty blocks (globally (7 x 7)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 4x4 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]
d3 1x1 LTI r s [-1,1]
d4 1x1 LTI r s [-1,1]

Bounds are defined for the four parameters using the function set

>> set(S,{’d1’},{[-2,6]},{’minmax’});
>> set(S,{’d2’},{[-6,2]},{’minmax’});
>> set(S,{’d3’},{[-2,2]},{’minmax’});
>> set(S,{’d4’},{[-1,1]},{’minmax’});

>> size(S)

LFR-object with 2 output(s), 2 input(s) and 4 state(s).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 41/181
NP

42 2. NOTATIONS AND GENERALITIES

Uncertainty blocks (globally (7 x 7)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 4x4 LTI r s [-2,6]
d2 1x1 LTI r s [-6,2]
d3 1x1 LTI r s [-2,2]
d4 1x1 LTI r s [-1,1]

This object has four uncertain parameters with admissible variations

−2 ≤ d1≤+6
−6 ≤ d2≤+2
−2 ≤ d3≤+2
−1 ≤ d4≤+1

Normalization means that we replace d1 by an expression of the form (d1_max + d1_min)/2
+ d1*(d1_max - d1_min)/2 (similar for the other parameters) in such a way that admissible
variations become between −1 and +1. For that purpose, it remains to invoke the function
normalizelfr:

>> Snorm = normalizelfr(S,{’d1’,’d2’,’d3’,’d4’});
>> size(Snorm)

LFR-object with 2 output(s), 2 input(s) and 4 state(s).
Uncertainty blocks (globally (7 x 7)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 4x4 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]
d3 1x1 LTI r s [-1,1]
d4 1x1 LTI r s [-1,1]

It can be checked that uplft(S,’d1’,’d2’,’d3’,’d4’,[6,-6,2,-1]) and
uplft(Snorm,’d1’,’d2’,’d3’,’d4’,[1,-1,1,-1]) give the same result.

Example 2.9 This example illustrates how non-invertible LFR-objects can be “inverted” by us-
ing the “constant block” trick. It is also shown how normalization removes the “constant block”
and how to retrieve the original LFR-object after normalization. Let us consider a random
LFR-object with “D” matrix set to zero.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 42/181
NP

2.3 NORMALIZATION 43

>> S = rlfr(5,3,3,2,2,’d’);
>> S.d = zeros(3,3);

>> invS = inv(S);
>> size(invS)

LFR-object with 3 output(s), 3 input(s) and 5 state(s).
Dimension of constant block in uncertainty matrix: 3
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 2x2 LTI r s [-1,1]
d2 2x2 LTI r s [-1,1]

The second line displayed by the function size shows that the dummy parameter is repeated 3
times in a block named “constant block”. This block vanishes generally when functions like
uplft, eval, normalizelfr are invoked (of course, if there is no more division by zero),
for example if we change the nominal value to 4 (not in the middle of the interval [2 8]) and
normalize:

>> set(invS,{’d1’,’d2’},{[2 8 4],[2 8 4]},{’minmax’,’minmax’});
>> size(invS)

LFR-object with 3 output(s), 3 input(s) and 5 state(s).
Dimension of constant block in uncertainty matrix: 3
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 2x2 LTI r s [2,8], nominal=4
d2 2x2 LTI r s [2,8], nominal=4

>> invS = normalizelfr(invS);
>> size(invS)

LFR-object with 3 output(s), 3 input(s) and 5 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds
d1 2x2 LTI r s [-1,1]
d2 2x2 LTI r s [-1,1]

as expected the “constant block” block has disappeared because the inversion is feasible at the
new nominal values of the parameters.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 43/181
NP

44 2. NOTATIONS AND GENERALITIES

Note that it is possible to compute the actual values from normalized ones. For example:

par_nom = [-0.5 0.5];
par_act = actualval(invS,{’d1’,’d2’},par_nom)

par_act =

2.8571 5.6000

These values correspond to f−1(−0.5) and f−1(0.5) where f is defined as in (2.15).

The above normalization can be undone as follows

S2 = unnormalize(invS);
S3 = set(inv(S),{’d1’,’d2’},{[2 8 4],[2 8 4]},{’minmax’,’minmax’});
distlfr(S2,S3)

ans =

2.4107e-14

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 44/181
NP

2.4 WELL-POSEDNESS AND NON-SINGULARITY 45

2.4 Well-posedness and non-singularity

2.4.1 Well-posedness

LFR-objects are given in a feedback form as in (2.7):

Fu(M,∆) = M21∆(I−M11∆)−1M12 +M22

Unless M11 = 0, the matrix (I −M11∆) cannot be inverted for all values of ∆. In fact, it is
sufficient that invertibility is feasible for all relevant values of ∆: If for example, parameter
variations are normalized between −1 and +1, the matrix (I−M11∆) must be invertible in the
unit ball.

∆ satisfies a constraint of structure (it is block-diagonal), the condition for invertibility is
µ(M11) < 1 by definition of µ. This property of invertibility is called “‘well-posedness”. So
we have

Definition 2.4.1 The LFR-object Fu(M,∆) = M21∆(I−M11∆)−1M12 +M22 is said to be well-
posed in the unit ball if and only if

µ(M11) < 1 (2.20)

The µ “measure” corresponds to the inverse of the norm of the smallest value of ∆ (with given
structure) at which the invertibility of (I−M11∆) is not satisfied. Therefore, the radius of the
ball in which (I−M11∆) can be inverted is 1/µ(M11).

Definition 2.4.2 The well-posedness radius of the LFR-object Fu(M,∆) = M21∆(I −
M11∆)−1M12 +M22 is defined by

Well-posedness radius =
1

µ(M11)
(2.21)

The standard operations on LFR-objects are defined in § 7.1 (page 147). Keeping in mind
that an LFR-object is well-posed if its “I−M11∆” matrix can be inverted, it is clear from the
formulae of page 147 that the following operations

• addition (see (7.2))

• multiplication (see (7.3))

• vertical concatenation (see (7.4))

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 45/181
NP

46 2. NOTATIONS AND GENERALITIES

• horizontal concatenation (see (7.5))

• juxtaposition (see (7.6))

are such that the resulting well-posedness radius is the smallest of the ones of both factors. For

• transposition (see (7.1))

• scalar multiplication

• conjugation

• real part (see (7.11))

• imaginary part (see (7.12))

• and the transformation [M M]→ [ℜ(M) ℑ(M)] (see (7.15))

the resulting well-posedness radius is not modified (see Lemma 7.1.3, page 153 for the last
three items).

2.4.2 Non-singularity

The resulting well-posedness radius is not related to the original one in the following cases:

• inversion (see (7.7))

• null space computation, see § 7.1.8

In the second case (null space computation) well-posedness is also a problem of inversion.
Equation (7.7) of page 149 is:

Fu (M, ∆)−1 = Fu

([
M11−M12M−1

22 M21 M12M−1
22

−M−1
22 M21 M−1

22

]
, ∆

)
So, the well-posedness radius of M(∆)−1 is

1
µ(M11−M12M−1

22 M21)

in fact it defines a ball in which M(∆) is non-singular. Therefore, it is natural to define the
non-singularity radius as follows.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 46/181
NP

2.4 WELL-POSEDNESS AND NON-SINGULARITY 47

Definition 2.4.3 The non-singularity radius of the square LFR-object (non-singular for ∆ = 0)
Fu(M,∆) = M21∆(I−M11∆)−1M12 +M22 is defined by

Non-singularity radius =
1

µ(M11−M12M−1
22 M21)

(2.22)

Uniform controllability. This definition can be used for example for checking the uniform
controllability of a system (A(∆),B(∆)) in the unit ball. Consider the matrix

M(∆,λR,λI) =
[

A(∆)− (λR + jλI)I B(∆)
]

in which λR and λI are bounded (in the area of the complex plane containing the dominant
modes of the system), and then normalized between −1 and +1. M(∆,λR,λI) can be modeled
as an LFR-object M(∆′) with a new “∆” matrix

∆
′ =

 ∆ 0 0
0 λRIn 0
0 0 λIIn


All entries of ∆′ being real we can apply conjugate transposition to M(∆′) so that the
non-singularity of M(∆′) (non-square object) becomes equivalent to the non-singularity of
M(∆′)M(∆′)T (square object compatible with Definition 2.22).

Finally we have a controllability test that is (A(∆),B(∆)) is uniformly controllable in the unit
ball if and only if the non-singularity radius of M(∆′)M(∆′)T is larger than one.

We can also check the non-singularity of the matrix

[B(∆) A(∆)B(∆) A2(∆)B(∆) . . .]

(not very reliable on account of the powers of A(∆).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 47/181
NP

48 2. NOTATIONS AND GENERALITIES

Software relative to this section

Illustrated functions:

- wp_rad computes the well-posedness radius, see Example 2.10,

- ns_rad computes the non-singularity radius, see Example 2.10.

Example 2.10 The function lfrs will be presented in the next section, it is used here for gen-
erating an LFR-object with a priori known well-posedness radius and non-singularity radius:
The following matrix M is not well-posed for b + c = 2 and the corresponding worst case is
b = c = 1.

lfrs a b c d
M = [(1+a)/(2-b-c) 2;2*a 3+d];

Well-posedness analysis:

>> [rad_min,rad_max,pertnames,pert] = wp_rad(M)

rad_min =

1.0000

rad_max =

1.0000

pertnames =

’a’ ’b’ ’c’ ’d’

pert =

[0] [1.0000] [1.0000] [0]

As expected, the smallest value of ∆ at which well-posedness is not satisfied is for b and c equal
to 1.

The matrix M becomes singular for a = 1/3 and b = c = d =−1/3. Let us check this result:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 48/181
NP

2.4 WELL-POSEDNESS AND NON-SINGULARITY 49

>> [rad_min,rad_max,pertnames,pert] = ns_rad(M)

rad_min =

0.3331

rad_max =

0.3333

pertnames =

’a’ ’b’ ’c’ ’d’

pert =

[0.3333] [-0.3333] [-0.3333] [-0.3333]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 49/181
NP

50 2. NOTATIONS AND GENERALITIES

2.5 Object-oriented realization of Linear Fractional Repre-
sentations

With a software such as MATLAB, linear systems can be handled as matrices. Considering
the similarity between LFR-objects and linear systems (compare figures 2.2 and 2.5), naturally,
it will also be possible to treat LFR-objects as matrices. In particular, it is possible to add
(put in parallel), subtract, multiply (put in series), transpose, invert, compute a feedback, and
concatenate LFR-objects (see §7.1 for details).

The first contribution in this direction is in the toolbox for MATLAB described in Terlouw and
Lambrechts [51], see also d’Andrea [24]. Similar tools were also developed for Maple in Varga
and Looye [53, 52].

The mechanism behind these manipulations is rather simple. We are going to clarify it by
considering the addition of two LFR-objects. Let us consider two objects identical to that of
Figure 2.4. They are denoted Fu(D′,∆′) and Fu(D′′,∆′′) where

D′ =
[

D′
11 D′

12
D′

21 D′
22

]
;D′′ =

[
D′′

11 D′′
12

D′′
21 D′′

22

]
The transfers between “u” and “y” are respectively

Fu(D′,∆′) = D′
21∆

′(I−D′
11∆

′)−1D′
12 +D′

22

and
Fu(D′′,∆′′) = D′′

21∆
′′(I−D′′

11∆
′′)−1D′′

12 +D′′
22

Example 1: sum. The sum of Fu(D′,∆′) and of Fu(D′′,∆′′) can be written

[
D′

21 D′′
21

][
∆′ 0
0 ∆′′

](
I−

[
D′

11 0
0 D′′

11

][
∆′ 0
0 ∆′′

])−1 [
D′

12
D′′

12

]
+D′

22 +D′′
22

so,

Fu
(
D′, ∆

′)+Fu
(
D′′, ∆

′′) = Fu

(
S

(
D′, D′′) ,

[
∆′ 0
0 ∆′′

])

with S
(
D′, D′′) =

 D′
11 0 D′

12
0 D′′

11 D′′
12

D′
21 D′′

21 D′
22 +D′′

22

 (2.23)

It remains to reorder the δi’s.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 50/181
NP

2.5 OBJECT-ORIENTED REALIZATION OF LINEAR FRACTIONAL REPRESENTATIONS51

Example 2: product. As above, the product of two LFRs can be written:

Fu
(
D′, ∆

′) ·Fu
(
D′′, ∆

′′) = Fu

(
P

(
D′, D′′) ,

[
∆′ 0
0 ∆′′

])

with P
(
D′, D′′) =

 D′
11 D′

12D′′
21 D′

12D′′
22

0 D′′
11 D′′

12
D′

21 D′
22D′′

21 D′
22D′′

22

 (2.24)

It remains as above to reorder the δi’s.

It is very easy to automate such manipulations. The set of required formulae for the other
operations is given in §7.1. It remains to create the basic elements which will be treated as
above.

Construction of elementary LFR-objects. Simple objects like I/s or uncertain parameters (for
example a = a0 + a1δ) are easily realized (it suffices to identify term by term their expression
with the one of Fu(M,∆)) :

I
s

= Fu(
[

0 I
I 0

]
,

I
s
)

and

a = a0 +a1δ = Fu(
[

0 1
a1 a0

]
, δ)

Object-oriented realization. When the above elementary objects are available, it is possible to
build any realization provided that it involves matrix operations compatible with LFTs (addition,
multiplication, concatenation, inversion, transposition, conjugation, real and imaginary parts,
see Appendix §7.1, page 147).

Examples 2.11 and 2.12 illustrate the object-oriented realization. Briefly, the function lfrs
generates the above elementary objects, after that, the object-oriented realization consists of
using standard operations as for building more complex objects. All operation directly applied
to LFR-objects can be found in the @lfr sub-directory of the toolbox installation directory.

The function sym2lfr performs automatically the object oriented realization from a symbolic
expression. However, if the considered symbolic expression comes from Maple, it can be very
badly conditioned, for example:

M = 10−40a b (2×10+10 +10+10 a+4×10+10 c b)2(1+6×10+10 c)2

The function sym2lfr from version 1.3 treats this problem in an efficient way by normalizing
recursively the leading coefficient of each expression between parenthesis before applying the
object-oriented realization.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 51/181
NP

52 2. NOTATIONS AND GENERALITIES

Software relative to this section

Illustrated functions:

- lfrs generates elementary 1×1 LFR-objects, see Examples 2.11 and 2.12.

- sym2lfr transforms a symbolic expression into an LFR-object, see Example 2.13.

- distlfr computes a lower bound of the distance between two LFR-objects (for an upper
bound, see udistlfr).

These examples show the complementarity of the object-oriented realization and the direct re-
alization from a symbolic object.

Example 2.11 First, let us introduce the function lfrs. This function is very convenient for
defining elementary 1×1 LFR-objects. It admits three kinds of input arguments (without paren-
thesis and comas).

• The first group of arguments is a set of strings corresponding to the names of the 1×1
elementary LFR-objects to be created

• Then, an optional string ’real’ (default) or ’complex’ indicates the nature of the ele-
mentary objects to be created.

• The last two (three) arguments are optional vectors of numerical values giving the mini-
mum, maximum (and nominal) values of real parameters (by default the nominal values
are in the middle of intervals). Note that the square brackets (e.g., [2]) must be used even
for a single value.

>> lfrs Int
>> lfrs a b ’real’ [1 1] [3 3]
>> lfrs c [1] [3] [2.5]
>> lfrs d ’complex’ [0] [2]
>> size(a*b*c*d)

LFR-object with 1 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 52/181
NP

2.5 OBJECT-ORIENTED REALIZATION OF LINEAR FRACTIONAL REPRESENTATIONS53

a 1x1 LTI r s [1,3]
b 1x1 LTI r s [1,3]
c 1x1 LTI r s [1,3], nominal=2.5
d 1x1 LTI c s |0 - d| < 2

Let us considered the following system

y(s) = (
δ2

1
s2 +

δ1δ3

s
+δ

2
1δ

2
3)u(s) (2.25)

The object-oriented realization technique consists of realizing separately 1/s, δ1 and δ2 and
then to combine these realizations in order to build the realization of a more complex system:.

>> lfrs Int d1 d3
>> sys1 = d1^2*Int^2 + d1*d3*Int + d1^2*d3^2;
>> size(sys1)

LFR-object with 1 output(s), 1 input(s) and 3 state(s).
Uncertainty blocks (globally (7 x 7)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 4x4 LTI r s [-1,1]
d3 3x3 LTI r s [-1,1]

We shall compare this result to similar results obtained in different ways in Examples 2.12 and
2.13.

Example 2.12 We solve the same problem as above but using a different form of the transfer
between u and y. We shall use:

δ2
1

s2 +
δ1δ3

s
+δ

2
1δ

2
3 = δ1

[1
s δ1δ3

][
1 1
0 1

][
δ1

1
s

δ3

]
(2.26)

So we shall have

>> lfrs Int d1 d3
>> sys2 = d1*[Int d1*d3]*[1 1;0 1]*[d1*Int ; d3];

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 53/181
NP

54 2. NOTATIONS AND GENERALITIES

We can check the size

>> size(sys2)
LFR-object with 1 output(s), 1 input(s) and 2 state(s).
Uncertainty blocks (globally (5 x 5)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 3x3 LTI r s [-1,1]
d3 2x2 LTI r s [-1,1]

The ∆ matrix is now 5 × 5 instead of 8 × 8. Using the function distlfr we can check that we
have computed equivalent objects:

>> distlfr(sys1,sys2)

ans = 0

As a conclusion, considering the size of the ∆-block, the object-oriented LFR construction might
be more or less efficient. Indeed, the size of this block is clearly equal to the number of times
the parameters (uncertain parameters and 1/s) appear in the symbolic form that is considered
(compare Equations (2.25) and (2.26)).

Example 2.13 The construction proposed in Example 2.12 is treated now using the symbolic
approach. The function that is illustrated is sym2lfr. This function transforms a symbolic
expression into an LFR-object.

>> syms Int d1 d3
>> syss = d1*[Int d1*d3]*[1 1;0 1]*[d1*Int ; d3];
>> sys3 = sym2lfr(syss);

Note that 1/s must be denoted using the symbol Int. It remains to check that we have modelled
the same object as above:

>> distlfr(sys2,sys3)

ans = 0

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 54/181
NP

2.5 OBJECT-ORIENTED REALIZATION OF LINEAR FRACTIONAL REPRESENTATIONS55

On account of the fact that Maple (behind the Symbolic Toolbox) handles the operations needed
for computing the symbolic expression syss, we have no more control on the number of times
parameters are really repeated. But, using some Maple functions for factorizing we can get an
automatic reduction (see § 3.4 page 80) which is useful for very large systems. The symbolic ap-
proach will be even more useful, for example, when the original transfer is nonlinear, and when
we look for a symbolic expression of the continuum of linearized models (to be transformed
into a single LFR-object). In that case differentiation needed for linearizing can be performed
by symbolic computation (provided that the equilibrium surface is available in closed form).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 55/181
NP

56 2. NOTATIONS AND GENERALITIES

2.6 Discussion on minimality and commutativity

We have just established some basic notions in order to be able to introduce the difficult problem
of minimality.

At first, let us note that it is essential to obtain models of reasonable size to be able to use them,
for example to run a µ-analysis. To calculate the upper bound of µ by resolving LMI systems it
is necessary to avoid having parameters repeated too many times (let us say more than 25 times).
Experience shows that it is “very easy” to exceed this limit, see for example Varga and Looye
[52]. This reference shows that careless modeling of a single coefficient of the state matrix of a
system may lead to a ∆ block of the respectable size 293 ×293 (one parameter is repeated 136
times!) and that the size of this block can be divided by ten, without approximation. Without
trying to minimize in an optimal way the size of ∆ it is absolutely necessary to avoid this kind
of situations.

To define the minimality, it is necessary at first to define a notion of equivalence of models.
Indeed, having this notion, a representation is said to be minimal if there is no equivalent rep-
resentation with a ∆ of “smaller size”. In view of the discussion about µ-analysis, one could
consider that the relevant definition of “the size of ∆ is the dimension of its biggest block”. A
definition more usually accepted is the total dimension of the matrix ∆ (square matrix). It is this
measure that we shall adopt.

Strong input / output equivalence is the notion of equivalence of interest (see Doyle et al [28]
for a discussion about the other types of equivalences). It is defined in the following way.

Definition of the equivalence of two LFR-objects. Fu(M′(s),∆′) and Fu(M′′(s),∆′′) are said
to be equivalent if and only if

∀δi, Fu(M′(s),∆′) = Fu(M′′(s),∆′′)

In fact, as 1/s and the parameters δi play a role almost identical2, we shall use the following
definition: Fu(M′(s),∆′) and Fu(M′′(s),∆′′) are equivalent if and only

∀δi,∀s,Fu(M
′
,diag{I/s,∆′}) = Fu(M

′′
,diag{I/s,∆′′})

where the matrices M′ and M′′ are now as in Figure 2.2, that is

M(s) =
[

M11(s) M12(s)
M21(s) M22(s)

]
(see (2.12)) → M =

 A B1 B2
C1 D11 D12
C2 D21 D22


2With the difference that 1/s is not bounded and takes values in CI . This difference should be taken into account

in the section relative to the approximation of LFR-objects.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 56/181
NP

2.6 DISCUSSION ON MINIMALITY AND COMMUTATIVITY 57

These remarks justify the use of simplified notations.

Simplified notations. We shall use the first version of the definition by omitting dependence
with regard to s, that is:

M =
[

M11 M12
M21 M22

]
for

 A B1 B2
C1 D11 D12

C2 D21 D22


The ∆ block (representing at the same time dynamics and uncertainties, for example δ1 = 1/s)
will have a block-diagonal structure

∆ = diag{In1δ1, . . . , Inqδq}

The size of ∆ is identical to that of the matrix M11. The matrix M11 being (n×n) it follows:

∑
i=1,...,q

ni = n

Fu(M′,∆′) and Fu(M′′,∆′′) are equivalent if and only if

∀δi,Fu(M′,∆′) = Fu(M′′,∆′′)

Definition of minimality. An LFT representation is said to be minimal if there is no equivalent
representation (strong inputs / outputs equivalence) having a block ∆ of lower dimension (value
of n as above).

There are naturally no uniqueness of minimal representations. In particular we might have
∑i=1,...,q ni = n for n minimal but with more or less variable values of the ni’s.

Similarity and equivalence. All the references of literature which refer to the notion of equiv-
alence, use, in fact, for calculation another much stricter notion. It is a kind of equivalence
defined with a particular class of transformations of the form:

T = diag{T1, . . . ,Tq} where Ti ∈ IR ni×ni and det(Ti) 6= 0 (2.27)

where T commutes with ∆, so,

T ∆ = ∆T and ∆T−1 = T−1
∆

Applying this transformation to Fu(M,∆) (that will be denoted Fu(T (M),∆)) leads to

T (M) =
[

T−1M11T T−1M12
M21T M22

]
(2.28)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 57/181
NP

58 2. NOTATIONS AND GENERALITIES

Lemma 2.6.1 Fu(M,∆) = Fu(T (M),∆).

Proof.
Fu(T (M),∆) = M21T ∆(I−T−1M11T ∆)−1T−1M12 +M22

Using the commutativity of T and ∆

Fu(T (M),∆) = M21∆T (I−T−1M11T ∆)−1T−1M12 +M22

moving T and T−1 into the parenthesis,

Fu(T (M),∆) = M21∆(I−T T−1M11T ∆T−1)−1M12 +M22

But the commutativity of T and ∆ implying the commutativity of T−1 and ∆, we have

Fu(T (M),∆) = M21∆(I−T T−1M11T T−1
∆)−1T−1M12 +M22 = Fu(M,∆)

Definition of similarity. Considering the above result, Fu(M′,∆′) and Fu(M′′,∆′′) will be
said to be similar if and only if there is a non-singular matrix T which commutes with ∆,
s.t. T (M′) = M′′.

Use of similarity “to minimize” order. Similarity is used as in the case of standard linear
systems, it serves for putting in evidence non controllability or non observability (see §4.2 for
a more complete treatment of this approach) to exhibit terms which can be eliminate without
modifying the input / output transfer. Let us take an example.

[
δ2δ1
δ1

]
= Fu




0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 ,

 δ1 0 0
0 δ1 0
0 0 δ2


 (2.29)

Using

T =

 1 0 0
1 −1 0
0 0 1


we obtain the following similar form

[
δ2δ1
δ1

]
= Fu




0 0 0 1
0 0 0 0
1 0 0 0
0 0 1 0
1 −1 0 0

 ,

 δ1 0 0
0 δ1 0
0 0 δ2


 (2.30)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 58/181
NP

2.6 DISCUSSION ON MINIMALITY AND COMMUTATIVITY 59

of which the second line corresponds to a non controllability. As for standard systems it is
possible to eliminate the second row and the second column. Equivalent LFR-object:

[
δ2δ1
δ1

]
= Fu




0 0 1
1 0 0
0 1 0
1 0 0

 ,

[
δ1 0
0 δ2

] (2.31)

This form is now equivalent and of lower order.

Important remark. In the demonstration of Lemma 2.6.1, we do not use the fact that the
δi’s commute. So, the considered class of similarity is valid for the equivalence in the case
where the δi’s do not commute. It is the main weakness of all the reducing techniques as
similarity excludes the equivalence of two LFR-objects as soon as parameters are in wrong
order. For example δ1δ2 although equivalent is not similar to δ2δ1. To conclude this remark, all
techniques based on the use of the similarity which claim to find minimal form, obtain really
the minimality only in the case where the δi’s do not commute. Let us return to the previous
example and permute δ1 and δ2. A simple calculation shows that

[
δ1δ2
δ1

]
= Fu




0 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0

 ,

 δ1 0 0
0 δ1 0
0 0 δ2


 (2.32)

It can be shown that there exists no solution with T invertible s.t. T allows us to pass from
(2.29) to (2.32): (2.29) and (2.32) are equivalent but not similar. Both LFR-object of equations
(2.31) and (2.32), one of order 2, the other one of the order 3, are both “minimal”, but in the
sense of literature!

Definition of the relative minimality. Considering the above discussion, from now on we shall
distinguish between the absolute minimality first defined and the notion of “minimality” based
on the similarity transformations. One will say that a LFT representation satisfies the relative
minimality if there is no similarity transformation like in (2.27) such that some lines or columns
can be eliminated without modifying the input / output transfer function.

In fact, it is not really necessary to consider difficult LFT theory to explain the difference be-
tween the minimality and the relative-minimality. In case of non commutativity, we have[

δ2δ1
δ1

]
=

[
δ2
1

]
δ1 (2.33)

and [
δ1δ2
δ1

]
=

[
δ1 0
0 δ1

][
δ2
1

]
(2.34)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 59/181
NP

60 2. NOTATIONS AND GENERALITIES

Realization using the object-oriented approach (section 2.5) clearly leads to LFR-objects of
order equal to the number of times the parameters appear in the symbolic representation.
For simple transfers, it is easy to see if (absolute) minimality is reached (i.e. one can not write
again an the symbolic expression with fewer parameters). The transfer of Equation (2.33) is of
order 2 because each δ1 and δ2 appears only once. The transfer of Equation (2.34) is of order
3 because δ1 appears twice and δ2 once. It is also clear that without commutativity, it is not
possible to reduce further the transfer of Equation (2.34).

More generally, non commutativity can lead to extremely different relative minimal orders for
the same transfer. For example the following two transfers are equivalent, but their relative
minimal orders3 are respectively 9 and 3 δ1δ2δ3

δ2δ3δ1
δ3δ1δ2

 and

 1
1
1

δ1δ2δ3

Note that if  δ1δ2δ3
δ1δ2δ3
δ1δ2δ3


is “object-oriented built”, respecting the order of δi’s as above, we also reach a 9th order, but
the algorithms of relative minimization (see chapter 4 for examples) would lead in that case to
the minimal form of order 3.

3Instead of symbolic objects, imagine the realizations obtained using the object-oriented technique (§2.5) ap-
plied according to the symbolic notation (no commutations of δi’s).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 60/181
NP

2.6 DISCUSSION ON MINIMALITY AND COMMUTATIVITY 61

Software relative to this section

Illustrated functions:

- lfrs generates real scalar 1×1 LFR-objects,

- minlfr computes a “relative minimal” LFR-object.

Example 2.14 This example uses the n-D minimization approach (coded in function minlfr)
that will be presented later in § 4.2 page 99. It suffices to have in mind that minlfr performs
one of the most sophisticated LFR order reduction for a given realization. Let us consider the
example used in the previous discussion. Let

S1 =

 δ1δ2δ3
δ2δ3δ1
δ3δ1δ2

 and S2 =

 δ1δ2δ3
δ1δ2δ3
δ1δ2δ3


The realizations of S1 and S2 are computed

>> lfrs d1 d2 d3
>> S1 = [d1*d2*d3;d2*d3*d1;d3*d1*d2];
>> S2 = [d1*d2*d3;d1*d2*d3;d1*d2*d3];

Now, minlfr is used for reducing the size of the ∆ matrix:

>> S1min = minlfr(S1);
>> S2min = minlfr(S2);

Resulting in

>> size(S1min)

LFR-object with 3 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (9 x 9)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 3x3 LTI r s [-1,1]
d2 3x3 LTI r s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 61/181
NP

62 2. NOTATIONS AND GENERALITIES

d3 3x3 LTI r s [-1,1]

>> size(S2min)

LFR-object with 3 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (3 x 3)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 1x1 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]
d3 1x1 LTI r s [-1,1]

>> distlfr(S1min,S2min)

ans = 3.3307e-16

As stated in this section, order reduction techniques are more or less efficient depending on the
ordering of symbols appearing in the realized symbolic transfer. Here, the same LFR-object
corresponds to a ∆-block of order 9 (S1min) or of order 3 (S2min), which is minimum in the
sense of 4.2 in both cases.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 62/181
NP

2.7 GENERAL PRINCIPLES FOR PARAMETER DEPENDENT SYSTEM MODELLING 63

2.7 General principles for parameter dependent system
modelling

The discussion proposed all along this chapter allows us to propose a skeleton for modelling in
LFT form. We propose to proceed in three main steps.

First step: Realization. Before using the algebraic reduction techniques it is necessary to take
advantage of the commutativity of the δi’s (during the realization phase). There are two main
approaches for that, Belcastro’s one and the tree decomposition.

Second step: Algebraic reduction. Two main approaches: d’Andrea’s one and the one of Beck
et al, see chapter 4. These two techniques are equivalent4. Both lead to the relative-minimal
order.

Third step: Approximation. See Section 4.4.

4Only in theory, because numerically there are important differences.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 63/181
NP

EMPTY PAGE

65

Chapter 3

Realization of parameter dependent
systems

We have already presented the object-oriented realization technique (§2.5). The other tech-
niques are:

• The technique of Morton [46]. This technique is very restrictive from the point of view of
the parameter dependency, but it is the first one which was published. Some extensions
are rather natural (see for example [20]), but we shall not develop extensions preferring
the more general approaches listed below.

• The technique proposed by Varga and Looye [52] who use Horner factorization.

• The tree decomposition. As for the previous approach, this very natural technique con-
sists of making sum / product decompositions so as to reduce the number of times the
parameters occur. It was introduced in Barmish et al [3] in another context. Cockburn
and Moron [21, 22, 23] adapted this technique to the LFT-realization. It is the technique
that is naturally used (manually) when one tries to apply efficiently the “object-oriented”
approach.

• The technique of Belcastro et al [12, 14, 15, 16, 17] (see in particular [12, 13] which
contain all the demonstrations). This approach is purely matrix-based. The sizes of all
blocks is chosen a priori. This choice leads to a polynomial expansion with regard to
parameter powers. By comparison of this expansion to the symbolic object to be realized
the equations to be solved can be derived. If this set of equations has no solution, blocks
sizes are augmented so that a solution can be found.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 65/181
NP

66 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

• The graph manipulation approach. It is clear that symbolic forms can be represented as
graphs. Minimizing an LFT form is therefore equivalent to simplifying a graph. See Font
[30] for a general graph approach to LFT modelling. See also Döll [26] for a Simulink-
based approach.

Before considering realization techniques, we propose two sections treating generalities (might
be considered as appendices). At first, we show how a rational dependency can be treated as
a polynomial dependency, which justifies the hypothesis that all considered models will have
a symbolic polynomial form. Second, we discuss the fact that the symbolic state-space form
is more natural than the symbolic transfer matrix form, which justifies the hypothesis that all
models considered for realization will be in symbolic state-space (polynomial) form.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 66/181
NP

3.1 LEFT AND RIGHT FACTORIZATIONS 67

3.1 Left and right factorizations

This section consider considers the transformations[
N
D

]
(∆)→ N(∆)D(∆)−1

and [
N′ D′]

(∆)→ D′(∆)−1N′(∆)

The results of Lemmas 3.1.1 and 3.1.2 given below are often used with D, D′, N and N′ in
polynomial form (see §3.5 (tree decomposition)). However the results of these lemmas are
more general and can be used in any case provided that D or D′ can be inverted (regardless of
polynomial or rational considerations). The main advantage of using these results is that the
size of ∆ is not modified while using a more naive transformation, e.g.[

N
D

]
→

([
I 0

][
N
D

])([
0 I

][
N
D

])−1

the size of ∆ would be multiplied by two.

Lemma 3.1.1 Let M(∆) = N(∆)D(∆)−1 where the entries of the matrices are polynomials in
the δi’s. If [

N
D

]
(∆) = Fu

 Q11 Q12

Q21N Q22N
Q21D Q22D

 ,∆


so,

M(∆) = Fu

([
P11 P12

P21 P22

]
,∆

)
where

P11 = Q11−Q12Q−1
22DQ21D

P12 = Q12Q−1
22D

P21 = Q21N −Q22NQ−1
22DQ21D

P22 = Q22NQ−1
22D

(3.1)

We shall only prove the dual result that is:

Lemma 3.1.2 Let M(∆) = D′(∆)−1N′(∆) where the coefficients of matrices N′ and D′ have
polynomial dependency in the δi’s. If[

N′ D′]
(∆) = Fu

([
Q11 Q12N Q12D

Q21 Q22N Q22D

]
,∆

)
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 67/181
NP

68 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

so

M(∆) = Fu

([
P11 P12

P21 P22

]
,∆

)
where

P11 = Q11−Q12DQ−1
22DQ21

P12 = Q12N −Q12DQ−1
22DQ22N

P21 = Q−1
22DQ21

P22 = Q−1
22DQ22N

(3.2)

Proof. This result is demonstrated in Belcastro [12], page 206. Note that the ∆-block of D′(∆)−1N′(∆) is the
same as the one of [N′ D′](∆). Our justification reduces to checking the following identity:

D′(∆)−1N′(∆) =−
[

0 I
][

N′(∆) D′(∆)
I 0

]−1 [
0
I

]
This formula is sufficient for computing D′(∆)−1N′(∆) without increase of the size of ∆. The derivation of the

P′i j’s as given above is straightforward by using the formulas of the appendix (see page 148): (7.4) for horizontal

concatenation of [N′(∆) D′(∆)] and [0 I], (7.7) for inversion and so on.

Comment 3.1.3 Using the same ideas as in the above proof we have:

D−1
1 (∆)N(∆)D−1

2 (∆) =−
[

0 I
][

D1(∆) N(∆)
0 D2(∆)

]−1 [
0
I

]
This formula will be useful in §3.5 for replacing rational by polynomial dependency in order to
use the tree decomposition.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 68/181
NP

3.1 LEFT AND RIGHT FACTORIZATIONS 69

Software relative to this section

Illustrated functions:

- rf2lfr computes ND−1 (see (3.1)) from a vertical arrangement of N(∆) and D(∆).

- lf2lfr computes D′−1N′ (see 3.2) from an horizontal arrangement of N′(∆) and D′(∆).

Example 3.1 This example illustrates the use of the function rf2lfr. This function performs
the transformation described in Equation (3.1). First a realization of a given matrix

NDv =
[

N(∆)
D(∆)

]
is performed, note that ∆ might contain dynamics.

lfrs Int x y z
NDv = [1+x*Int x*y+z;0 x^2*Int^2;1+Int 0;0 2+x*y*Int];

Then we apply the function that computes the corresponding system transfer matrix (sys
=N(∆)D(∆)−1).

sys = rf2lfr(NDv);

In order to check the results, we generate this object in an alternative way

N = [eye(2,2) zeros(2,2)]*NDv;
D = [zeros(2,2) eye(2,2)]*NDv;
sys2 = N*D^(-1);

The comparison leads to

>> size(sys)

LFR-object with 2 output(s), 2 input(s) and 5 state(s).
Uncertainty blocks (globally (8 x 8)):
Name Dims Type Real/Cplx Full/Scal Bounds

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 69/181
NP

70 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

x 5x5 LTI r s [-1,1]
y 2x2 LTI r s [-1,1]
z 1x1 LTI r s [-1,1]

>> size(sys2)

LFR-object with 2 output(s), 2 input(s) and 10 state(s).
Uncertainty blocks (globally (16 x 16)):
Name Dims Type Real/Cplx Full/Scal Bounds

x 10x10 LTI r s [-1,1]
y 4x4 LTI r s [-1,1]
z 2x2 LTI r s [-1,1]

>> distlfr(sys,sys2)

ans = 0

The problem of Equation (3.2) can be considered in a similar way using lf2lfr instead of
rf2lfr.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 70/181
NP

3.2 INPUT/OUTPUT AND STATE-SPACE REALIZATIONS 71

3.2 Input/output and state-space realizations

It is advisable to wonder about the a priori form of models stemming from the physical equa-
tions. This interrogation is justified by the fact that certain authors speak about direct and
indirect approaches. “Direct approach” means that the transfer M(s,∆) is directly realized.

y = M(s,∆)u (3.3)

assuming that it is in symbolic form. The “indirect approach” consists of realizing

S(∆) =
[

A(∆) B(∆)
C(∆) D(∆)

]
(3.4)

corresponding to [
ẋ
y

]
=

[
A(∆) B(∆)
C(∆) D(∆)

][
x
u

]
Let us take for example the missile model considered further on. Without entering into details,
the physical equations are

ẋ1 = a11(δ1,δ2)x1 +a12(δ1,δ2)x2 +b1(δ1,δ2)u
ẋ2 = a21(δ1,δ2)x1 +b2(δ2)u

y = c1(δ1,δ2)x1 +d(δ2)u

Where a11, a12, b1, b2, c1 and d are polynomial1. The elimination of states is rather simple:
After introducing the integration symbol 1/s, the second equation is substituted into the first
one and the resulting symbolic form of x1 is substituted into the third one. We obtain

M(s,∆) = c1(δ1,δ2)
b1(δ1,δ2)+ 1

s a12(δ1,δ2)b2(δ2)

1− 1
s (a11(δ1,δ2)+a12(δ1,δ2)a21(δ1,δ2))

+d(δ2)

Using the indirect approach we would have to find a realization of ẋ1
ẋ2
y

 =

 a11(δ1,δ2) a12(δ1,δ2) b1(δ1,δ2)
a21(δ1,δ2) 0 b2(δ2)
c1(δ1,δ2) 0 d

 x1
x2
u



S(∆) =

 a11(δ1,δ2) a12(δ1,δ2) b1(δ1,δ2)
a21(δ1,δ2) 0 b2(δ2)
c1(δ1,δ2) 0 d(δ2)


The following lemma shows that state-space and input/output models are equivalent as it suf-
fices to permute some sub-matrices to pass from one form to the other one.

1The parameters δ1 and δ2 stand for the variations of the Mach number and of the angle of incidence. The
states are the variation of the angle of incidence and the pitch rate.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 71/181
NP

72 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

Lemma 3.2.1 If an input/output LFR-realization is given as in (2.3):

y = Fu

 A B1 B2
C1 D11 D12

C2 D21 D22

 ,

[I
s 0
0 ∆

]u (3.5)

the equivalent state-space LFR-realization is given by

[
ẋ
y

]
= Fu

 D11 C1 D12

B1 A B2
D21 C2 D22

 , ∆

[
x
u

]
(3.6)

Proof. Let us denote v = ∆z and x = ẋ/s then (3.5) and (3.6) respectively mean ẋ
z
y

 =

 A B1 B2
C1 D11 D12

C2 D21 D22

 x
v
u

 and

 z
ẋ
y

 =

 D11 C1 D12

B1 A B2
D21 C2 D22

 v
x
u


which justifies the equivalence stated in the lemma.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 72/181
NP

3.2 INPUT/OUTPUT AND STATE-SPACE REALIZATIONS 73

Software relative to this section

Illustrated functions:

- abcd2lfr converts a system matrix LFR to an input/output LFR-object, see Examples
3.2 and 3.3.

- bnds2lfr converts a matrix with uncertainty bounds to an LFR-object, see Example 3.3.

Example 3.2 This example illustrates the use of the function abcd2lfr that performs the trans-
formation from Equation (3.6) to Equation (3.5). In other words, this function permits us to
compute M(s,∆) (see (3.3)) as an LFR-object when we have at our disposal the LFR form of
S(∆) (see (3.4)).

lfrs x y z
A = [1+x x*y+z;0 x^2]; B = [1;y]; C=[y+z x*y]; D=1+y^2;
S = [A B;C D];
sys = abcd2lfr(S,2);

In order to check this result, sys is computed in an alternative way:

I2 = eye(2,2);
sys2 = C*feedback(I2*Int,A,1)*B + D;

the following comparison shows that we have generated equivalent objects.

>> distlfr(sys,sys2)

ans = 0

Note that this example might be misleading because we do not take advantage of the fact that
we have a single object S(∆) instead of four objects A(∆), B(∆), C(∆) and D(∆). Indeed, more
simplifications can be expected using the single object because in this case factorization might
involve more than one of the sub-matrices A(∆), B(∆), C(∆) and D(∆). This topic is the main
purpose of the next sections of this chapter.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 73/181
NP

74 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

Example 3.3 This example illustrates the use of the function bnds2lfr combined with
abcd2lfr. It is assumed that bounds relative to the elements of the matrices A, B, C, D of a
quadruple (A,B,C,D) are known. The considered problem consists of building first an LFR-
object for these matrices. Then by concatenation, the LFR form of the matrix S = [A B;C D]
is found. In the last step, the LFR form of S is transformed to an input/output LFR-object using
abcd2lfr.

>> minA = [-2 -2 -4;0 -5 -5;0 0 -6];
>> maxA = [0 -2 -2;0 -3 -5;0 0 -6];
>> minB = [0.5;0.5;0.5];
>> maxB = [1.5;1.5;1.5];
>> C=[1 1 1];
>> D=1;

The matrices minA, maxA, minB and maxB explicit the possible variations of the entries of the
matrices A and B: A has 3 uncertain parameters that are A(1,1) (varying between -2 and 0),
A(1,3) (varying between -4 and -2), and A(2,2) (varying between -5 and -3). The entries of
B vary between 0.5 and 1.5. The matrices C and D are fixed. The LFR-objects corresponding
to A and B are built as follows:

>> lfrA = bnds2lfr(’A_’,minA,maxA);
>> lfrB = bnds2lfr(’B_’,minB,maxB);

The third input argument means that the 3 uncertain parameters of A are ordered (column-wise)
from 1 to 3 (= lastrank) and that the uncertain parameters of B are ordered from 4 (= lastrank
+ 1). The corresponding input / output LFR-object is computed as follows:

>> sys = abcd2lfr([lfrA lfrB;C D],3);
>> size(sys)

LFR-object with 1 output(s), 1 input(s) and 3 state(s).
Uncertainty blocks (globally (6 x 6)):
Name Dims Type Real/Cplx Full/Scal Bounds

A_1_1 1x1 LTI r s [-2,0]
A_1_3 1x1 LTI r s [-4,-2]
A_2_2 1x1 LTI r s [-5,-3]
B_1_1 1x1 LTI r s [0.5,1.5]
B_2_1 1x1 LTI r s [0.5,1.5]
B_3_1 1x1 LTI r s [0.5,1.5]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 74/181
NP

3.2 INPUT/OUTPUT AND STATE-SPACE REALIZATIONS 75

The function ordelta can be used for modifying the default ordering of uncertain parameters.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 75/181
NP

76 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

3.3 Morton’s method

Let us assume that matrix S(∆) of Equation (3.4) admits a development of the form

S(∆) =
[

A(∆) B(∆)
C(∆) D(∆)

]
=

[
A0 B0
C0 D0

]
+δ1

[
A1 B1
C1 D1

]
+ . . .+δq

[
Aq Bq
Cq Dq

]
(3.7)

To reduce the realization order, every term (i≥ 1) is decomposed using the SVD (Singular Value
Decomposition) that is[

Ai Bi
Ci Di

]
=

[
Ui11 Ui12
Ui21 Ui22

][
Si 0
0 0

][
Vi11 Vi12
Vi21 Vi22

]
(Only the non-negligible singular values are retained in Si) leading to a decomposition[

Ai Bi
Ci Di

]
=

[
Ui1
Ui2

][
Vi1 Vi2

]
Therefore,

S(∆) =
[

A0 B0
C0 D0

]
+δ1

[
U11
U12

][
V11 V12

]
+ . . .+δq

[
Uq1
Uq2

][
Vq1 Vq2

]
(3.8)

The final representation of S(∆) can be written S(∆) = Fu(P,∆) where

P =


A0 U11 . . . Uq1 B0
V11 0 . . . 0 V12

...
...

Vq1 0 . . . 0 Vq2

C0 U12 . . . Uq2 D0


and

∆ = diag{I/s,δ1In1, . . . ,δqInq}

Proof. To check this result, let us consider the case of two uncertain parameters (the generalization is straight-
forward). Writing S(∆) = Fu(P,∆) with P and ∆ as above means that

ẋ
z1
z2
y

 =


A0 U11 U21 B0
V11 0 0 V12
V21 0 0 V22
C0 U12 Uq2 D0




x
w1
w2
u

with
[

w1
w2

]
=

[
δ1z1
δ2z2

]

but [
z1
z2

]
=

[
V11 V12
V21 V22

][
x
u

]
→

[
w1
w2

]
=

[
δ1V11 δ1V12
δ2V21 δ2V22

][
x
u

]
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 76/181
NP

3.3 MORTON’S METHOD 77

so [
ẋ
y

]
=

[
A0 B0
C0 D0

][
x
u

]
+

[
U11 U21
U12 U22

][
δ1V11 δ1V12
δ2V21 δ2V22

][
x
u

]
or [

ẋ
y

]
=

([
A0 B0
C0 D0

]
+δ1

[
U11
U12

][
V11 V12

]
+δ2

[
U21
U22

][
V21 V22

])[
x
u

]
which in the form of the development of the equation (3.8).

Possible Extensions. One can go farther by considering that the coefficients of the development
(3.7) are not any more the δi’s but rational functions of the δi’s (see [20]). One operates as
above, but with an intermediate step where the elements of the block ∆ are rational functions of
δi. It remains to use the Redheffer’s star product (see [27], or page 28 of this report) to obtain
the usual form with δi in the block ∆. The functions depl2lfr performs the standard Morton
realization and deps2lfr, the extended one.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 77/181
NP

78 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

Software relative to this section

Illustrated functions:

- gmorton generalized Morton’s realization.

- abcd2lfr converts a state-space representation in LFR form to an input/output LFR-
object.

Example 3.4 This example illustrates the generation of an LFT-object given in the expended
form of Equation (3.7).

S(∆) =
[

A(∆) B(∆)
C(∆) D(∆)

]
=

[
A0 B0
C0 D0

]
+δ1

[
A1 B1
C1 D1

]
+δ3

[
A2 B2
C2 D2

]
It is assumed that this expression depends on δ1 and δ2 that will be denoted d1 and d2. The
coefficients of the expansion are chosen at random:

>> lfrs d1 d2
>> sys0 = rss(4,2,3);
>> sys1 = rss(4,2,3);
>> sys2 = rss(4,2,3);
>> sys = gmorton({sys0,sys1,sys2},[1 d1 d2]);

In order to check this result, an alternative construction based on the use of the function
abcd2lfr (see Example 3.2 on page 78) is proposed.

>> abcd = [sys0.a sys0.b;sys0.c sys0.d] + ...
>> d1 * [sys1.a sys1.b;sys1.c sys1.d] + ...
>> d2 * [sys2.a sys2.b;sys2.c sys2.d];
>> newsys = abcd2lfr(abcd,4);

Which results in

>> distlfr(sys,newsys)

ans = 3.8722e-14

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 78/181
NP

3.3 MORTON’S METHOD 79

The function gmorton is said to generalize Morton’s realization technique because this function
accepts any rational combinations of parameters as its second argument, in other words, the
coefficients of the expansion of Equation (3.7) can be any rational expression. For example

S(∆) = (1+δ
2
2)

[
A0 B0
C0 D0

]
+δ1δ2

[
A1 B1
C1 D1

]
+1/(1+δ2)

[
A2 B2
C2 D2

]

lfrs d1 d2
renewsys = gmorton({sys0,sys1,sys2},[1+d1^2 d1*d2 1/(1+d2)]);

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 79/181
NP

80 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

3.4 Realization using Horner factorization

It is the simplest realization method. To illustrate it, let us consider an example.

f (δ1,δ2,δ3) = 2δ
3
1δ

2
2δ3 +3δ

2
1δ

3
2 +4δ1δ3 +5

where f (δ1,δ2,δ3) is some coefficient of S(∆) (see (3.4)) or of M(∆) (see (3.3)). The "step
by step" construction of the corresponding LFT model (without factorization) leads to an LFR-
object of order 13. Horner factorization concerns single variable polynomials, its objective
consists of avoiding calculation of all the powers of the δi’s. Therefore, it allows us to reduce the
number of times the parameter appear and by the way to reduce the size of LFT representations.
Assume that the parameter considered for factorizing is δ1. So,

f (δ1,δ2,δ3) = δ1(δ1(2δ1δ
2
2δ3 +3δ

3
2)+4δ3)+5

The corresponding "step by step" realization would lead to an LFR-object of order 10 instead
of 13. One can again apply the same factorization with regard to δ2:

f (δ1,δ2,δ3) = δ1(δ1(δ2
2(3δ2 +2δ1δ3))+4δ3)+5

of which order is now 8. Note that the minimization algorithms (relative minimality) of Chapter
4 applied to the initial form of f and to the above form lead respectively to orders equal to 9
and 7.

This technique can be very simply implemented because there is a Maple function which cal-
culates Horner factorizations (function convert with option horner). The matrix extension is
not very difficult. See [52] for a spectacular order reduction (from 293 to 59).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 80/181
NP

3.4 REALIZATION USING HORNER FACTORIZATION 81

Software relative to this section

Illustrated functions:

- sym2lfr transforms a symbolic expression to an LFR-object.

- use of Maple via the Symbolic Toolbox.

Example 3.5 Let us consider the expression of Examples 2.11 and 2.13 on page 52.

y(s) = (
δ2

1
s2 +

δ1δ3

s
+δ

2
1δ

2
3)u(s) (3.9)

As in Example 2.13

>> syms d1 d2 d3 Int
>> sys_sym1 = d1^2*Int^2 + d1*d3*Int + d1^2*d3^2;
>> sys_lfr1 = sym2lfr(sys_sym1);

lead to an 11th order LFR-object. It is not useful as in the non-symbolic approach to consider
factorized expressions in which the number of times parameters appear is reduced because
Maple reorganizes internally polynomial expansions. However, some Maple functions permits
the user to have some control on the way polynomials are expanded. For example we can use:

>> sys_sym2 = maple(’convert’,sys_sym,’horner’,d1);
>> sys_lfr2 = sym2lfr(sys_sym2);

Resulting in

>> size(sys_lfr1)

LFR-object with 1 output(s), 1 input(s) and 3 state(s).
Uncertainty blocks (globally (8 x 8)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 5x5 LTI r s [-1,1]
d3 3x3 LTI r s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 81/181
NP

82 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

>> size(sys_lfr2)

LFR-object with 1 output(s), 1 input(s) and 3 state(s).
Uncertainty blocks (globally (5 x 5)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 2x2 LTI r s [-1,1]
d3 3x3 LTI r s [-1,1]

The reduction of the number of times d1 is repeated comes from Horner factorization w.r.t. d1
in the used symbolic expression that is

sys_sym2 = (d3*Int+(Int^2+d3^2)*d1)*d1

It is possible to reduce further the order by applying additional Horner factorizations with re-
spect to other parameters. (Note that to get Maple help messages via the Symbolic Toolbox use
mhelp instead of help, for example mhelp convert.)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 82/181
NP

3.5 THE STRUCTURED TREE DECOMPOSITION 83

3.5 The structured tree decomposition

The structured tree decomposition is a generalization of the idea consisting of factorizing pa-
rameters so that they appear a minimum times as possible before proceeding to the realization.

In this section, it will be assumed that a model as in Equation (3.4) (page 71) is available in
polynomial form. See Comment 3.1.3 (page 68) and Comment 3.5.2 for a transformation
between rational and polynomial forms.

Two types of transformations are considered: factorization and sum decomposition (in fact
two kinds of sum decompositions will be defined). The “tree decomposition” naming comes
from the fact that factorizations and decompositions yield sub-matrices of S(∆), in turn, factor-
izations and decompositions are applied to these sub-matrices and so on, until these transfor-
mations cannot be applied any more.

Factorization. Let us consider an example.

S(∆) =
[

4δ2
1δ3 3δ1 0

δ3δ5 5δ2
2δ4 δ2δ2

4

]
(3.10)

which is of order equal to 12. One can make two factorizations which decrease order (each one
reduces it of one unity):

S(∆) =
[

δ1 0
0 1

][
4δ1 3 0
δ5 5δ2

2δ4 δ2δ2
4

] δ3 0 0
0 1 0
0 0 1


Note that there is usually non uniqueness and that a priori it is not known which factorization
is the best one.

The direct sum decomposition. Decompositions, as a matter of fact, have as objective to make
factorizations possible. The most evident decomposition will consist of separating a matrix
in two parts in which appear two complementary subsets of parameters (“direct sum”). For
example: [

4δ1 3 0
δ5 5δ2

2δ4 δ2δ2
4

]
=

[
4δ1 3 0
δ5 0 0

]
+

[
0 0 0
0 5δ2

2δ4 δ2δ2
4

]
which, as expected allows us to factorize:[

4δ1 3 0
δ5 5δ2

2δ4 δ2δ2
4

]
=

[
4δ1 3 0
δ5 0 0

]
+

[
1 0
0 δ2δ4

][
0 0 0
0 5δ2 δ4

]
Note that combining decomposition and factorization we have:

S(∆) =
[

δ1 0
0 1

]([
4δ1 3 0
δ5 0 0

]
+

[
1 0
0 δ2δ4

][
0 0 0
0 5δ2 δ4

]) δ3 0 0
0 1 0
0 0 1


TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 83/181
NP

84 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

The order has been reduced from 12 to 8.

Alternative sum decomposition. As a matter of fact, direct decomposition is not always pos-
sible. But it is always possible2 either to operate a factorization, or to decompose into two parts
in the following way:

1 select one (or some) parameter(s).

2 isolate on one side of the decomposition the entries that contain the (or at least one of the)
chosen parameter(s).

3 the other term of the sum decomposition is independent of the selected parameter(s).

For example

S(∆) =
[

δ1δ2 +δ3
δ1δ2δ3

]
δ3 is selected:

S(∆) =
[

δ1δ2
0

]
+

[
δ3

δ1δ2δ3

] (
=

[
δ1δ2

0

]
+

[
1

δ1δ2

]
δ3

)
otherwise if we select δ1 and δ2

S(∆) =
[

δ3
0

]
+

[
δ1δ2

δ1δ2δ3

] (
=

[
δ3
0

]
+

[
1
δ3

]
δ1δ2

)
In both cases, one can factorize the selected parameter(s). In the first case, the factorization of
δ3 leads to a 5th order. In the second, the factorization of δ1 and δ2 leads to a 4th order.

Combination of factorizations and sum decompositions. There is no general method. It is
clear that final result depends on the order in which one operates these transformations. Fur-
thermore, transformations are not unique (see for example the sum decomposition of the last
example). In the paper that introduced this technique ([23]) there is a simple natural (trivial)
recommendation relative to factorization: try all the possibilities and retain the best one (there
is not naturally any guarantee that such a choice is globally the best one).

Comment 3.5.1 The main limitation of the tree decomposition is the following: If the consid-
ered symbolic expression contains complex factorizations, e.g.,

M = (1+a2 +ba)5− (1+a+b)3

2Except when all sub-matrices entries are monomials depending on a single parameter, that is at the end of
algorithm.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 84/181
NP

3.5 THE STRUCTURED TREE DECOMPOSITION 85

it is likely that the direct realization (function sym2lfr) which doesn’t remove factorizations
will lead to much better results than the tree decomposition (function symtreed) which ex-
pands symbolic expressions. For the above example, the direct realization leads to order 26,
and the tree decomposition, to order 39 (the expanded form of M that is treated by the tree
decomposition is of order 156).

Comment 3.5.2 Transformation of rational objects to polynomial ones. For applying the
tree decomposition to a rational symbolic object, first, find the polynomial symbolic objects
N(∆),D1(∆),D2(∆) satisfying S(∆) = D−1

1 (∆)N(∆)D−1
2 (∆) and then apply the tree decomposi-

tion to

S′(∆) =
[

D1(∆) N(∆)
0 D2(∆)

]
Having S′(∆) as an LFR-object, it remains to apply the transformation of Comment 3.1.3 (page
68) to obtain the LFR-form of the original symbolic object. The advantage of using this formula
is that the size of ∆ is not the sum of the sizes of the ∆’s of D1(∆),N(∆) and D2(∆) but reduces
to the size of the ∆ of S′(∆).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 85/181
NP

86 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

Software relative to this section

Illustrated function:

- symtreed structured tree decomposition from a symbolic expression.

Example 3.6 Let us consider the symbolic expression of Equation (3.10) for illustrating real-
ization by the tree decomposition..

>> syms d1 d2 d3 d4 d5
>> sys_sym = [4*d1^2*d3 3*d1 0 ; d3*d5 5*d2^2*d4 d2*d4^2];
>> sys1 = symtreed(sys_sym);

The order sys1 is equal to 9. If in the last command, symtreed is replaced by sym2lfr for a
brute force realization:

>> sys2 = sym2lfr(sys_sym);

The order is equal to 12.

In order to introduce Chapter 4, let us apply an “after realization” order reduction technique:

>> sys3 = minlfr(sys1);
>> sys4 = minlfr(sys2);

The order is 8 in the first case, 10 in the second case. This example shows that if realiza-
tion is not optimized, after realization it is too late, some factorization are no longer feasible
(commutativity problem).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 86/181
NP

3.6 THE MATRIX METHOD 87

3.6 The matrix method

Belcastro’s ([12]) matrix method is by far the most technical. A risk of conservatism lies in the
fact that the matrix "A" of certain sub-systems is supposed to be nilpotent. So, it is difficult to
estimate with certainty the sub-optimality of this technique. See [15] for more details than in
this section.

Principle of the method. The principle is rather simple but the implementation is dreadful.
Assume that we have at hand a symbolic expression of S(∆) (see (3.4)) of which coefficients
are multivariate polynomials (the variables being the δi’s).

The expression of P in Equation (3.11)

S(∆) = Fu(P,∆) (3.11)

is partitioned accordingly to the structure of ∆:

[
ẋ
y

]
= Fu

 P11 P12 P13

P21 P22 P23
P31 P32 P33

 , ∆

[
x
u

]
(3.12)

The expression of Fu(P,∆) is expended so as to write it under the form of a multivariate poly-
nomial in the δi’s. Note that in deriving this expansion, the term (I−P11∆)−1 is troublesome.
It is then necessary to assume that P11 is nilpotent of order r i.e.

(I−P11∆)−1 = I +(P11∆)+(P11∆)2 + . . .+(P11∆)r

with
(P11∆)r+1 = 0

so that Fu(P,∆) can be written in closed form without matrix inversion, so,

Fu(P,∆) =
[

P22 P23
P32 P33

]
+

[
P21
P31

]
∆(I +(P11∆)+ . . .+(P11∆)r)

[
P12 P13

]
The value of r is a function of the sum the partial degrees of δi in the expression of S(∆).

Identifying term by term the two polynomial expressions of S(∆) and of Fu(P,∆), a certain
number of equations is deduced. It remains to solve these equations for finding the sub-matrices
of Pi j. The references [12, 15] show in details how these equations can be handled. We shall
just sketch the resolution procedure.

Resolution procedure. The resolution of obtained equations is done following three main
steps:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 87/181
NP

88 3. REALIZATION OF PARAMETER DEPENDENT SYSTEMS

• The first one consists of taking ∆ = 0, from which P22, P23, P32 and P33 can be deduced.

• The second step, for every δi, comes down to 1-D realization sub-problems subject to
an additional nilpotency condition (of the matrix "A", it is a specific realization problem
treated in Chen [19]). Having achieved all the sub-problems of 1-D realization, P21, P31,
P12, P13 and the diagonal blocks of P11 are known.

• Third step consists of calculating the non diagonal blocks of P11. This computation can be
organized sequentially so that only linear problems are to be dealt with: the sub-matrices
that are computed at a given step are plugged into the equations considered at the next
steps.

Comment 3.6.1 We do not propose a MATLAB function because we believe that this technique
does not work systematically for non-academic systems. The main drawback lies in the third
step: when some linear sub-problems have no solution, Belcastro states that it is always possible
to increase the number of degrees of freedom (i.e. increase the size of uncertainty blocks initially
chosen) so that a solution exists. Unfortunately, for the existence of a solution, some rank
conditions are required (see Lemma 3.2 in [13]). As some of the involved sub-matrices are
nilpotent and appear as powers in the linear equations to be solved, this nilpotency property
induces difficulties for satisfying the rank conditions in a systematic way.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 88/181
NP

3.7 COMMENT ON NORMALIZATION 89

3.7 Comment on normalization

The normalization of parameters must be made after the realization. For example consider two
parameters δ1 and δ2. Let us assume that δ1 and δ2 have been replaced by normalized values:

δ1 → a1 +b1δ1
δ2 → a2 +b2δ2

the simple product δ1δ2 becomes

δ1δ2 → (a1 +b1δ1)(a2 +b2δ2) = a1a2 +a1b2δ2 +b1δ1a2 +b1δ1b2δ2

The resulting order is 4 instead of 2. After the product is performed, realization techniques
cannot return to the initial factorization.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 89/181
NP

EMPTY PAGE

91

Chapter 4

Order reduction and approximation after
realization

It is assumed that a realization is available (see 3). Three techniques for reducing the order of
the available realization are briefly presented:

• The 1-D approach. It consists of considering that δi plays the role of 1/s. Then, for each
of them, a standard reduction technique is applied (balanced realization for example).
This approach was introduced in [36].

• The approach based on the n-D (Kalman like) decomposition (see d’Andrea, Beck et al
[25, 6, 9]). Earlier introduction to n-D decomposition can be found in Bose [18]. This
approach generalizes the 1-D reduction based on controllable and observable sub-spaces.

• The generalized Gramian approach. This approach is evoked in numerous papers, for
example [5, 8, 10, 11, 54]. D’Andrea and Beck [7] showed its equivalence with the one
based on the n-D (Kalman like) decomposition. However the Gramian based technique
can also be used for LFT approximation. We shall briefly evoke some approximation
improvements reviewed in Hiret et al [34, 33]. Note that the approximation techniques
presented here are not valid in the continuous time case because 1/s is not bounded,
therefore approximation error cannot be evaluated. In that case it is necessary to use an
IQC (Integral Quadratic Constraints) approach, see Andersson et al [1, 2].

• There are alternative ways for approximating LFR-objects (for example using engineer-
ing knowledge, using order reduction with more or less high tolerance parameter an so
on). Approximation in that way is often very efficient, however, it is necessary to be
able to evaluate the approximation errors. In §4.4 is proposed an original technique that

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 91/181
NP

92 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

permits us to compute tight upper bounds of approximation errors (independently of the
used approximation technique). This is also a modelling tool, because, knowing approx-
imations of errors bounds, approximation errors can be converted to additional artificial
uncertain parameters (of low order).

• This chapter ends with a section that is not related to order reduction as it concerns uncer-
tain parameter normalization. However, as already explained, parameter normalization
must not be performed before realization, that is why we put here this section (that should
be considered as an appendix).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 92/181
NP

4.1 ORDER REDUCTION: THE 1-D APPROACH 93

4.1 Order reduction: The 1-D approach

It consists of considering alternately each of the δi: It is assumed that there is only one un-
certainty block, say δiIni . The inputs/outputs of the other blocks are considered as additional
natural inputs/outputs of the system (like u and y). So, a linear system where δi may play the
role of 1/s is obtained. Order reduction can then be performed by a classic 1-D technique.

Let us consider a simple illustrative example with two uncertain parameters δ1 and δ2. We have
ẋ
z1
z2
y

 =


A B1a B1b B2

C1a D11aa D11ab D21a
C1b D11ba D11bb D21b
C2 D21a D21b D22




x
w1
w2
u


For the first 1-D reduction, the natural quadruple is considered:

sx = Ax +
[

B1a B1b B2
] w1

w2
u


 z1

z2
y

 =

 C1a
C1b
C2

x +

 D11aa D11ab D21a
D11ba D11bb D21b
D21a D21b D22

 w1
w2
u


Having eliminated non controllable and non observable states (1-D reduction) certain matrices
are modified. For simplicity, the corresponding notations are not modified. As a second step,
permutation between x and w1 and between ẋ and z1 are done. Then the following quadruple is
obtained:

(1/δ1)z1 = D11aaw1 +
[

C1a D11ab D21a
] x

w2
u


 ẋ

z2
y

 =

 B1a
D11ba
D21a

w1 +

 A B1b B2
C1b D11bb D21b
C2 D21b D22

 x
z2
u


One can so operate the same reduction as during the first step (x = (1/s)ẋ is replaced formally
by w1 = δ1z1). The notions of controllability and observability does not make sense any more,
but formally, the reduction is possible. It remains to proceed in a similar way with regard to z2
and w2 to end the procedure of reduction.

Remark 1. It is sometimes necessary to repeat 1-D reductions a number of times larger than
the number of blocks, for example successively with regard to 1/s, δ1, δ2, δ1, The example
below illustrates this remark.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 93/181
NP

94 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

Example. Two parameters δ1 and δ2 are considered. This example illustrates the fact that 1-
D reduction, respectively with respect to δ1 and δ2, is not sufficient because for reaching the
minimal representation, it is needed to add a reduction step relative to δ1. Let us consider an
uncertain gain matrix

S(∆) =
[

δ1δ2
δ1δ2

]
(4.1)

S(∆) is realized step by step without using one of the realization techniques of Chapter 3 because
this technique would find the intermediate following minimal form:

S(∆) =
[

1
1

]
δ1δ2

We are going to find this minimal form by the 1-D technique. First, LFT representations of δ1
and δ2 are created, then products (without changing order) and concatenation are performed.
The result is:

M11 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ; M12 =


0
0
1
1


M21 =

[
1 0 0 0
0 1 0 0

]
; M22 =

[
0
0

]
The first step is an attempt to reducing the following quadruple

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


which is controllable and observable, so there no possible reduction. It can be explained simply:
one can factorize δ1 to the right of (4.1) without commuting it with δ2. The second step consists
of reducing the quadruple obtained after permutation of blocks relative to δ1 and δ2. So,

0 0 0 0 1
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 94/181
NP

4.1 ORDER REDUCTION: THE 1-D APPROACH 95

which is not controllable (now δ2 can be factorized on the right hand side in (4.1)). After
elimination of a non controllable state, we obtain the following quadruple:

0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


Third step: let us go back to the reduction relative to δ1, a new block permutation of δ1 and δ2
is applied. The new quadruple is: 

0 0 1 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


which is uncontrollable. In other words, now it is possible to factorize to the right δ1 in (4.1).
Eliminating one of the uncontrollable states, the equivalent quadruple is obtained:

0 1 0
0 0 1
1 0 0
1 0 0


Therefore, we have found the minimal realization that is:

M11 =
[

0 1
0 0

]
; M12 =

[
0
1

]
; M21 =

[
1 0
1 0

]
; M22 =

[
0
0

]

Remark 2. The 1-D method is not limited to finding factorizations forgotten during the realiza-
tion as could let believe the above example. In particular, it does not miss some factorizations
which are not “seen” using realization techniques. For example, considering

S(∆) =
[

δ3δ1 +δ3δ2 +δ4δ1 +δ4δ2
δ1 +δ2

]
(4.2)

the current realization techniques are not sufficiently sophisticated to “see” that

S(∆) =
[

δ3 +δ4
1

]
(δ1 +δ2)

but the 1-D technique leads (in this case) to the minimal realization.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 95/181
NP

96 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

Software relative to this section

Illustrated functions:

- minlfr1 1-D order reduction.

– Example 4.1 illustrates the fact that the order 1-D reductions are performed is im-
portant.

– Example 4.2 illustrates the fact that reduction techniques can detect factorizations
that are not found at the realization step.

Example 4.1 Let us illustrate the remark involving Equation (4.1). First a realization is com-
puted.

>> lfrs d1 d2
>> S = [d1*d2;d1*d2];

The function for 1-D reduction is minlfr1. If we try to reduce the order of this LFR-object only
by considering the first parameter d1 (this parameter cannot be factorized on the right because
commutativity of d1 and d2 is ignored) there is no reduction

>> Smin = minlfr1(S,[],1);

resulting in

>> size(Smin)

LFR-object with 2 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 2x2 LTI r s [-1,1]
d2 2x2 LTI r s [-1,1]

In order to avoid this problem, in minlfr1, by default 1-D reduction is applied more than one
time for each parameter until there is no more reduction as shown now:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 96/181
NP

4.1 ORDER REDUCTION: THE 1-D APPROACH 97

>> Smin2 = minlfr1(S);
>> size(Smin2)

LFR-object with 2 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (2 x 2)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 1x1 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]

as expected both factorizations are “found”.

Example 4.2 Let us illustrate the remark involving Equation (4.2). First a realization is com-
puted.

lfrs d1 d2 d3 d4
S = [d3*d1+d3*d2+d4*d1+d4*d2;d1+d2];

Then, minlfr1 is used for reducing the size of the ∆ matrix:

Smin = minlfr1(S);

resulting in

>> size(S)

LFR-object with 2 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (10 x 10)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 3x3 LTI r s [-1,1]
d2 3x3 LTI r s [-1,1]
d3 2x2 LTI r s [-1,1]
d4 2x2 LTI r s [-1,1]

>> size(Smin)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 97/181
NP

98 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

LFR-object with 2 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 1x1 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]
d3 1x1 LTI r s [-1,1]
d4 1x1 LTI r s [-1,1]

As claimed in Remark 2 above, the factorization δ3δ1 +δ3δ2 +δ4δ1 +δ4δ2 = (δ3 +δ4)(δ1 +δ2)
was “found” because the order dropped from 10 to 4.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 98/181
NP

4.2 ORDER REDUCTION: THE N-D APPROACH 99

4.2 Order reduction: The n-D approach

Instead of considering successively 1/s and then every δi as with the previous method, the n-
D approach treats simultaneously all the parameters of the block ∆, so, this technique is less
conservative. It is shown in [25] that it leads to the minimal order for a given realization (that is
"relative-minimality").

As in the case of standard linear systems, it is necessary to apply two steps, the first one consist-
ing of identifying the "controllable part", the second one, of identifying the "observable part".
Minimal form corresponds to the subsystem that is both "controllable" and "observable".

We are going to describe (for explanations, see [25]) the "controllability part" of the algorithm
proposed in [25]. For better clarity we consider a simple case: only the first three steps are
described, the general formulation follows easily. Furthermore, to facilitate joint reading of this
document and of [25], we adopt the notations of this reference.

Let us consider again the following example: z1
z2
y

 =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 w1
w2
u


For controllability we shall just consider the matrix[

A11 A12 B1

A21 A22 B2

]
(4.3)

The algorithm consists of applying at each step a treatment concerning six matrices A11, A12,
B1, A21, A22 and B2 (or to the similar matrices appearing at the following steps). This treatment
is clarified below.

A basic step of the algorithm. We present the first step in detail, the following ones are similar
(adaptations to be made are evoked later).

• A transformation relative to the pair (A11, B1) is computed:

A11 →
[

S1,1

S1,2

]
A11 [

T 1,1 T 1,2]
=

[
∗ ∗
0 A11

1

]
; B1 →

[
S1,1

S1,2

]
B1 =

[
∗
0

]
Note that the above transformation is such that A11

1 is the uncontrollable part, the size of
null blocks in B1 is maximized (so as to exhibit the maximum number of uncontrollable
states). Similar for all the other transformations considered during this algorithm. One
indicates by "*" sub-matrices having no particular interest in describing the functioning
of the algorithm.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 99/181
NP

100 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

• As above, a transformation relative to the pair (A22, B2) is computed:

A22 →
[

S2,1

S2,2

]
A22 [

T 2,1 T 2,2]
=

[
∗ ∗
0 A22

1

]
; B2 →

[
S2,1

S2,2

]
B2 =

[
∗
0

]
• In fact, these transformations must be applied to the global matrix (4.3), which means:

A12 →
[

S1,1

S1,2

]
A12 [

T 2,1 T 2,2]
=

[
∗ ∗

B12
1 A12

1

]
and

A21 →
[

S2,1

S2,2

]
A21 [

T 1,1 T 1,2]
=

[
∗ ∗

B21
1 A21

1

]
Now again six new matrices similar to (A11, A12, B1) and (A22, A21, B2) are available (but of
reduced size), to which one can undergo the same treatment. These matrices are denoted (A11

1 ,
A12

1 , B12
1) and (A22

1 , A21
1 , B21

1).

Three steps briefly presented. In order to clarify the presentation, three steps are presented.

• Initial matrices [
A11 A12 B1

A21 A22 B2

]
• After applying the aforementioned transformations

∗ ∗ ∗ ∗ ∗
0 A11

1 B12
1 A12

1 0
∗ ∗ ∗ ∗ ∗

B21
1 A21

1 0 A22
1 0


• The same transformations are applied to (A11

1 , A12
1 , B12

1) and to (A22
1 , A21

1 , B21
1), so

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ 0
0 0 A11

2 0 B12
2 A12

2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗ 0
0 B21

2 A21
2 0 0 A22

2 0


(4.4)

The algorithm ends when all pairs similar to (A11
2 , B12

2) and (A22
2 , B21

2) become completely
uncontrollable (i.e., B12

2 = 0 and B21
2 = 0) or vanish. For the actual algorithm, see the code of

the function minlfr. Three points are mentioned:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 100/181
NP

4.2 ORDER REDUCTION: THE N-D APPROACH 101

• The above three steps are generalized considering more than two uncertainty blocks. With
notations as above, assuming that there are q uncertainty blocks and that we are at step
k of the algorithm: the matrix “B” used for decomposition is given by Bi

k = [Bi1
k . . .Biq

k]
(one of these sub-matrices is equal to zero).

• The matrices Ai j
k (i 6= j) are automatically computed by applying the transformations

found at each step.

• For identifying the final controllable subspace (and by the way the reduced from of the
system), at each step (k) and sub-step (i = 1, . . . ,q), the upper part of the matrix S arising
from controllability decomposition is plugged into some matrix that will define the global
controllable subspace at the end of the algorithm.

For a justification, see Diandra and Khatri [25].

Controllability and observability. To complete the procedure, it is necessary to consider the
duality "controllability / observability".

Advantages with regard to the 1-D approach. For numerous examples, the same results
were obtained using the 1-D or n-D approaches. However very simple academic examples
can be built in order to put in evidence the interest of the n-D approach. Let us consider the
following object

S(∆) =

[
1

1+δ1+δ2
1

1+δ1+δ2

]
(4.5)

S(∆) is realized using the object-oriented approach, the obtained realization is of order 4. It is
clear that the order of the minimal form is 2 because

S(∆) =
[

1
1

]
1

1+δ1 +δ2

This minimal form is found using the n-D technique but not found using the 1-D approach. This
fact can be simply explained. By considering a single variable at a time, it is impossible to find
any factorizations. On the other hand by, dealing simultaneously with δ1 and δ2, it is clear that
factorization becomes possible.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 101/181
NP

102 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

Software relative to this section

Illustrated functions:

- minlfr n-D order reduction.

- minlfr1 1-D order reduction.

See Example 2.14 on page 61 for an illustration of the effect of (bad) parameter ordering.

Example 4.3 This example aims at illustrating the fundamental difference between the 1-D and
the n-D approaches. For that purpose, let us consider the expression of Equation (4.5) in which
factorization cannot be “found” considering only one parameter at a time.

>> lfrs d1 d2
>> S = [1/(1+d1+d2);1/(1+d1+d2)];

The minimum forms after using the 1-D and n-D approaches are respectively denoted Smin1
and Smin

>> Smin1 = minlfr1(S);
>> Smin = minlfr(S);

For comparison of the results:

>> size(Smin1)

LFR-object with 2 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (4 x 4)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 2x2 LTI r s [-1,1]
d2 2x2 LTI r s [-1,1]

>> size(Smin)

LFR-object with 2 output(s), 1 input(s) and 0 state(s).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 102/181
NP

4.2 ORDER REDUCTION: THE N-D APPROACH 103

Uncertainty blocks (globally (2 x 2)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 1x1 LTI r s [-1,1]
d2 1x1 LTI r s [-1,1]

As expected Smin is minimum but Smin1 has the same complexity as the original LFR-object.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 103/181
NP

104 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

4.3 Order reduction and approximation: The generalized
Gramian approach

This method allows us to make exact reductions but also approximate reductions. Approximate
reductions are validated by an upper bound of the approximation error. It is very natural to limit
the variations of ∆ to be able to define such a bound. It will be assumed that all parameters of ∆

vary between −1 and 1. It excludes to treat 1/s like δi (except in the case of exact reduction). If
the natural variations of δi are not normalized, it is enough to know that a simple transformation
of the matrix M in Fu(M,∆) allows us to satisfy this condition (see §2.3.1).

First, generalized Gramian are defined. Let us consider a realization

Fu(M,∆) where M =
[

M11 M12
M21 M22

]
The generalized Gramian are the solutions X and Y of the following LMI systems:

X ≥ 0
MT

11XM11−X +MT
21M21 ≤ 0

(4.6)

and
Y ≥ 0

M11Y MT
11−Y +M12MT

12 ≤ 0
(4.7)

where X and Y are matrices that commute with ∆ (similar condition relative to T in (2.27)).

Exact reduction. The order of the LFT representations can be reduced of an amount equal to
the difference between the size of the product XY its rank. To put in evidence the loss of rank
of XY , this matrix is diagonalized:

XY = T Σ
2T−1

To obtain the system of reduced order, the similarity transformation T is applied to Fu(M,∆)
(see Lemma 2.6.1).

Fu(T (M),∆) = Fu

([
M̃11 M̃12
M̃21 M̃22

]
,∆

)
It suffices to eliminate

• the rows and columns of ∆,

• the rows and columns of M̃11,

• the rows of M̃12 and

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 104/181
NP

4.3 ORDER REDUCTION AND APPROXIMATION: THE GENERALIZED GRAMIAN

APPROACH 105

• the columns of M̃21.

which correspond to null eigenvalues in the matrix Σ2.

Approximate reduction. It is the same procedure, but instead of considering the negligible
values of Σ2, those that are "small" are also taken into account, knowing that the truncation
error (for normalized δi’s) satisfies:

‖Fu(M,∆)−Fu(M̂, ∆̂)‖ ≤ 2 ∑
i∈I

σi (4.8)

here Fu(M̂, ∆̂) is the LFT form after truncation, I indicates the indices of neglected eigenvalues
and σi indicates the square roots of the value of XY (or of Σ2

i). It remains to see how can be
optimized the selection of X and Y satisfying (4.6) and (4.7) so as to make more favorable
the truncation possibilities. See Hiret et al [34, 33] for a comparative analysis of the different
techniques. To optimize truncation, it is necessary “to minimize the rank” of XY , for example
by minimizing the trace of this product. We have the system coming from (4.6) and (4.7) (with
a condition of structure on X and Y)

X ≥ 0
MT

11XM11−X +MT
21M21 ≤ 0

Y ≥ 0
M11Y MT

11−Y +M12MT
12 ≤ 0

trace(XY) minimum

The product XY is non-linear, so, the above system is not an LMI. One can however resolve
iteratively:

• by fixing one of the matrices X or Y and by optimizing the other one.

• by linearizing: X = X0 +dX and Y = Y0 +dY , so, XY ≈ X0dY +dXY0. The LMIs in dX
and dY are resolved, X and Y are updated, and so on.

These algorithms can be improved by considering X−1 and Y−1 instead of X and Y .

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 105/181
NP

106 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

4.4 Interval of variations of a Linear Fractional Representa-
tions

The problem of finding the minimum and maximum values of a (1× 1) real LFR-object will
be shown to be a µ-analysis problem (see Lemma 4.4.1 below). Before considering technical
issues, let us discuss the interest of such a tool for LFR-object approximation.

The main issue of this theory is approximate modelling as illustrated in Examples 4.4 and 4.5.

4.4.1 Necessity of having a reliable distance

Computing a non conservative distance between LFR-objects. The distance between two
objects can be defined by computing the maximum and minimum values of the difference be-
tween both considered objects. If the considered objects are not scalar, the distance can be
defined as the maximum of the absolute values of the extremal values of all the (1×1) inputs /
outputs transfers. For example if two objects S1(∆) and S2(∆′) (same real uncertainties in ∆ and
∆′) have m inputs and p outputs:

d(S1(∆),S2(∆′)) = Max{| Max and Min of eT
i (S1(∆)−S2(∆′))e j|, i ∈ [1 . . .m], j ∈ [1 . . . p]}

in which ei and e j are vectors of the canonical basis of IR m and IR p.

The technical result that will be stated in Lemma 4.4.1 is based on the computation of a µ
measure. More precisely, it is the upper bound of µ that will be used. It means that LMI
systems must be solved. At first sight, the order of each entry of S1(∆)− S2(∆′) is equal to
the sum of the sizes of ∆ and ∆′ that might correspond to very high dimensional LMI systems.
But in fact, each entry is considered separately, moreover there is a difference that might cancel
some terms, therefore, after use of the reduction techniques (without approximation) of §4.1 or
4.2 it is likely that the order of each considered entry of S1(∆)− S2(∆′) will be far lower than
the sum of the sizes of ∆ and ∆′. Keeping in mind this remark, the proposed distance is likely
to be computed much faster than the Generalized Gramian one of §4.3.

Discussion on approximations. There are a lot of approximation techniques that are naturally
used by designers trying to find a model of low order. For example:

• The most natural technique consists of identifying the uncertain parameters that can be
neglected. For that, it is possible to use engineering knowledge or Monte-Carlo analysis1.

1For each random trials of uncertain parameters a model is derived. Then model variations are analyzed versus
parameter variations, etc.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 106/181
NP

4.4 INTERVAL OF VARIATIONS OF A LINEAR FRACTIONAL REPRESENTATIONS 107

The uncertain parameters with the weakest effect are fixed to their nominal or worst case
values.

• In aeronautics, coefficients entering into systems definition are often given as tables of
numerical values that must be interpolated. Some degrees of precision in the interpolation
formulas can be considered. Simplified interpolation formulas are a good way to reduce
LFR-object complexity.

• The iterative 1-D order reductions of §4.1 can be replaced by iterative 1-D approxima-
tions.

These more or less heuristic techniques present a major drawback that lies in the fact that there
is no guarantee that approximations are valid.

The (usually non conservative) distance that is presented in this section will permit us to allevi-
ate this problem as it will permit us to compare actual LFR-objects to possible approximations.

Modelling approximation error. Having a tool that computes the extremal values that takes
a (1× 1) real LFR-object is not only useful for computing the approximation error, it is even
more useful for modelling.

For all approximations discussed above, it becomes possible to know exactly the bounds of
the approximation errors. Therefore, new artificial uncertainties can be added to the models
in order to capture these errors. For example let S1(∆) be an accurate model and S2(∆′) be an
approximation (same real uncertainties in ∆ and ∆′). Instead of considering S2(∆′), we suggest
to consider

S3(Diag(∆′,εi j)) = S2(∆′)+

 ε11 ε12 . . .

ε21
. . .

...


in which εi j denotes the approximation relative to the entry (i, j) of S1(∆). These new parame-
ters present some interesting features

• they are likely to be less repeated than the natural uncertainties,

• variations bounds are precisely known,

• if some µ-based test applied to the resulting LFR-object reveals that the worst case has
a non negligible component corresponding to some εi j, it might be concluded that the
corresponding approximation is not valid.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 107/181
NP

108 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

A similar idea for approximate modelling is used in [43]. But in this reference, simplified
interpolation formulas are restricted to linear expansions, and error bounds are computed by
comparison of the exact and approximate models on a gridding.

4.4.2 Technical result

The main result of this section is stated in the following lemma.

Lemma 4.4.1 Let us consider M(∆) a (1× 1) non-dynamic LFR-object with real (repeated)
uncertainties. It is assumed that M(∆) is well-posed (bounded) in the unit ball:

M(∆) = Fu(
[

M11 M12
M21 M22

]
, ∆)

Let us define
S(λ) = M11 +M12(λ−M22)−1M21

For λ varying from −∞ to +∞:

• The minimum value of M(∆) over the unit ball is the first value of λ at which µ(S(λ)) = 1.

• The maximum value of M(∆) over the unit ball is the last value of λ at which µ(S(λ)) = 1.

Proof. The LFT form of M(∆)−λI is:

M(∆)−λI = Fu(
[

M11 M12
M21 M22−λI

]
, ∆)

From (2.22) (see, page 47), the non-singularity radius of M(∆)−λI is given by

1
µ(S(λ))

Now, let us define as a and b the lower and upper bounds of variations of M(∆) when ∆ varies in the unit ball (these
values are bounded because it is assumed that M(∆) is well-posed in the unit ball):

a ≤ M(∆)≤ b ∀∆ s.t. ‖∆‖ ≤ 1

So, clearly, the non-singularity radius of M(∆)−λI is larger than 1 if λ < a or if λ > b, in other words:

∀λ 6∈ [a b],
1

µ(S(λ))
> 1

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 108/181
NP

4.4 INTERVAL OF VARIATIONS OF A LINEAR FRACTIONAL REPRESENTATIONS 109

0 10 20 30 40 50 60 70

0.5

1

1.5

2

2.5

3

3.5

4

λ

µ

Figure 4.1: Example of an artificial µ analysis for finding minimum and maximum values of an
LFR-object (here 19 and 37).

which proves the lemma. Note that the interval of variation of M(∆)−λI is not necessarily connected, in this case,

1/µ(S(λ)) becomes larger than one between a and b too, this is why we considered the “first” or “last” value of λ

in the lemma.

Comment 4.4.2 • The nominal value of M(∆) that is M(∆ = 0) = M22 must not belong to
the set of values that takes λ in the considered gridding. Otherwise, µ would be infinite at
that point.

• It is clear that µ-curves must look like the one of Figure 4.1, i.e. lower than the unity for
large values of λ and up to infinity when λ takes the nominal value of M(∆).

• As µ cannot be computed exactly in most cases, it is an upper bound of µ that must be
used. By analyzing Figure 4.1, it is clear that the conservatism of the upper bound will
result in an interval of variations of M(∆) larger than the actual one.

• As for all gridding technique there is a risk of missing a peak of the µ-curve. If such
a problem is encountered, the computed interval of variations under-estimates the ac-

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 109/181
NP

110 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

tual one. Therefore, the frequency sweeping technique of [42] should be adapted to this
problem.

Lower bounds. The upper bound computation can be validated by a lower bound of µ. Unfor-
tunately, we consider here real µ-analysis, in this case lower bounds are not easy to compute.
There is however a possibility that consists of adding a small imaginary component to the uncer-
tain parameters. After this transformation, lower bound algorithms (those based on fixed point
algorithms) are more likely to converge. It remains to use an iterative technique for getting rid
of the imaginary components.

There is an alternative way for validating the µ upper-bound results (by comparison to a lower
bound). Indeed, if we evaluate M(∆) at several points in the parameter space preferably at the
vertices of the parameter box, we obtain

• a lower bound of the maximum value of M(∆) and

• an upper bound of the minimum value of M(∆).

Extension to the non-real case. We shall not state the complex counterpart of Lemma 4.4.1
because we do not need this result here. However the result of this lemma can easily be general-
ized. If uncertainties are complex, more generally, if the considered LFR-object takes complex
values, the analysis based on the limit of stability (§ 7.2, page 159) must be slightly adapted.
Here instead of considering a real number λ as in Figure 7.1 we may consider a circle of radius
λ, say

λ
1−δ2 +2 jδ
1−δ2−2 jδ

in which δ∈ [−1 1] describes the unit circle. The parameter λ, radius of the circle, is varied from
+∞ towards zero in order to shrink the circle until the limit of stability is reached for the first
time. The LFR-object describing the circle is of minimal order equal to 2 (with respect to δ).
This object must be combined with M(∆) for obtaining the system to be treated by an artificial
µ-analysis (one µ-analysis for each value of λ). The first time λ is such that the maximum value
of µ over all frequencies is equal to the unity, gives the radius of the smaller circle containing
all the values of M(∆) (for uncertain parameters in the unit ball). Here, µ analysis must be
performed for all frequencies, but as we only need to compare the peak value of µ to one, there
is an efficient algorithm in the LMI toolbox (mustab or robuststab) that avoids gridding with
respect to the frequencies. Alternatively, a 2-D (gridding with respect to frequencies and λ)
µ-analysis can be performed.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 110/181
NP

4.4 INTERVAL OF VARIATIONS OF A LINEAR FRACTIONAL REPRESENTATIONS 111

Software relative to this section

Illustrated function:

- min_max. Computes the minimum and maximum values (bounds) of a real valued 1×1
LFR-object.

- reduclfr. This function optimizes the tolerance argument used in reduction techniques
(minlfr1, minlfr) for approximation with limited error.

- udistlfr. Computes the minimum and maximum values (bounds) of a real valued
MIMO LFR-object.

- bnds2lfr. This function is complementary to min_max and udistlfr as it permits the
designer to define systematically new uncertainties that take into account approximation
errors.

Example 4.4 Let us consider an academic example in which simplifications can easily be
guessed. Let M0 = (3δ5

1 + 0.0001δ1δ2δ3δ4)(1− 0.0001δ4
4 + δ2

2δ2
3). It is natural to consider

M1 = 3δ5
1(1+δ2

2δ2
3) as an approximation of M0 (all uncertainties are normalized).

The problem we shall treat consists of computing the approximation error bounds and the re-
placement of this approximation error by a new uncertain parameter.

lfrs d1 d2 d3 d4
M0 = (3*d1^5+.0001*d1*d2*d3*d4)*(1-.0001*d4^4+d2^2*d3^2);
M1 = (3*d1^5)*(1+d2^2*d3^2);

For computing the approximation error, we consider the difference

DeltM = M1 - M0;
DeltM = minlfr(DeltM);

Note that the size of DeltM was 26 before using minlfr and 16 after. For computing the error
bounds:

[min_val,max_val,min_int,max_int] = min_max(DeltM);

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 111/181
NP

112 4. ORDER REDUCTION AND APPROXIMATION AFTER REALIZATION

The results are: min_val = -9.2486e-04 and max_val = 8.2905e-04 which means that
DeltM varies in an interval included between these two values. It is possible to improve these
bounds by switching to an LMI-based µ-upper bound (option ’accurate’ of min_max). The
output arguments min_int and max_int give intervals respectively for min_val and max_val.

It remains to build M3, an approximation of M1. For that, we replace the neglected part of M1
by an uncertainty (err).

lfrs err ’real’ [-9.2486e-04] [8.2905e-04]
M3 = (3*d1^5)*(1+d2^2*d3^2)+err;
size(M3)

LFR-object with 1 output(s), 1 input(s) and 0 state(s).
Uncertainty blocks (globally (10 x 10)):
Name Dims Type Real/Cplx Full/Scal Bounds

d1 5x5 LTI r s [-1,1]
d2 2x2 LTI r s [-1,1]
d3 2x2 LTI r s [-1,1]
err 1x1 LTI r s [-0.00092486,0.00082905]

Example 4.5 This example is similar to the previous one but considers a MIMO system. Ap-
proximation error modelling is performed in a more systematic way by using bnds2lfr. Let us
consider a MIMO academic example.

S1 =
[

3+0.001∗a5−b∗ c a4 ∗ c
a∗b∗ c3 +2 a2−0.001∗b∗ c3 +1

]
Model:

>> lfrs a b c
>> S1 = [3+0.001*a^5-b*c a^4*c;a*b*c^3+2 a^2-0.001*b*c^3+1];

Approximation using reduclfr. This function chooses automatically the tolerance argument
of order reduction algorithms (minlfr or minlfr1) by a dichotomy search so that the approxi-
mation error remains less than a given bound (here 0.01, the option ’a’ means that we consider
absolute rather than relative error).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 112/181
NP

4.4 INTERVAL OF VARIATIONS OF A LINEAR FRACTIONAL REPRESENTATIONS 113

>> S2 = reduclfr(S1,0.01,’a’);

The function reduclfr considers a lower bound of the approximation error. The next function
computes outer bounds of the intervals of variations:

>> [distu,dist2,mindiff,maxdiff] = udistlfr(S1,S2);

This function returns mindiff and maxdiff that are matrices having the same size as S1. These
matrices give term by term

• a lower bound of the minimum value of the approximation error (mindiff)

• an upper bound of the maximum value of the approximation error (maxdiff)

It remains to replace the approximation errors by additional normalized real parameters

>> syserr = bnds2lfr(’s_’,mindiff,maxdiff);
>> S3 = S2 + syserr;
>> size(S3)

LFR-object with 2 output(s), 2 input(s) and 0 state(s).
Uncertainty blocks (globally (14 x 14)):
Name Dims Type Real/Cplx Full/Scal Bounds

a 6x6 LTI r s [-1,1]
b 2x2 LTI r s [-1,1]
c 4x4 LTI r s [-1,1]
s_1_1 1x1 LTI r s [-0.0012252,0.0012252]
s_2_2 1x1 LTI r s [-0.0012221,0.0012221]

Now S3 has a ∆-block of size 14 × 14 to be compared to the original size of S1 that is 23 × 23.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 113/181
NP

EMPTY PAGE

115

Chapter 5

Dynamic uncertainties modelling

5.1 Full complex blocks

Dynamic uncertainty modelling is encountered in several cases.

• The most natural case corresponds to neglected dynamics modelling. For example, for an
aircraft, neglected dynamics might correspond to the structural modes. There are several
ways to represent these uncertainties, for example direct additive like in Figure 5.1 or
feedback multiplicative as in Figure 5.2.

• µ-analysis was introduced for analyzing stability robustness. Artificial dynamic blocks
are often considered in order to extend the natural potentialities of µ-analysis to perfor-
mance analysis.

• Performance robustness analysis (e.g. based on the Main Loop Theorem) is also based
on the use of an artificial dynamical block.

The weighting matrix denoted W (s) in Figures 5.1 and 5.2 comes from the fact that a bound on
uncertainties ∆(jω) is more or less known under the following form

∀ω ∈ [0, ∞], σ(∆(jω)) < W (jω)

This inequality can also be written

W (jω) σ(
∆(jω)
W (jω)

) < W (jω)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 115/181
NP

116 5. DYNAMIC UNCERTAINTIES MODELLING

So, the set of uncertainties over all frequencies can be represented by

W (jω)∆C s.t. σ(∆C) < 1

in which ∆C replaces the ratio ∆(jω)
W (jω) . It is in that way that are normalized dynamic uncertainties.

f
-

�

- -

- -

?-

M11(s)

M21(s)

w z

yu
M22(s)

M12(s)

W (s)∆C

∆R

Figure 5.1: Direct additive neglected dynamics

The treatment of dynamic uncertainties is completely different from the one of real uncertain
parameters for several reasons. As shown above, normalization is specific (done by means of
weighting functions depending on the frequency). In addition, noting that dynamic uncertainties
are usually well located in a bock diagram (not scattered in several equations like real parameter
uncertainties), these uncertainties are not repeated, so, the problem of minimality is not relevant.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 116/181
NP

5.1 FULL COMPLEX BLOCKS 117

f
-

�

- ?

� �

--

M11(s)

M21(s)

w z

u
M22(s)

M12(s)

∆R

W (s)∆C

y

Figure 5.2: Feedback multiplicative neglected dynamics

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 117/181
NP

118 5. DYNAMIC UNCERTAINTIES MODELLING

Software relative to this section

Illustrated function:

- lfr for generation of full complex blocks. For use as in Figure 5.2 it suffices to invoke
the function feedback. In the case of Figure 5.1, a simple sum of LFR-objects suffices.

Example 5.1 The function lfr offers an option for defining full blocks with frequency domain
bounds. However, this feature is not already interfaced with MATLAB functions, therefore, it is
suggested to build normalized full blocks and to add manually the weighting functions W (s) as
in Figures 5.1 and 5.2.

>> M = rlfr(5,2,3,4,4,4,’m’);
>> W = ss(tf([30 100],[1 100])^2)*eye(2,2);
>> Delta = lfr(’Delta’,’ltifc’,[2,2]);

The transfer form u to y of Figure 5.2 is given by

>> sys = feedback(lfr(eye(2,2)),Delta*W,1)*M;

>> size(sys)

LFR-object with 2 output(s), 3 input(s) and 9 state(s).
Uncertainty blocks (globally (14 x 14)):
Name Dims Type Real/Cplx Full/Scal Bounds

Delta 2x2 LTI c f [-1,1]
m1 4x4 LTI r s [-1,1]
m2 4x4 LTI r s [-1,1]
m3 4x4 LTI r s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 118/181
NP

5.2 COMPLEX SCALAR UNCERTAINTIES 119

5.2 Complex scalar uncertainties

Scalar dynamic uncertainties are a special case of full complex blocks. Such uncertainties are
often introduced for adaptation of µ-analysis to performance analysis. For example an ellip-
soidal exclusion area in the Nichol chart can be defined as follows (Fielding [29]).

{1+β(δ1 +δ2)+αδ1δ2

1−β(δ1 +δ2)+αδ1δ2
s.t. |δ1|< 1 and |δ2|< 1} (5.1)

in which δ1 and δ2 are complex scalars. The transfer in this formula is to be considered in series
with the open-loop system for which performance is analyzed (see [29] for details).

Building components that contain scalar uncertainties, is similar in both real and complex cases
using the function lfrs with the option ’complex’.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 119/181
NP

120 5. DYNAMIC UNCERTAINTIES MODELLING

Software relative to this section

Illustrated functions:

- lfrs for generation of real or complex scalars 1×1 LFR-objects.

Example 5.2 This example shows how to generate the LFR-object of Equation (5.1) in which
α = 1 and β = 2 . The uncertain parameters δ1 and δ2 are respectively denoted d1 and d2. Two
real parameters a and b are also considered. The LFR-object to be generated corresponds to:

a+1/s
1+b/s

1+2(δ1 +δ2)+δ1δ2

1−2(δ1 +δ2)+δ1δ2

So we have:

>> lfrs Int a b
>> lfrs d1 d2 ’complex’
>> sys = (1+2*(d1+d2)+d1*d2)/(1-2*(d1+d2)+d1*d2);
>> sys = (a+Int)/(1+b*Int)*sys;
>> size(sys)

LFR-object with 1 output(s), 1 input(s) and 2 state(s).
Uncertainty blocks (globally (10 x 10)):
Name Dims Type Real/Cplx Full/Scal Bounds

a 1x1 LTI r s [-1,1]
b 1x1 LTI r s [-1,1]
d1 4x4 LTI c s [-1,1]
d2 4x4 LTI c s [-1,1]

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 120/181
NP

121

Chapter 6

Extensions to modelling of uncertain
nonlinear systems

6.1 Introduction

The LFT approach can be used for modelling nonlinear systems at least in two ways.

• The quasi-LPV (Linear Parameter Varying) approach. It consists of modelling exactly
the non-linear system (not a continuum of linearized models) by isolating in the ∆-block
the nonlinear components of the system. There are usually many ways for designing such
models. In [49] is proposed an interesting idea using the knowledge of the equilibrium
surface (illustration considering a simplified nonlinear missile model), see also [50, 47,
44, 45].

• Modelling a continuum of linearized models along the equilibrium surface. Only this
approach will be detailed here. Alternative techniques where it is not assumed that non-
linear trajectories remain close to the equilibrium surface are proposed in literature, see
for example [37, 38, 35].

We shall only consider the problem of modelling the continuum of linearized models along the
equilibrium surface. Usually there are two stages related to two levels of complexity.

• First complexity level: The system is considered around equilibrium points but parameter
dependency at equilibrium as treated in §6.3 is ignored.

• Second complexity level: The implicit dependency corresponding to the equilibrium hy-
per surface equation is identified and “plugged” into the previous LFR (see §6.3).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 121/181
NP

122 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

Usually the second level of complexity results in an “explosion” of the size of the LFR. Briefly,
the first kind of models can be used for feedback design. For analysis, it is better to use the
second kind of models in order to reduce conservatism.

Figure 6.1 illustrates the adequacy between accuracy of models (or banks of models) and avail-
able analysis tools. For the most accurate model that is the original nonlinear model, analysis
is often limited to simulation. For the less accurate model (bank of linearized models) there
are numerous tools. But each analysis tools must be applied to each model of the bank (the
number of models of the considered bank increases exponentially with the number of varying /
uncertain parameters). With LFR models, the number of criteria available is not so rich. But for
applicable criteria, one-shoot worst case analysis is possible (without risk of missing the worst
case as in the linearized models bank case).

The LFRs are somewhere in between linear and nonlinear models (for example non-linear com-
ponents are included in the continuum of linearized models, dependency on uncertain parame-
ters is also nonlinear).

The main causes of possible misfit with nonlinear models are

• the speed of parameter variations is not taken into account (the existing alternative tools
that take it into account are very conservative),

• trajectories are expected to remain close to the equilibrium surface.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 122/181
NP

6.1 INTRODUCTION 123

A
cc

ur
ac

y

analysis

Computation of worst cases

-frequency domain performance
-limit cycle
-delay margin
-overshoot...

µ−

Simulation

Bank of LFT-models

at given equilibrium points

LFT-models valid on
the equilibrium surface

Bank of linearized models

Non-linear model

for numerous criteria as:
-stability

Numerous analysis tools:

Nichols, Nyquist, describing

MODELS ANALYSIS TOOLS

Simulation
Simulation

Simulation

Simulation

R

ic
hn

es
s

/ a
na

ly
si

s
to

ol
s

simulation,....
function, root locus, margins,

Figure 6.1: Models or banks of models and corresponding analysis tools

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 123/181
NP

124 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

6.2 From a nonlinear model to a Linear Fractional Repre-
sentation: Part 1

Assume that we have a non-linear model

ẋ = f (x,u, p)
y = g(x,u, p)

(6.1)

in which x ∈ IR n,u ∈ IR m,y ∈ IR p are respectively the state, input and output vectors1. p ∈ IR q

is the vector of varying parameters. The equilibrium hyper surface (depending on p) is defined
by2

f (x0,u0, p) = 0 (6.2)

There are n equations and n+m+q unknowns. So, m+q parameters including those in p, can
be chosen (this new vector is denoted p′), the n remaining parameters (denoted ξ) are implicit
functions of p′. The above equation will also be written

f (ξ, p′) = 0 (6.3)

In this section we shall ignore the fact that some parameters are implicit functions of others.
This constraint will be considered in the next section.

6.2.1 Modelling ignoring parameter dependency at equilibrium

Let us compute the linearized model at a given point of the equilibrium surface. We shall have

ẋ = Ax0,u0,p x+Bx0,u0,p u
y = Cx0,u0,p x+Dx0,u0,p u

(6.4)

in which x,u,y denote now the variations with respect to the equilibrium values (x0,u0,y0). We
have

Ax0,u0,p =
∂ f
∂x

∣∣∣∣
x0,u0,p

; Bx0,u0,p =
∂ f
∂u

∣∣∣∣
x0,u0,p

(6.5)

Cx0,u0,p =
∂g
∂x

∣∣∣∣
x0,u0,p

; Dx0,u0,p =
∂g
∂u

∣∣∣∣
x0,u0,p

(6.6)

1The notation p considered as the number of outputs is not used in this section, so, p indicates always the vector
of parameters.

2Some integral states, for example coordinates of an aircraft, must be removed from (6.1) before computing
equilibrium states.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 124/181
NP

6.2 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 1 125

The system of (6.4) will be written:[
ẋ
y

]
=

[
Ax0,u0,p Bx0,u0,p
Cx0,u0,p Dx0,u0,p

][
x
u

]
(6.7)

In order to transform this equation to an LFR-object, in principle we have to transform (6.7) in
the form of (2.3)-(2.4) (see Figure 2.2, page 19). We shall illustrate this task later considering a
missile equation.

6.2.2 Differentiation of Linear Fractional Representations

The most natural way for deriving the matrices Ax0,u0,p, . . . Dx0,u0,p from (6.1) consists of com-
puting a symbolic form of f (x,u, p) and of g(x,u, p) and then to use symbolic computation
(function sym/diff) for the differentiation explicited in (6.5)-(6.6). See Example 6.1, page
130.

It is also possible to build f (x,u, p) and of g(x,u, p) as LFR-objects in which all the entries of the
vectors x, u and p are considered as elementary LFR-objects. Then LFR-object differentiation
(function lfr/diff, see §7.1.14, page 157) can be used as above. See Example 6.2, page 132.

The symbolic approach is more efficient because it is possible to use advanced realization tools
(function symtreed) after differentiation. Generally, lower order are obtained in that way. The
LFR approach is interesting if the Symbolic Toolbox is not available.

6.2.3 Missile model: Equations

This section introduces a simple nonlinear system that will permit us to illustrate the contents
of Chapter 6 and of the corresponding software. The considered system is the missile model
presented in [48].

Using standard notation (α angle of incidence, q pitch rate, Ma Mach number, δp tail plane
deflection), the nonlinear longitudinal equation is

α̇ = K1 MaCz(α, Ma, δp) cos(α)+q

q̇ = K2 Ma2Cm(α, Ma, δp) (6.8)

in which

Cz(α, Ma, δp) = z3 α
3 + z2 α

2 + z1

(
2− 1

3
Ma

)
α+ z0 δp (6.9)

Cm(α, Ma, δp) = m3 α
3 +m2 α

2 +m1

(
−7+

8
3

Ma
)

α+m0 δp (6.10)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 125/181
NP

126 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

The input is the signal δp. Numerical values are given in Table 6.1.

Ma = V
a Mach number

g = 32.2 f t/s2 gravity
ρ = 973.3 lbs/ f t2 static pressure at 20000 f t
a = 1036.4 f t/s sound velocity at 20000 f t
S = 0.44 f t2 reference surface
m = 13.98slugs mass
d = 0.75 f t reference diameter
Iy = 182.5slug · f t2 inertia

K1 = 0.7 ρS
ma force coefficient

K2 = 0.7 ρSd
Iy

torque coefficient

K3 = 0.7 π

180
ρS
mg load factor coefficient

z3 = +19.347rad−3 Cz coefficient
z2 = −31.008rad−2

z1 = −9.7174rad−1

z0 = −1.9481rad−1

m3 = +40.485rad−3 Cm coefficient
m2 = −64.166rad−2

m1 = +2.9221rad−1

m0 = −11.803rad−1

ζa = 0.7 actuator damping ratio
ωa = 150rad/s actuator natural frequency

Table 6.1: Missile numerical data

The measure equation is (η load factor)

η = K3 Ma2Cz(α, Ma, δp) (6.11)

This system is in series with an actuator modelled as follows:

δp =
ω2

a
s2 +2ζaωa s+ω2

a
δc (6.12)

The flight domain is defined by
α = α0 +Sα δα (6.13)

Ma = Ma0 +SMa δMa (6.14)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 126/181
NP

6.2 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 1 127

with α0 = 10o = 0.1745rad, Sα = 10o = 0.1745rad, δα ∈ [−1, 1] (δα is the normalized varia-
tion of α). Concerning the Mach number: Ma0 = 3, SMa = 1, δMa∈ [−1, 1]. The flight domain
is illustrated in Fig. 6.2.

o[]

[-]

4

3,5

3

2,5

2

10 15 20 α

Ma

0 5

5

4

3

2

1 6

7

8

9

10 15

14

13

12

11 16

17

18

19

20 25

24

23

22

21

Figure 6.2: The missile flight domain

6.2.4 Missile model: Computation of the linearized models

Drawing a parallel with the generalities given in introduction of this section, the function
f (x,u, p) of Equation (6.1) corresponds to (6.8), the function g(x,u, p) of Equation (6.1) corre-
sponds to (6.11) and

x =
[

α

q

]
; u = δp ; p = Ma

So, the parameters to be considered at equilibrium are values of α, q, δp and Ma, satisfying
" f = 0", that will be denoted α0, q0, δp0 and Ma0. The function f (α,q,δp,Ma) consists of the
substitution of Equations (6.9) and (6.10) into Equation (6.8).

Linearized models at equilibrium points. Let us compute the matrices of (6.5) and (6.6):

A
α0,q0,δp0,Ma0

=
∂ f
∂x

∣∣∣∣
α0,q0,δp0,Ma0

; B
α0,q0,δp0,Ma0

=
∂ f
∂u

∣∣∣∣
α0,q0,δp0,Ma0

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 127/181
NP

128 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

C
α0,q0,δp0,Ma0

=
∂g
∂x

∣∣∣∣
α0,q0,δp0,Ma0

; D
α0,q0,δp0,Ma0

=
∂g
∂u

∣∣∣∣
α0,q0,δp0,Ma0

First, cos(α) is replaced by 1−α2/2. After computation (we copy here the results obtained
with the Symbolic Toolbox as detailed in Example 6.1), we obtain:

a11 = K1Ma0(3z3α2
0 +2z2α0 + z1(2− (1/3)Ma0))(1− (1/2)α2

0)
−K1Ma0(z3α3

0 + z2α2
0 + z1(2− (1/3)Ma0)α0 + z0δp0)α0

A
α0,q0,δp0,Ma0

=
[

a11 1
K2M2

a0
(3m3α2

0 +2m2α0 +m1(−7+(8/3)Ma0)) 0

]
(6.15)

B
α0,q0,δp0,Ma0

=
[

K1Ma0z0(1− (1/2)α2
0)

K2M2
a0

m0

]
(6.16)

C
α0,q0,δp0,Ma0

=
[

K3M2
a0

(3z3α2
0 +2z2α0 + z1(2− (1/3)Ma0)) 0

]
(6.17)

D
α0,q0,δp0,Ma0

= K3M2
a0

z0 (6.18)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 128/181
NP

6.2 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 1 129

Software relative to this section

Illustrated functions:

- symtreed for structured tree decomposition of a symbolic expression (Symbolic Toolbox
required),

- diff for differentiating LFR-objects,

- abcd2lfr converts a system matrix LFR to an input/output LFR-object,

Brief presentation of the illustrative examples.

- Example 6.1 illustrates modelling of the continuum of linearized models of the missile
ignoring parameter dependency on the equilibrium surface. The symbolic approach is
used. Next step (considering the dependency on the equilibrium surface) in Example 6.3
(page 137).

- Example 6.2: Similar but the LFR-object differentiation is used instead symbolic differ-
entiation. Next step in Example 6.4 (page 138).

- Example 6.3 (page 137) the dependencies on the equilibrium surface are handled by mean
of symbolic computation (function sym/eval).

- Example 6.4 (page 138) the dependencies on the equilibrium surface are handled by mean
of LFR-object manipulation (function lfr/eval).

- Example 6.5 (page 142) proposes an interpolation approach for identifying the dependen-
cies of parameters on the equilibrium surface.

- Example 6.6 (page 143) proposes an interpolation approach for building the continuum of
linearized models of the missile (the state-space matrices A,B,C,D that are interpolated
come from a Simulink model of the missile).

Examples 6.1 to 6.4 need a common initialization of numerical data (given in Table 6.1). This
initialization will not be repeated. These data can be loaded in Matlab workspace by invoking
missiledata.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 129/181
NP

130 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

g = 32.2; rho = 973.3; a = 1.0364e+03; s = 0.44; m = 13.98;
d = 0.75; Iy = 182.5;

K1 = 0.0207; % K1 = 0.7*((rho*s)/(m*a));
K2 = 1.2320; % K2 = 0.7*((rho*s*d)/Iy);
K3 = 0.0116; % K3 = 0.7*(3.14/180)*((rho*s)/(m*g));

z3 = 19.3470;
z2 = -31.0084;
z1 = -9.7174;
z0 = -1.9481;

m3 = 40.4847;
m2 = -64.1657;
m1 = 2.9221;
m0 = -11.8029;

% Actuator
kia = 0.7;
omegaa = 150;

% alpha in [Al_0-Al_S Al_0+Al_S]
Al_0 = 0.1745;
Al_S = 0.1745;

% mach in [Ma_0-Ma_S Ma_0+Ma_S]
Ma_0 = 3;
Ma_S = 1;

Example 6.1 This example illustrates the symbolic approach to modelling in LFR form the
continuum of linearized models of a nonlinear system. First, the symbolic expression of Equa-
tions (6.8) and (6.11) are computed (notation easily understandable from context).

>> missiledata
>> syms Al q Ma dp

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 130/181
NP

6.2 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 1 131

>> Cz = z3*Al^3 + z2*Al^2 + z1*(2 -(1/3)*Ma)*Al + z0*dp;
>> Cm = m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al + m0*dp;

>> A1 = q+K1*Ma*Cz*(1-Al^2/2);%+Al^4/24);
>> A2 = K2*Ma^2*Cm;
>> C1 = K3*Ma^2*Cz;

Now, the state-space matrices (see (6.5) and (6.6)) are computed by deriving the above expres-
sions

>> fg = [A1;A2;C1];
>> ABCD = [diff(fg,’Al’) diff(fg,’q’) diff(fg,’dp’)];

Then, the system matrix [A B;C D] is realized using the structured tree decomposition
(symtreed), then, the input / output corresponding form is computed using abcd2lfr. The
result is reduced using minlfr.

>> ABCD = symtreed(ABCD);
>> sys = abcd2lfr(ABCD,2);
>> sys = minlfr(sys,1000*eps);

The variations of Al and Ma must be normalized. respectively in [Al_0-Al_S Al_0+AL_S] and
[Ma_0-Ma_S Ma_0+Ma_S]. Note also that the third parameter dp is entered with zero nominal
value. It will be replaced later by a combination of Ma and Al (equilibrium constraint), so, its
nominal value will be automatically computed from Ma_0 and Al_0.

>> min = [Al_0-Al_S Ma_0-Ma_S];
>> max = [Al_0+Al_S Ma_0+Ma_S];
>> sys = normalizelfr(sys,{’Al’,’Ma’},min,max);

Finally, the actuator is added in series at the system input:

>> sys = sys*ss(tf([omegaa^2],[1 2*kia*omegaa omegaa^2]));
>> size(sys)

LFR-object with 1 output(s), 1 input(s) and 4 state(s).
Uncertainty blocks (globally (11 x 11)):
Name Dims Type Real/Cplx Full/Scal Bounds

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 131/181
NP

132 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

Al 4x4 LTI r s [-1,1]
Ma 6x6 LTI r s [-1,1]
dp 1x1 LTI r s [-1,1]

The resulting system has three uncertainty blocks of respective sizes 4 (α, angle of incidence),
6 (Ma, Mach number) and 1 (δp, tail plane deflection).

Example 6.2 This example illustrates an alternative way to differentiate the functions f and g
(see (6.1)) using a purely object oriented approach. The main function illustrated here is diff.
The technique is very similar to the one illustrated in the previous example.

Here, the variation bounds of Al and Ma are specified when they are defined in the workspace:

>> missiledata
>> lfrs Al Ma [0.0 2.0] [0.349 4.0]
>> lfrs q dp

>> Cz = z3*Al^3 + z2*Al^2 + z1*(2 -(1/3)*Ma)*Al + z0*dp;
>> Cm = m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al + m0*dp;

>> A1 = q+K1*Ma*Cz*(1-Al^2/2);%+Al^4/24);
>> A2 = K2*Ma^2*Cm;
>> C1 = K3*Ma^2*Cz;

>> fg = [A1;A2;C1];
>> fg = minlfr(fg,10000*eps);

Now, the state-space matrices (see (6.5) and (6.6)) are computed by deriving fg The system
matrix [A B;C D] is realized in one step.

>> ABCD = [diff(fg,’Al’) diff(fg,’q’) diff(fg,’dp’)];

Then, the input / output corresponding form is computed using abcd2lfr. The result is reduced
using minlfr.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 132/181
NP

6.2 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 1 133

>> sys = abcd2lfr(ABCD,2);
>> sys = minlfr(sys,10000*eps);

The actuator is added in series at the system input:

>> sys_nn = sys*ss(tf([omegaa^2],[1 2*kia*omegaa omegaa^2]));

The parameter variations must be normalized, but as we have already defined variation bounds,
it suffices to invoke the function normalizelfr without additional arguments:

>> sys = normalizelfr(sys_nn);
>> size(sys)

LFR-object with 1 output(s), 1 input(s) and 4 state(s).
Uncertainty blocks (globally (12 x 12)):
Name Dims Type Real/Cplx Full/Scal Bounds

Al 4x4 LTI r s [-1,1]
Ma 7x7 LTI r s [-1,1]
dp 1x1 LTI r s [-1,1]

The resulting system has three uncertainty blocks of respective sizes 4 (α, angle of incidence),
7 (Ma, Mach number) and 1 (δp, tail plane deflection). It can be checked using distlfr that
this result is the same as the one of Example 6.1 (but with one block of order 7 instead of 6).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 133/181
NP

134 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

6.3 From a nonlinear model to a Linear Fractional Repre-
sentation: Part 2

In Section 6.2 a preliminary LFR form of the continuum of linearized models of a nonlinear
system was derived. In this section, it is shown that the dependency of the parameters at equi-
librium can be viewed as an LFR-object that can be “plugged” into the continuum of linearized
models. In that way, the resulting model will only depend on independent parameters.

6.3.1 Modelling considering parameter dependency at equilibrium

In Equations (6.4)-(6.7) the parameters x0,u0, p are not independent as they satisfy (6.2). In
order to have a minimum set of independent parameters we have to choose m + q (number of
inputs plus number of uncertain / varying parameters) trim parameters within the entries of x0,
u0 and p (all parameters in p must be selected). Let us denote p′ the vector of the m + q trim
parameters. We shall denote ξ the remaining n parameters so that

{ξ, p′}= {x0,u0, p} (6.19)

Now, in view of Equation (6.3), the entries of ξ are functions of p′, so (6.7) has to be written:[
ẋ
y

]
=

[
Aξ Bξ

Cξ Dξ

][
x
u

]
(6.20)

A problem is often encountered when we try to write ξ as a function of p′ because (6.2) is often
an implicit relation. When this relation cannot be solved in an explicit way, we suggest to use
interpolation (see §6.4). The next paragraph consider a large class of systems for which the
relation is explicit.

6.3.2 Derivation of the equilibrium surface for a large class of systems

It is claimed in various references on qLPV modelling that for a large class of systems (including
in particular aeronautical models) the state vector can be split into two parts x1 and x2 so that:[

ẋ1
ẋ2

]
=

[
k1(x1, p)
k2(x1, p)

]
+

[
A11(x1, p) A12(x1, p)
A21(x1, p) A22(x1, p)

][
x1
x2

]
+

[
B1(x1, p)
B2(x1, p)

]
u (6.21)

in which the vectors x1 ∈ IR n1 can be measured and its length is equal to the length of the vector
u ∈ IR m.

n1 = m (6.22)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 134/181
NP

6.3 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 2 135

Equation (6.21) permits us to write the equilibrium surface in an explicit way. Indeed, we have[
0
0

]
=

[
k1(x1, p)
k2(x1, p)

]
+

[
A11(x1, p) A12(x1, p)
A21(x1, p) A22(x1, p)

][
x1
x20

]
+

[
B1(x1, p)
B2(x1, p)

]
u0 (6.23)

so, after some permutations[
k1(x1, p)
k2(x1, p)

]
+

[
A11(x1, p)
A21(x1, p)

]
x1 =−

[
A12(x1, p) B1(x1, p)
A22(x1, p) B2(x1, p)

][
x20
u0

]
Finally: [

x20
u0

]
=−

[
A12(x1, p) B1(x1, p)
A22(x1, p) B2(x1, p)

]−1 [
k1(x1, p)+A11(x1, p)x1
k2(x1, p)+A21(x1, p)x1

]
(6.24)

From (6.22), the matrix inverted in the above equation is square ((n1 +n2)× (n2 +m)).

It is necessary to check the invertibility of this matrix for all feasible values of the vector (x1, p).
For that purpose, it suffices to build its LFR-form and to check that its well-posedness radius
(§ 2.4.1, page 45) is larger than the unity, assuming that (x1, p) has been normalized.

In view of Equation (6.19), we have

p′ = {x1, p} and ξ = {x20,u0} (6.25)

6.3.3 Application to the missile model

The missile model is quite simple, therefore, deriving the equilibrium surface equation is almost
obvious. However, in order to illustrate the above paragraph we shall write the missile non-
linear model ((6.8)-(6.9)-(6.10)) as in Equation (6.21).

x1 = α ; x2 = q ; u = δp ; n1 = m = 1

ẋ1 =
(
K1Ma(z3x2

1 + z2x1 + z1(2− 1
3Ma))cosx1

)
x1 + x2 + K1Ma z0 cosx1 u

ẋ2 =
(
K2Ma2(m3x2

1 +m2x1 +m1(−7+ 8
3)

)
x1 + K2Ma2m0 u

(6.26)
So, (6.24) can be written as follows[

x20
u0

]
=−

[
1 K1Maz0 cosx1
0 K2Ma2m0

]−1 [(
K1Ma(z3x2

1 + z2x1 + z1(2− 1
3Ma))cosx1

)
x1(

K2Ma2(m3x2
1 +m2x1 +m1(−7+ 8

3Ma)
)

x1

]
The above inversion is obvious, so

u0 =−
K2Ma2(m3x2

1 +m2x1 +m1(−7+ 8
3Ma)x1

K2Ma2m0

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 135/181
NP

136 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

or

u0 =−
(m3x2

1 +m2x2
1 +m1(−7+ 8

3Ma)x1

m0

coming back to the original notations:

δp0 =−
m3α3 +m2α2 +m1(−7+ 8

3Ma)α
m0

(6.27)

Next step: the above form of δp0 is sufficient to terminate the missile modelling initialized in
Examples 6.1 or 6.4: it suffices to use eval to plug this equation into the state-space matrices.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 136/181
NP

6.3 FROM A NONLINEAR MODEL TO A LINEAR FRACTIONAL REPRESENTATION:
PART 2 137

Software relative to this section

Illustrated functions:

- symtreed for tree decomposition of a symbolic expression.

- abcd2lfr converts a system matrix in LFR form to an input/output LFR-object.

- eval for replacing some entries of the matrix ∆ by LFR-objects (advanced “star prod-
uct”).

Example 6.3 See Example 6.1 for explanations relative to the first lines of MATLAB code.

>> missiledata

>> syms Al q Ma dp

>> Cz = z3*Al^3 + z2*Al^2 + z1*(2 -(1/3)*Ma)*Al + z0*dp;
>> Cm = m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al + m0*dp;

>> A1 = q+K1*Ma*Cz*(1-Al^2/2);%+Al^4/24);
>> A2 = K2*Ma^2*Cm;
>> C1 = K3*Ma^2*Cz;

>> fg = [A1;A2;C1];
>> ABCD = [diff(fg,’Al’) diff(fg,’q’) diff(fg,’dp’)];

In view of Equation (6.27), the equilibrium surface is given by

>> dp = -(m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al)/m0;

This form of dq is substituted into the state-space matrices by invoking the sym/eval function

>> ABCD = eval(ABCD);

These matrices do not depend any more on dp.

The system matrix [A B;C D] is realized using the structured tree decomposition (symtreed),
and then, the input / output corresponding form is computed using abcd2lfr. The result is
reduced using minlfr.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 137/181
NP

138 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

>> ABCD = symtreed(ABCD);
>> sys = abcd2lfr(ABCD,2);
>> sys = minlfr(sys,1000*eps);

The parameter variations must be normalized.

>> min = [Al_0-Al_S Ma_0-Ma_S];
>> max = [Al_0+Al_S Ma_0+Ma_S];
>> sys = normalizelfr(sys,{’Al’,’Ma’},min,max);

Finally, the actuator is added in series at the system input:

>> sys = sys*ss(tf([omegaa^2],[1 2*kia*omegaa omegaa^2]));

The resulting system has two uncertainty blocks of sizes 4 (α) and 6 (Mach number).

Example 6.4 See Example 6.2 for obtaining the matrix sys_nn. The first step, in order to take
equilibrium dependency, consists of writing dp as an LFR-object:

>> lfrs Al Ma [0.0 2.0] [0.349 4.0]
>> lfrs dp
>> dp = -(m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al)/m0;

It remains to replace dp in the ∆ block of ABCD invoking lfr/eval

>> sys = eval(sys_nn);

Normalization:

>> sys = normalizelfr(sys);

We obtain the same result as in the previous example.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 138/181
NP

6.4 TECHNIQUES BASED ON A GRIDDING 139

6.4 Techniques based on a gridding

The first step that must be considered for using the techniques presented in this section consists
of computing a set of points (ξ, p′) belonging to the equilibrium surface. Equation (6.2) can be
written as in (6.3):

f (ξ, p′) = 0

Let us consider a gridding of N values of p′. For each point of this gridding, compute the
corresponding value of ξ (Simulink function trim). Therefore, we have a set of known vectors

{ξ
(1), . . . ,ξ(N), p′(1)

. . . , p′(N)}

satisfying:
f (ξ(1), p′(1)) = 0

...
f (ξ(N), p′(N)) = 0

6.4.1 Interpolation

The interpolation problem presented in this section can be applied to several practical problems,
for example

• Finding the equilibrium surface equation (see Example 6.5).

• System matrices interpolation (see Example 6.6).

• Transformation of numerical data arrays (e.g., aerodynamic coefficients) to polynomial
or rational forms.

In order to make explicit the dependency of ξ on p′, an interpolation formula must be chosen,
for example:

ξ = α1 p′1 +α2 p′21 +α3 p′2 p′1 + . . .

In which the αi’s are unknown vectors having the same size as ξ.

The problem of identifying the parameters of this interpolation formula can be considered by
mean square minimization, that is finding the vectors α1, α2,... which are least squares solution
to

ξ(1) = α1 p′(1)
1 +α2 p′(1)2

1 +α3 p′(1)
2 p′(1)

1 + . . .
...

ξ(N) = α1 p′(N)
1 +α2 p′(N)2

1 +α3 p′(N)
2 p′(N)

1 + . . .

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 139/181
NP

140 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

This equation can be written in matrix form:

[
ξ(1) . . . ξ(N)

]
=

[
α1 α2 α3 . . .

]


p′(1)
1 p′(N)

1

p′(1)2
1 . . . p′(N)2

1

p′(1)
2 p′(1)

1 p′(N)
2 p′(N)

1
...

...


The interpolation problem as above is treated in the MATLAB function data2lfr.

6.4.2 Elementary system modelling

From a data base of linearized models, the maximal and minimal values of each entry of the
matrices A, B, C and D might be considered as the variation bounds of the uncertain parameters.
This technique is evaluated in Bates et al [4]. The MATLAB function that computes that kind of
LFR-objects is bnds2lfr.

The disadvantages of using such models is that worst case combinations of parameters cannot
be identified, some conservatism is introduced and we have to rely on a gridding for computing
the maximum and minimum values of the system matrix entries. Nevertheless, as a first analysis
step, or if we just look for sufficient robustness condition (without worst case identification),
the simplicity of this approach makes it very attractive.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 140/181
NP

6.4 TECHNIQUES BASED ON A GRIDDING 141

Software relative to this section

Illustrated functions:

- data2lfr interpolation, the result is an LFR-object.

– in Example 6.5 this function is used for the computation of an equilibrium surface
by interpolation

– in Example 6.6 this function is used for modelling the continuum of linearized sys-
tems by interpolation.

- plotlfr plots the values (entry per entry) of an LFR-object.

Examples 6.5 and 6.6 need a common initialization that consists of trimming and linearizing
the missile model on a gridding of Al and Ma. The considered Simulink model of the missile
(missile.mdl) is presented in Figure 6.3. The states of this Simulink diagram are respectively
the 2 actuator states, α and q.

missiledata;
kk = 1;

for ii = 0:5;
for jj = 0:5;

% Trim parameters
Al = ii*(0.349/5); % from 0 to 0.349
Ma = 2 + jj*(2/5); % from 2 to 4

% Computation of equilibrium points
X0 = [0;0;Al;0];
[X,U,Y,dX] = trim(’missile’,X0,0,0,3);

% Computation of linearized models
[A,B,C,D] = linmod(’missile’,X,U);
B = B/B(1,1);
C = C*B(1,1);

% Storage of values for state-space model interpolation

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 141/181
NP

142 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

abcd_data{kk} = [A B;C D];
al_ma_data{kk} = [Al,Ma];

% Storage of values for equilibrium surface interpolation
q_dp_data{kk} = [X(4) U]; % values of q and dp

kk = kk + 1;

end;
end;

(This script is given in the file ex_6_5_loop.m.)

1

eta

1
s

q

1
s

alpha

x’ = Ax+Bu
 y = Cx+Du

actuator

K1*u

K3*u*u

K2*u*u

1−u*u/2

Ma

Ma

Ma

Ma

dp

alpha

Ma

Cz

CZ

dp

alpha

Ma

Cm

CM

1

dp

Figure 6.3: Simulink model of the missile

Example 6.5 Equilibrium surface of the missile identified by interpolation: The cell
al_ma_data contains the values of α and of the Mach number defining the gridding. The
cell q_dp_data contains the corresponding values of q and d p on the equilibrium surface.

The polynomial form of the equilibrium surface is chosen a priori as lfrex = [1 Al Al*Ma
Alˆ 2]. It means that we look for ai’s, bi’s such that q and d p are given by:

q = a0 +a1α+a2αMa+a3α2

d p = b0 +b1α+b2αMa+b3α2 (6.28)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 142/181
NP

6.4 TECHNIQUES BASED ON A GRIDDING 143

>> lfrs Al Ma

>> lfrex = [1 Al Al*Ma Al^2];
>> ordlfr = {Al Ma};
>> q_dp = data2lfr(q_dp_data,al_ma_data,lfrex,ordlfr);

>> q = q_dp(1);
>> dp = q_dp(2);

This result can be checked by comparison with the exact value of dp (denoted dp2 below)

>> dp2 = -(m3*Al^3 + m2*Al^2 + m1*(-7 +(8/3)*Ma)*Al)/m0;
>> distlfr(dp,dp2)

There is a small discrepancy (distance about 0.0077), because Al^3 is missing in the interpola-
tion formula lfrex (in addition the linearization routine linmod introduces some approxima-
tions). It is also possible to compare the surfaces dp and dp2

>> figure
>> plotlfr(dp, {’Al’,0,0.349,10},{’Ma’,2,4,10});
>> hold on
>> plotlfr(dp2,{’Al’,0,0.349,10},{’Ma’,2,4,10});

Example 6.6 State-space matrices of the missile identified by interpolation: The cell
al_ma_data contains the values of α and of the Mach number defining the gridding. The
cell abcd_data contains the corresponding state-space matrices.

Note that we have been obliged to normalize B(1,1) in order to have continuity between the
linearized models. In some cases, normalization is more complex.

The polynomial expansion (lfrex) below was chosen by “trial and errors” until the interpo-
lation error became sufficiently small (for interpretation refer to (6.28)). From experience, it
is not necessary to reduce so much interpolation error especially if the model is to be used for
control design.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 143/181
NP

144 6. EXTENSIONS TO MODELLING OF UNCERTAIN NONLINEAR SYSTEMS

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

2

2.5

3

3.5

4
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

AlMa

en
try

 (1
,1

)

Figure 6.4: Exact and interpolated equilibrium surfaces cannot be distinguished.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 144/181
NP

6.4 TECHNIQUES BASED ON A GRIDDING 145

>> lfrs Al Ma [0.0 2.0] [0.349 4.0]

>> lfrex = [1 Al Ma Al*Ma Al^2 Ma^2 Al^2*Ma Al*Ma^2 Al^3 Ma^3];
>> ordlfr = {Al Ma};
>> ABCD = data2lfr(abcd_data,al_ma_data,lfrex,ordlfr);

The result displayed to the screen is

Maximum absolute error = 1.296 at entry (4x3) of point 31
Maximum relative error = 7.8718 per cent at entry (4x3) of point 3

despite the appearances, the relative error is quite small, it seems to be large (7.5 %) because
the coefficient (4,3) changes of sign, relative error is a bad measure around zero.

>> ABCD = minlfr(ABCD,0.0001);

The input/output form is computed as follows:

>> sys = abcd2lfr(ABCD,4);
>> sys = normalizelfr(sys);
>> size(sys)

LFR-object with 1 output(s), 1 input(s) and 4 state(s).
Uncertainty blocks (globally (11 x 11)):
Name Dims Type Real/Cplx Full/Scal Bounds

Al 6x6 LTI r s [-1,1]
Ma 5x5 LTI r s [-1,1]

It remains to analyse the distance from this system to the one of Example 6.4. The function
distlfr gives a very pessimistic distance, however, the eigenvalues of both systems at random
values of Al and Ma are almost equal.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 145/181
NP

EMPTY PAGE

147

Chapter 7

Appendix

7.1 Standard operation relative to LFTs

Let us consider Fu(M,∆′, Fu(M′,∆′) and Fu(M′′,∆′′) where

M =
[

M11 M12
M21 M22

]
; M′ =

[
M′

11 M′
12

M′
21 M′

22

]
; M′′ =

[
M′′

11 M′′
12

M′′
21 M′′

22

]
So,

Fu(M,∆) = M21∆(I−M11∆)−1M12 +M22
Fu(M′,∆′) = M′

21∆′(I−M′
11∆′)−1M′

12 +M′
22

Fu(M′′,∆′′) = M′′
21∆′′(I−M′′

11∆′′)−1M′′
12 +M′′

22

7.1.1 Transposition

Transposition holds for LFR-objects having only scalar repeated uncertainties (no full blocks
so that ∆ = ∆T). In addition, if the uncertainties in the ∆-matrix are real, the following formula
also holds for conjugate-transpose.

Fu (M, ∆)T = Fu

([
MT

11 MT
21

MT
12 MT

22

]
, ∆

)
(7.1)

Proof.
Fu(M,∆)T = MT

12(I−∆
T MT

11)
−1

∆
T MT

21 +MT
22

Fu(M,∆)T = MT
12∆

T (I−MT
11∆

T)−1MT
21 +MT

22

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 147/181
NP

148 7. APPENDIX

Fu(M,∆)T = MT
12∆(I−MT

11∆)−1MT
21 +MT

22

Note that the restrictions listed above (no full blocks, no complex uncertainties in the conjugate-transpose case)

come from the fact that ∆ must be equal to ∆T (or equal to ∆∗ in the conjugate-transpose case).

7.1.2 Addition.

Fu
(
M′, ∆

′)+Fu
(
M′′, ∆

′′) = Fu

 M′
11 0 M′

12
0 M′′

11 M′′
12

M′
21 M′′

21 M′
22 +M′′

22

 ,

[
∆′ 0
0 ∆′′

] (7.2)

Proof. This result can be justified considering the sum of Fu(M′,∆′) and Fu(M′′,∆′′). It can be written[
M′

21 M′′
21

][
∆′ 0
0 ∆′′

](
I−

[
M′

11 0
0 M′′

11

][
∆′ 0
0 ∆′′

])−1 [
M′

12
M′′

12

]
+M′

22 +M′′
22

which corresponds to (7.2). Usually the δi’s are reordered so that they become contiguous (not scattered in two
diagonal blocks). Reordering the uncertain parameters consists of permuting the columns and rows of M′

11 0 M′
12

0 M′′
11 M′′

12
M′

21 M′′
21 M′

22 +M′′
22

 and
[

∆′ 0
0 ∆′′

]
in a similar way.

7.1.3 Multiplication.

Fu
(
M′, ∆

′)Fu
(
M′′, ∆

′′) = Fu

 M′
11 M′

12M′′
21 M′

12M′′
22

0 M′′
11 M′′

12
M′

21 M′
22M′′

21 M′
22M′′

22

 ,

[
∆′ 0
0 ∆′′

] (7.3)

It remains to reorder the δi’s as above. Justification as above.

7.1.4 Concatenation.

[
Fu (M′, ∆′)
Fu (M′′, ∆′′)

]
= Fu




M′
11 0 M′

12
0 M′′

11 M′′
12

M′
21 0 M′

22
0 M′′

21 M′′
22

 ,

[
∆′ 0
0 ∆′′

] (7.4)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 148/181
NP

7.1 STANDARD OPERATION RELATIVE TO LFTS 149

[
Fu (M′, ∆′) Fu (M′′, ∆′′)

]
= Fu

 M′
11 0 M′

12 0
0 M′′

11 0 M′′
12

M′
21 M′′

21 M′
22 M′′

22

 ,

[
∆′ 0
0 ∆′′

] (7.5)

In both cases it remains to reorder the δi’s as above. Justification as above.

7.1.5 Juxtaposition.

This is the operation called “append” in toolboxes.

[
Fu (M′, ∆′) 0

0 Fu (M′′, ∆′′)

]
= Fu




M′
11 0 M′

12 0
0 M′′

11 0 M′′
12

M′
21 0 M′

22 0
0 M′′

21 0 M′′
22

 ,

[
∆′ 0
0 ∆′′

] (7.6)

In both cases it remains to reorder the δi’s as above. Justification as above.

7.1.6 Inversion.

It is assumed that M22 is square invertible

Fu (M, ∆)−1 = Fu

([
M11−M12M−1

22 M21 M12M−1
22

−M−1
22 M21 M−1

22

]
, ∆

)
(7.7)

Note that we have the same ∆-block for the considered LFR and its inverse.

Proof. This is a form of the well known Matrix Inversion Lemma:

(A22 +A21A−1
11 A12)−1 = A−1

22 +A−1
22 A21(A11−A12A−1

22 A21)−1A12A−1
22

in which we replace A11 by I−M11∆, A12 by M12, A21 by −M21∆ and A22 by M22:

(M22 +M21∆(I−M11∆)−1M12)−1 =
M−1

22 −M−1
22 M21∆(I− (M11−M12M−1

22 M21)∆)−1M12M−1
22

which is as stated in (7.7).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 149/181
NP

150 7. APPENDIX

7.1.7 Feedback

The closed-loop of a system G with feedback K is (I +GK)−1G. We shall not detail the realiza-
tion of (I +GK)−1G as for the previous operations but give a formula involving already treated
operations (addition, multiplication and concatenation of lfr-objects). The formula to be used
must be such that K and G appear only once in order to reduce the complexity:

(I +GK)−1G =
[
−I 0

](
I +

[
G 0
0 I

][
K I
0 0

])−1 [
0
I

]
(7.8)

7.1.8 Kernel computation

Kernel or null space computation is a specific problem because a kernel is not a matrix but is
a subspace. In the LFR framework, we shall compute an LFR-object that, for all fixed values
of ∆, corresponds to a basis of the null space. The main problem is that a basis is defined up to
the right multiplication by a nonsingular matrix (change of basis). In the LFT case, all possible
basis have not the same well-posedness radius. For example the kernel of the realization of
[(1+a) 2] can be

Ker
[

(1+a) 2
]
= Im

[1
1+a
−1
2

]
= Im

[
2

−1−a

]
A realization of the first form of the kernel is well-posed for ‖a‖< 1, the second one is always
well-posed. Optimizing the well-posedness radius is a difficult task but this problem must be
considered in order to derive kernel representations having a too small well-posedness radius.

Algorithm 1. It is assumed that the p×m matrix M22 has maximal row rank (rank(M22) = p).

• Step 1. Compute a m× (m− p) matrix Q′ the columns of which span the kernel of M22.
We shall denote Q = Q′T .

• Step 2. The kernel X(∆) of Fu(M,∆) is given by

X(∆) =
[

M(∆)
Q

]−1 [
0p×(m−p)

Im−p

]
(7.9)

Proof. Note that the formula of Equation (7.9) is written in such a way that X(∆) has the same ∆ matrix as
Fu(M,∆) = Fu(M,∆). In order to justify (7.9), it suffices to check that Fu(M,∆)X(∆) = 0.

Fu(M,∆)X(∆) = Fu(M,∆)
[

M(∆)
Q

]−1 [
0
I

]
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 150/181
NP

7.1 STANDARD OPERATION RELATIVE TO LFTS 151

so,

Fu(M,∆)X(∆) =
[

I 0
][

0
I

]
= 0

which justifies the proposed algorithm.

Comment 7.1.1 This choice of Q can be justified by considering the row spans of Fu(M,∆) and
of Q. We selected Q as having a row span orthogonal to the one of Fu(M,∆) at ∆ = 0, because
it is likely that ∆ has to change quite a lot before both row spans have a non-zero intersection.

Algorithm 2. It is assumed that the p×m matrix M22 has maximal row rank (rank(M22) = p).

• Step 1. Compute the non-singularity radius of all the p× p minors of Fu(M,∆)). Select
the “best one”. Let P1 denote the m× p permutation matrix that moves the selected minor
to the left, P2 is a complementary m× (m− p) permutation matrix.

• Step 2. The kernel X(∆) of Fu(M,∆) is given by

X(∆) =
[

P1 P2
][

Fu(M,∆)P1 Fu(M,∆)P2
0(m−p)×p Im−p

]−1 [
0p×(m−p)

Im−p

]
(7.10)

Proof. Note that Equation (7.10) is written in such a way that X(∆) has the same matrix ∆ as the original
LFR-object Fu(M,∆). In order to justify (7.10), it suffices to check that Fu(M,∆)X(∆) = 0.

Fu(M,∆)X(∆) = Fu(M,∆)
[

P1 P2
][

Fu(M,∆)P1 Fu(M,∆)P2
0 I

]−1 [
0
I

]
The above inverse can be written,[

(Fu(M,∆)P1)−1 −(Fu(M,∆)P1)−1Fu(M,∆)P2
0 I

]
so,

Fu(M,∆)X(∆) =−Fu(M,∆)P1(Fu(M,∆)P1)−1Fu(M,∆)P2 +Fu(M,∆)P2 = 0

which justifies the algorithm.

Comment 7.1.2 This procedure is again a technique for enlarging the domain in which the
inversion appearing in (7.7) remains feasible. Here, µ-analysis is required (a single µ-test for
each minor in order to compute its non-singularity radius), so, the computation is longer than
using Algorithm 1. This idea can also be applied considering the minors of Fu(M,∆) for ∆ = 0
in order to avoid the use of µ-analysis.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 151/181
NP

152 7. APPENDIX

7.1.9 Real and imaginary parts

It is assumed that the entries of the matrix ∆ are all real. Let us denote:

M11 = MR
11 + jMI

11
M12 = MR

12 + jMI
12

M21 = MR
21 + jMI

21
M22 = MR

22 + jMI
22

The real part of Fu(M,∆) is given by:

ℜ(Fu(M,∆)) = Fu

 MR
11 −MI

11 MR
12

MI
11 MR

11 MI
12

MR
21 −MI

21 MR
22

 ,

[
∆ 0
0 ∆

] (7.11)

and the imaginary part of Fu(M,∆) is given by:

ℑ(Fu(M,∆)) =

 MR
11 −MI

11 MR
12

MI
11 MR

11 MI
12

MI
21 MR

21 MI
22

 ,

[
∆ 0
0 ∆

] (7.12)

Proof. Only for the real part:

Fu(M,∆) = MR
22 + jMI

22 +(MR
21 + jMI

21)∆(I− (MR
11 + jMI

11)∆)−1(MR
12 + jMI

12)

We shall denote
HR + jHI = (I− (MR

11 + jMI
11)∆)−1(MR

12 + jMI
12) (7.13)

so that

ℜ(Fu(M,∆)) = MR
22 +

[
MR

21 −MI
21

][
∆ 0
0 ∆

][
HR

HI

]
(7.14)

Multiplying (7.13) on the left by (I− (MR
11 + jMI

11)∆):

(I− (MR
11 + jMI

11)∆)(HR + jHI) = MR
12 + jMI

12

or, isolating imaginary and real parts{
(I−MR

11∆)HR +MI
11∆HI = MR

12
(I−MR

11∆)HI −MI
11∆HR = MI

12

which is equivalent to (
I−

[
MR

11 −MI
11

MI
11 MR

11

][
∆ 0
0 ∆

])[
HR

HI

]
=

[
MR

12
MI

12

]
HR and HI can be expressed from this equation, after substitution in (7.14) the following formula is obtained
ℜ(Fu(M,∆)) =

MR
22 +

[
MR

21 −MI
21

][
∆ 0
0 ∆

](
I−

[
MR

11 −MI
11

MI
11 MR

11

][
∆ 0
0 ∆

])−1 [
MR

12
MI

12

]
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 152/181
NP

7.1 STANDARD OPERATION RELATIVE TO LFTS 153

which is as stated in (7.11).

Lemma 7.1.3 The well-posedness radius of ℜ(M) and of ℑ(M) are equal to the well-posedness
radius of M

Proof. In view of the discussion of §2.4, it suffices to show that the matrices

I− (MR
11 + jMI

11)∆ and I−
[

MR
11 −MI

11
MI

11 MR
11

][
∆ 0
0 ∆

]
are rank deficient for the same values of ∆. This result is obvious from

(I− (MR
11 + jMI

11)∆)(ξR + jξI) = 0 ⇔
(

I−
[

MR
11 −MI

11
MI

11 MR
11

][
∆ 0
0 ∆

])[
ξR

ξI

]
= 0

7.1.10 Concatenation and conjugation

For control design we often need to manipulate the concatenation of a complex vector and of
its conjugate:

[Fu(M,∆) conj(Fu(M,∆))]

this object is not very interesting for computing feedback gains (with real coefficients) because
it contains complex numbers in its realization. In fact, it can be shown that we can replace this
object by the following one

[ℜ(Fu(M,∆)) ℑ(Fu(M,∆))]

that has interesting properties (see (7.15))

• the size of the ∆ matrix of this object is only twice the original size (from (7.11) and
(7.12), at first sight, it seems that its size is four times the original one).

• the four matrices of its realization are real (if the original ones are real).

[ℜ(Fu(M,∆)) ℑ(Fu(M,∆))] =

Fu

 MR
11 −MI

11 MR
12 MI

12
MI

11 MR
11 MI

12 −MR
12

MR
21 −MI

21 MR
22 MI

22

 ,

[
∆ 0
0 ∆

] (7.15)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 153/181
NP

154 7. APPENDIX

Proof. For simplifying notation, let us define

A =
[

MR
11 −MI

11
MI

11 MR
11

]
; B =

[
MR

12
MI

12

]
; ∆ = diag{∆,∆}

C1 =
[

MR
21 −MI

21
]

; C2 =
[

MI
21 MR

21
]

; D1 = MR
22 ; D2 = MI

22

and

Q =
[

0 I
−I 0

]
>From (7.11) and (7.12), this notation leads to

ℜ(Fu(M,∆)) = Fu

([
A B

C1 D1

]
, ∆

)

ℑ(Fu(M,∆)) = Fu

([
A B

C2 D2

]
, ∆

)
It is clear that the matrix Q satisfies the following properties

QT Q = I ; C1Q = C2 ; QA−AQ = 0 ; Q∆−∆Q = 0

we shall use the following system similarity transformation[
I −Q
0 I

]
This system similarity transformation is compatible with the considered LFR-object because the ∆-matrix (here
diag{∆,∆} is invariant under the following transformation[

I Q
0 I

]
diag{∆,∆}

[
I −Q
0 I

]
= diag{∆,∆}

therefore, this transformation can be applied to the realization of the concatenated object
[ℜ(Fu(M,∆)) ℑ(Fu(M,∆))].

[ℜ(Fu(M,∆)) ℑ(Fu(M,∆))] = Fu

 A 0 B 0
0 A 0 B

C1 C2 D1 D2

 ,

[
∆ 0
0 ∆

]
Applying the system similarity transformation, it is equal to

Fu




[
I Q
0 I

][
A 0
0 A

][
I −Q
0 I

] [
I Q
0 I

][
B 0
0 B

]
[

C1 C2
][

I −Q
0 I

] [
D1 D2

]
 ,

[
∆ 0
0 ∆

]
that is

Fu

 A 0
0 A

B QB
0 B

C1 0 D1 D2

 ,

[
∆ 0
0 ∆

]
TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 154/181
NP

7.1 STANDARD OPERATION RELATIVE TO LFTS 155

which reduces to (definition of Fu)

Fu

([
A B QB

C1 D1 D2

]
, ∆

)
which is as stated in (7.15)

Comment 7.1.4 The object [ℜ(Fu(M,∆)) ℑ(Fu(M,∆))] can be computed more simply using

[ℜ(Fu(M,∆)) ℑ(Fu(M,∆))] = [Fu(M,∆) conj(Fu(M,∆))]
[

0.5 −0.5 j
0.5 0.5 j

]
but this formula does not insure that all the entries of the realization matrices are real.

7.1.11 Closing partially the upper loop

In many cases, it is necessary to assign some δi’s to numerical values. Let us assume that the δi’s
belong to two distinct subsets: ∆1 corresponds to the evaluated δi’s and ∆2 is the complementary
subset. The original LFR-object M(∆) is

M(∆1,∆2) = Fu

 A11 A12 B1
A21 A22 B2

C1 C2 D

 ,

[
∆1 0
0 ∆2

]
it is equivalent to::

M(∆1,∆2) = Fu


 Fu(

[
A11 A12
A21 A22

]
,∆1) Fu(

[
A11 B1
A21 B2

]
,∆1)

Fu(
[

A11 A12
C1 C2

]
,∆1) Fu(

[
A11 B1
C1 D

]
,∆1)

 ,∆2

 (7.16)

in which Fu(•,∆1) can be evaluated.

Proof. For computing the new LFT (∆1 taking numerical values), consider the input/output version of the upper
LFT:

y1 = A11u1 +A12u2 +B1u with u1 = ∆1y1
y2 = A21u1 +A22u2 +B2u
y = C1u1 +C2u2 +Du

So
u1 = ∆1(I−A11∆1)−1(A12u2 +B1u)

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 155/181
NP

156 7. APPENDIX

and
y2 = (A21∆1(I−A11∆1)−1A12 +A22)u2 +(A21∆1(I−A11∆1)−1B1 +B2)u

y = (C1∆1(I−A11∆1)−1A12 +C2)u2 +(C2∆1(I−A11∆1)−1B1 +D)u

We recognize here an upper LFT:

M(∆1,∆2) = Fu

([
A21∆1(I−A11∆1)−1A12 +A22 A21∆1(I−A11∆1)−1B1 +B2

C1∆1(I−A11∆1)−1A12 +C2 C1∆1(I−A11∆1)−1B1 +D

]
,∆2

)

7.1.12 DC-gain computation

In dynamic LFR-objects, 1/s is considered as a parameter (s Laplace variable). So, for com-
puting the DC gain, the parameter 1/s must be replaced by infinity (∆1 is infinity times identity
in (7.16)). Numerically, replacing infinity by large values is not very efficient. The alternative
approach proposed below is numerically stable:

lim
s→0

Fu

 A11 A12 B1
A21 A22 B2

C1 C2 D

 ,

[
I/s 0
0 ∆

] = Fu

 A11 + I A12 B1
A21 A22 B2

C1 C2 D

 ,

[
I 0
0 ∆

]
(7.17)

Proof.

Fu

 A11 A12 B1
A21 A22 B2

C1 C2 D

 ,

[
I/s 0
0 ∆

] =

[
C1 C2

][
I/s 0
0 ∆

](
I−

[
A11 A12
A21 A22

][
I/s 0
0 ∆

])−1 [
B1
B2

]
+D =

[
C1 C2

][
I 0
0 ∆

]([
Is 0
0 I

]
−

[
A11 A12
A21 A22

][
I 0
0 ∆

])−1 [
B1
B2

]
+D =

for s → 0 [
C1 C2

][
I 0
0 ∆

]([
0 0
0 I

]
−

[
A11 A12
A21 A22

][
I 0
0 ∆

])−1 [
B1
B2

]
+D =

[
C1 C2

][
I 0
0 ∆

]([
I 0
0 I

]
−

[
A11− I A12

A21 A22

][
I 0
0 ∆

])−1 [
B1
B2

]
+D =

Fu

 A11 + I A12 B1
A21 A22 B2

C1 C2 D

 ,

[
I 0
0 ∆

] = DC-gain

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 156/181
NP

7.1 STANDARD OPERATION RELATIVE TO LFTS 157

7.1.13 Upper LFT computation without duplication of ∆

In some cases, ∆ must be considered as an LFR-object. For example assume that some δi
must be replaced by an expression involving other parameters (say, δ1 replaced by δ2 +δ3, see
the function pluglfr of LFRT version 1.x or the function eval of version 2.x). The most
straightforward technique for finding the resulting LFR-object consists of computing explicitly

M21∆(I−M11∆)−1M12 +M22

in which all the entries of ∆ are considered as 1×1 LFR-objects (note that the sub-matrices Mi j
might also be LFR-objects). Unfortunately, ∆ is repeated twice in this formula, therefore, the
complexity of the result would be artificially multiplied by two.

In order to avoid this problem, it is suggested to use the following identity:

M21∆(I−M11∆)−1M12 +M22 =
[

M21 0
](

I +
[
−∆ 0

0 I

][
M11 I

0 0

])−1 [
0

M12

]
+M22

(7.18)
in which ∆ appears only once.

Note that it is also possible to use Lemma 3.1.1, page 67 for avoiding duplication od ∆.

7.1.14 Differentiation

Let us consider a non-dynamic LFR-object f

f = F21∆(I−F11∆)−1F12 +F22

for some matrices (F11,F12,F21,F22). The matrix ∆ is as follows

∆ = Diag{δ1In1,δ2In2, . . .}

Lemma 7.1.5

∂ f
∂δi

∣∣∣∣
∆

= F21(I−∆F11)−1Hi(I−F11∆)−1F12

where
Hi = Diag{0n1×n1, . . . ,0(ni−1)×(ni−1), Ini,0(ni+1)×(ni+1), . . . ,}

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 157/181
NP

158 7. APPENDIX

Proof. Let d∆i denote the variation of ∆ induced by the variation of δi.

d f = F21d∆i(I−F11∆)−1F12 +F21∆(I−F11∆)−1F11d∆i(I−F11∆)−1F12

after factorization
d f = F21(I +∆(I−F11∆)−1F11)d∆i(I−F11∆)−1F12

the first matrix ∆ can be commuted as follows

d f = F21(I +(I−∆F11)−1
∆F11)d∆i(I−F11∆)−1F12

so,
d f = F21(I−∆F11)−1d∆i(I−F11∆)−1F12

but d∆ can be written as d∆i = Hidδi, finally,

∂ f
∂δi

∣∣∣∣
∆

= F21(I−∆F11)−1Hi(I−F11∆)−1F12

This computation can be performed using the MATLAB function lfr/diff (see Example 6.2,
page 132).

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 158/181
NP

7.2 ALTERNATIVE PROOF OF LEMMA 4.4.1 159

7.2 Alternative proof of Lemma 4.4.1

Lemma 4.4.1 Let us consider M(∆) a (1× 1) non-dynamic LFR-object with real (repeated)
uncertainties. It is assumed that M(∆) is well-posed (bounded) in the unit ball:

M(∆) = Fu(
[

M11 M12
M21 M22

]
, ∆)

Let us define
S(λ) = M11 +M12(λ−M22)−1M21

For λ varying from −∞ to +∞:

• The minimum value of M(∆) over the unit ball is the first value of λ at which µ(S(λ)) = 1.

• The maximum value of M(∆) over the unit ball is the last value of λ at which µ(S(λ)) = 1.

Proof. This result can be understood very easily by considering the artificial closed-loop system of Figure 7.1.
The stability of this system changes when λ = M(∆) for some admissible value of ∆ (i.e. some combination of the
uncertainties in the unit ball).

e -

6

-
R

λ−M(∆)

Figure 7.1: Artificial system for computing the min/max values of M(∆)

Discussion on stability. Let λ varies from −∞ to +∞. For large negative values of λ, there are no combinations of
the parameters in the unit ball for which we can have λ = M(∆) (boundedness hypothesis).

As λ increases, there exists a first value at which an admissible combination of parameters is such that λ = M(∆) i.e.
such that the system of Figure 7.1 is at the limit of stability. Therefore, we have justified that the minimum of M(∆)
is the first value of λ at which there exists a worst case (a combination of uncertain parameters) corresponding to
the limit of stability of the system.

Similarly, the last value of λ for which there exists a worst case corresponding to the limit of stability is the
maximum value of M(∆) over the unit ball.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 159/181
NP

160 7. APPENDIX

Translation in terms of µ-analysis. In order to terminate the proof of the lemma, it suffices to check that the µ
analysis problem that is stated in the lemma corresponds to the above discussion relative to limits of stability. For
that purpose, the system of Figure 7.1 is written in the equivalent form of Figure 7.2 (we added λ to the direct
transmission −M22 of −M(∆), pulled out the ∆ matrix and pulled down the integrator. Therefore, we obtain a
(M−∆)-form in which “M” (denoted S(s,λ)) is

S(s,λ) = Fl

([
M11 −M12
M21 λ−M22

]
, 1/s

)
or

S(s,λ) = M11−M12(s−λ+M22)−1M21

-

-

∆

M21

M11 −M12

λ−M22

1/s

Figure 7.2: System equivalent to the one of Figure 7.1

Usually, stability analysis requires to compute µ over a gridding of frequencies. Here, we consider a (1×1) system
with a single state. So, the limit of stability is necessarily reached when the single real system pole crosses the
imaginary axis at the origin. Therefore, it suffices to compute µ at ω = 0 that is, to compute

S(0,λ) = µ(M11 +M12(λ−M22)−1M21)

as stated in the lemma. As uncertainties are assumed to be normalized, the limits of stability correspond to values

of µ equal to the unity.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 160/181
NP

7.3 FROM VERSION 1.X TO VERSION 2.0 161

7.3 From version 1.x to version 2.0

Version 1.x and 2.0 are not compatible, so for using both versions simultaneously you need to
open two instances of MATLAB with the path variables pointing separately to version 1 or 2.

There are two major improvements

• The variables are not ordered as in version 1 but are recognized by their names.

• It is no longer required to assign a non-zero nominal values before inverting a variable.

In addition to these major differences, many points have been improved for example:

• transformation from symbolic objects to LFR-objects,

• non-linear blocks are supported,

• parameter bounds of various kinds can be stored in the LFR-objects,

• compatibility with uncertain objects introduced in version 3 of the Robust Control Tool-
box.

Note that all functions that have LFR-parameters as input arguments (i.e., most functions) re-
quire a new syntax in version 2.0. Some functions have new names (see Table 7.1).

In version 1.x, the reserved name for 1/s (Laplace) was lfrS, in version 2.0 it is Int for 1/s
and Delay for 1/z. They are not in the workspace by default, they can be defined by invoking
lfrs Int or lfrs Delay.

Version 2.0 focuses on modelling: tools for feedback design/analysis, for Simulink interfaces
and possibly other purposes will be proposed as separate modules.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 161/181
NP

162 7. APPENDIX

Version 1.x Version 2.0
convert2lfr lfr
difflfr diff
depl2lfr gmorton
deps2lfr
flup uplft
lfr2ss lfr2rob
lfr2mua lfr2mu

lfr2mussv
lfr2lmip lfr2mustab
lfr2lmim lfr2mubnd

lfr2mussv
normlfr normalizelfr
ndv2lfr rf2lfr
ndh2lfr lf2lfr
pluglfr eval
ss2lfr lfr

Table 7.1: Names of functions from version 1.x to version 2.0

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 162/181
NP

7.4 LIST OF MATLAB-FUNCTIONS 163

7.4 List of MATLAB-functions

The third column of the tables below gives a reference to a script illustrating the use of the
corresponding function. For most functions, illustrative examples are also available by typing
help <name of the function> (then it suffices to "copy and paste" the command lines
displayed to the screen.

Functions in @lfr
The functions of the directory ’@lfr’ are append, blkdiag, ctranspose, dcgain,
diff, display, eig, eval, feedback, get, horzcat, inv, isempty, minus, mpower,
mrdivide, mtimes, plus, set, size, subsasgn, subsref, transp, uminus, vertcat.
These functions permit the user to define and manipulate LFR-objects like matrices.

Elementary LFR-object realization
lfr Core of the Toolbox for LFR-object generation Ex.2.1, p.22
lfrdata Data recovery in an LFR-object Ex.2.1, p.22
lfrs Real or complex 1-by-1 LFR-objects Ex.2.11, p.52
rlfr Generates random LFR-objects Ex.2.4, p.31
bnds2lfr From min/max bounds to LFR-objects Ex.3.3, p.74
gmorton Generalized Morton’s technique Ex.3.4, p.78

LFR-object realization from symbolic objects
sym2lfr Symbolic expressions converted to LFRs Ex.2.13, p.54
symtreed Elementary structured tree decomposition Ex.6.3, p.137

Miscellaneous conversions
lfr SS, PCK, USS, UMAT-objects → LFR-objects
lfr2rob LFR-objects → USS, UMAT-objects
abcd2lfr From A,B,C,D to input/output LFR Ex.3.2, p.73
lfr2abcd Converse help lfr2abcd
lf2lfr [N D]→ D−1N Ex.3.1, p.69
rf2lfr [N;D]→ ND−1 Ex.3.1, p.69

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 163/181
NP

164 7. APPENDIX

Operations on the ∆-block
normalizelfrNormalizes real uncertainty variations Ex.4.4, p.111
unnormalize Converse Ex.2.9, p.42
actualval Actual parmeter values from normalized values Ex.2.9, p.42
uplft Closes (partially) the ∆-loop Ex.2.8, p.41
eval Elaborated “star product” and much more Ex.6.4, p.138
starplfr Basic “star product” help starplfr

LFR order reduction after realization
minlfr1 Sequential 1-D LFR order reduction Ex.4.1, p.96
minlfr n-D Kalman like decomposition Ex.4.3, p.102

LFR approximation
reduclfr Handling of the tolerance argument of minlfr Ex.4.5, p.112
distlfr Distance between two LFRs (lower bound) Ex.2.12, p.53
udistlfr Upper bound of the distance help udistlfr

µ-analysis related functions
lfr2mubnd Generates the input arguments of mubnd help lfr2mubnd
lfr2mustab Generates the input arguments of mustab help lfr2mustab
lfr2mussv Generates the input arguments of mussv help lfr2mussv
lfr2mu Generates the input arguments of mu help lfr2mu
min_max Min/max values of real 1-by-1 LFR-object Ex.4.4, p.111
udistlfr Upper bound of the distance help udistlfr
ns_rad Non-singularity radius Ex.2.10, p.48
wp_rad Well-posedness radius help wp_rad

Miscellaneous tools
diff Overloaded function for differentiation Ex.6.2, p.132
feedback Overloaded function for feedback Ex.3.2, p.73
distlfr Lower bound of the distance Ex.2.12, p.53
size Overloaded function for displaying size Ex.2.1, p.22
data2lfr Interpolation of matrices on an LFR basis Ex.6.5, p.142
plotlfr Plots entries of an LFR-object Ex.6.5, p.142

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 164/181
NP

7.5 DESCRIPTION OF UNCERTAINTY BLOCKS 165

7.5 Description of uncertainty blocks

This section explains the meaning of the entries of the structured array that is denoted blk in
this manual. For a given LFR-object, say sys, blk can be obtained by typing sys.blk.

The structured array sys.blk contains

• a cell sys.blk.names which contains the names of the uncertain parameters.

• a matrix sys.blk.desc which contains information on uncertainty bloks (size, nature,
bounds).

7.5.1 Names of variables

There are three reserved variable names

• ConstBlock: In principle the user doesn’t need to manipulate this variable. This variable
might appear in sys.blk.names as ’1’. This variable is present in blk when a non-
feasible inversion has been performed. When an LFR-object is normalized or evaluated
this block should disappear automatically.

• Int: This variable stand for “integrator” it is represented in sys.blk.names for dynamic
LFR-objects as ’1/s’.

• Delay: This variable is represented in sys.blk.names for discrete time dynamic LFR-
objects as ’1/z’. Int and Delay cannot be combined in an LFR-object.

Example

lfrs a b Int
sys = (b+Int)/a;
sys.blk.names

ans =

’1’ ’1/s’ ’a’ ’b’

Note that ’1’ (“constant block”) appears in sys.blk.names because there is a division by the
parameter a with default nominal value equal to zero. Similar example in discrete time:

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 165/181
NP

166 7. APPENDIX

lfrs a b Delay
sys = (b+Delay)/a;
sys.blk.names

ans =

’1’ ’1/z’ ’a’ ’b’

7.5.2 Block description

Rows 1 to 6. Each column of sys.blk.desc describes the block structure relative to the
corresponding variable in sys.blk.names.

m block row dimension
n block column dimension

1/0 1 for real, 0 for complex
1/0 1 for scalar repeated, 0 for full
1/0 1 for linear, 0 for nonlinear
1/0 1 for time-invariant, 0 for time-varying

Rows 7 and 8 can be used to identify the kind of bounds considered (min/max, disc, sector or
frequency domain bound): In the frequency domain case, the argument defining the bound is an

min/max disc sector frequency 1/s,1/z,1
7th row 1 1 2 size(pck-matrix,1) 0
8th row 2 1 1 size(pck-matrix,2) 0

Table 7.2:

LTI system in pck format (MATLAB, not ported to SCILAB) therefore the sizes are both larger
or equal to 2.

Other rows

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 166/181
NP

7.5 DESCRIPTION OF UNCERTAINTY BLOCKS 167

• min/max case:

Row description
9 minimum value of variation range (set to -1 by normalizelfr)

10 maximum value of variation range (set to +1 by normalizelfr)
11 nominal value (set to 0 by normalizelfr)
12 normalizelfr ↪→ the above minimum value is saved here
13 normalizelfr ↪→ the above maximum value is saved here
14 normalizelfr ↪→ the above nominal value is saved here

• disc case:

Row description
9 real part of disc center (set to 0 by normalizelfr)

10 imaginary part of disc center (set to 0 by normalizelfr)
11 radius of disc (set to 1 by normalizelfr)
12 normalizelfr ↪→ the above real part is saved here
13 normalizelfr ↪→ the above imaginary part is saved here
14 normalizelfr ↪→ the above radius is saved here

• frequency domain bound case: the argument BOUND defining the bounds is something
having the form

BOUND = [
A B 0 ;
C D 0 ;
0 0 -Inf]

the rest of the column after row number 8 is BOUND(:) (i.e., all columns of BOUND ap-
pended in a long column). It is possible to recover the dynamic weighting function by
using reshape, for example reshape(sys.blk.desc(9:end,3),3,3).

• sector bounded case: Rows 9 and 10 give the minimum and maximum slopes defining
the sector.

Example

lfrs a real [1] [4] [3.3]
lfrs b complex [-1+i] [2.2]
c = lfr(’c’,’ltifc’,[2 3],ltisys(-1,2,3,4));

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 167/181
NP

168 7. APPENDIX

sys = [[a;b] c];
sys.blk.desc

ans =

1 1 2 <- rows
1 1 3 <- columns
1 0 0 <- real(1)/complex(0)
1 1 0 <- scalar(1)/full(0)
1 1 1 <- linear
1 1 1 <- time invariant
1 1 3 <- bounds type
2 1 3 .
1 -1 -1 <- bounds (and nominal values in scalar case)
4 1 1 .
3.3 2.2 0 .
0 0 1 .
0 0 0 .
0 0 0 .
0 0 1 .
0 0 0 .
0 0 -Inf .

Remark. The objects compared by the function distlfr must have similar block descriptions
for a common parameter name. In the min/max and disc cases, the values after the 10th row are
ignored by this function.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 168/181
NP

7.6 INSTALLATION OF THE TOOLBOX 169

7.6 Installation of the toolbox

Read first the license agreement in the file LICENSE in the toolbox root directory. Installation
instructions are detailed in the INSTALL or README files.

System requirements MATLAB:

• MATLAB 5, 6 and the Control Toolbox (the µ-Analysis and Control Toolbox and the
Robust Control Toolbox are also required by a few functions)

• MATLAB 7 and the Control Toolbox (the Robust Control Toolbox version 3 is also re-
quired by a few functions)

• It is also highly recommended to have the Symbolic Toolbox.

System requirements SCILAB: Version 3.1 or higher.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 169/181
NP

170 7. APPENDIX

7.7 SCILAB specificities

Despite a very different approach to object definition in MATLAB and SCILAB, from the user
point of view, object-oriented modelling is very similar in both versions.

However the objectives are not similar in both cases.

• In the MATLAB case we offer several features that are not available in the Robust Control
Toolbox version 3. For example, using our toolbox, it is possible to treat and transform
symbolic objects to LFR-objects, to divide by objects with zero-nominal value, intergra-
tion to Simulink is proposed using an independent module, and so on. In addition, it is
possible to convert uncertain objetcs from one toolbox to the other one.

• In the SCILAB case, no symbolic objects are available (see below), our contribution con-
sists of a port to SCILAB of the newly defined MATLAB objects like ureal, ucomplex,
umat, uss. These objects are defined as special cases of our LFR-object. Tools for using
efficiently LFR-objects are still missing but we hope that our contribution will help to
port to SCILAB all these missing tools.

Symbolic objects. As symbolic objects are not available in SCILAB we propose to use first
MAPLE, then, export a symbolic object in a file using the MAPLE script maple2scilab.mpl1.
Then, the functions symtreed and sym2lfr can be invoked but the input argument is the name
of the file where a MAPLE symbolic object was stored.

Functions not available in the SCILAB version.

• Functions related to µ-analysis: lfr2mubnd, lfr2mustab, lfr2mussv, lfr2mu,
min_max, udistlfr, ns_rad, wp_rad.

• Irrelevant functions: lfr2rob, minlfr1 (minlfr is always more efficient).

• Functions not ported on account of a SCILAB bug (feature ?) that prevents overloading:
size (renamed sizelfr), eval (renamed evallfr), diff (renamed difflfr), isempty.

Illustrative examples that cannot be run. Ex. 2.10, page 48 (well-posedness, uses µ-analysis),
Ex. 2.13, page 54 (realization from a symbolic object, requires a first step using MAPLE, see
hlp sym2lfr), Ex. 3.5, page 81 (Horner factorization), Ex. 3.6, page 86 (structured tree
decomposition, requires a first step using MAPLE, see hlp symtreed), Ex. 4.1, page 96 and

1It is in the subdirectory named maple of the SCILAB installation directory. Type SCI in a SCILAB command
window to retrieve the path to the installation directoty.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 170/181
NP

7.7 SCILAB SPECIFICITIES 171

Ex. 4.2, page 97 (use of minlfr1), Ex. 4.4, page 111 and Ex. 4.5, page 112 (approximate
modelling, uses µ-analysis), Ex. 6.1, page 130 and Ex. 6.4, page 137 (requires a first step using
MAPLE, treated in the last section of the HTML tuturial shipped with the toolbox).

Syntax adaptation. Cells are not easy to use in SCILAB, so, they are replaced by lists or arrays
of strings (e.g., input arguments of the functions uplft, lfr, normalizelfr). The functions
size is replaced by sizelfr.

Functions specific to the SCILAB version. MATLAB function describing systems that have
been ported to SCILAB: ss, ureal, ucomplex.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 171/181
NP

EMPTY PAGE

173

Bibliography

[1] L. Andersson and C. Beck.
Model comparison and simplification.
Proc. of 35th IEEE Conference on Decision and Control, Kobe, Japan, pages 3958–3963,

December 1996.

[2] L. Andersson, A. Rantzer, and C. Beck.
Model comparison and simplification.
International Journal of Robust and Nonlinear Control, 9(4):157–181, March 1999.

[3] B.R. Barmish, J. Ackermann, and H.Z. Hu.
The tree structured decomposition.
In Proc. Conference on Information Sciences and Systems, Baltimore, MD, 1989.

[4] D.G. Bates, R. Kureemun, M.J. Hayes, and I. Postlethwaite.
Clearance of the HIRMplus RIDE flight control law: A µ-analysis approach.
Technical Report TP-119-11, Group for Aeronautical Research and technology in EURope

GARTEUR-FM(AG11), 2000.

[5] C. Beck.
Minimality for uncertain systems and IQCs.
In Proc. of 33th IEEE Conference on Decision and Control, Lake Buena Vista, Florida,

pages 1233–1238, December 1994.

[6] C. Beck and R. D’Andrea.
Minimality, controllability and observability for uncertain systems.
In Proc. of the American Control Conference, Philadelphia, Pennsylvania, pages 3130–

3135, June 1997.

[7] C. Beck and R. D’Andrea.
Computational study and comparison of LFT reducibility methods.
In Proc. of the American Control Conference, Philadelphia, Pennsylvania, pages 1013–

1017, June 1998.

[8] C. Beck, R. D’Andrea, F. Paganini, W.M. Lu, and J.C. Doyle.
A state-space theory of uncertain systems.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 173/181
NP

174 BIBLIOGRAPHY

In Proc. of the 13th IFAC Triennial World Congress, San Francisco, California, pages
291–296. Pergamon, July 1996.

[9] C. Beck and J. Doyle.
A necessary and sufficient minimality condition for uncertain systems.
IEEE Transactions on Automatic Control, AC-44:1802–1813, october 1999.

[10] C. Beck and J.C. Doyle.
Mixed µ upper bound computation.
In Proc. 31st IEEE Conference on Decision and Control, pages 3187–3192, Tucson, Ari-

zona, USA, December 1992.

[11] C. Beck and J.C. Doyle.
Reducing uncertain systems and behaviors.
In Proc. of 35th IEEE Conference on Decision and Control, Kobe, Japan, pages 712–714,

December 1996.

[12] C.M. Belcastro.
Uncertainty modeling od real parameter variations for robust control applications.
In PhD Thesis, University of Drexel, US, pages 1–304, December 1994.

[13] C.M. Belcastro.
On the numerical formulation of parametric linear fractional transformation (LFT) uncer-

tainty models for multivariate matrix polynomial problems.
In Nasa / TM-1998-206939, pages 1–35, November 1998.

[14] C.M. Belcastro.
Parametric uncertainty modeling: An overview.
In Proc. of the American Control Conference, Philadelphia, Pennsylvania, pages 992–996,

June 1998.

[15] C.M. Belcastro and B.C. Chang.
LFT formulation for multivariate polynomial problems.
In Proc. of the American Control Conference, Philadelphia, Pennsylvania, pages 1002–

1007, June 1998.

[16] C.M. Belcastro, B.C. Chang, and R. Fischl.
A matrix approach to low-order uncertainty modeling of real parameters.
In Proc. of the 13th IFAC Triennial World Congress, San Francisco, California, pages

297–302. Pergamon, July 1996.

[17] C.M. Belcastro, K.B. Lim, and E.A. Morelli.
Computer-aided uncertainty modeling of nonlinear parameter-dependent systems, part ii:

F-16 example.
In Proc. of the IEEE International Symposium on Computed Aided Control System Design,

Hawai’i, USA, pages 16–23, August 1999.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 174/181
NP

BIBLIOGRAPHY 175

[18] N.K. Bose.
Applied Multidimensional Systems Theory.
Electrical/Computer Science and Engineering Series. Van Nostrand Reinhold Company,

New-York Cincinnati Toronto London Melbourne, 1982.

[19] Chi-Tsong Chen.
Linear system theory and design.
Holt, Rinehart and Winston, New York, USA, 1984.

[20] Y. Cheng and B. De Moor.
A multidimensional realization algorithm for parametric uncertainty modeling and multi-

parameter margin problems.
Int. J. Control, 60(5):789–807, 1994.

[21] J.C. Cockburn.
Linear fractional representation of systems with rational uncertainty.
In Proc. of the American Control Conference, Philadelphia, Pennsylvania, pages 1008–

1012, June 1998.

[22] J.C. Cockburn and B.G. Morton.
On linear fractional representations of systems with parametric uncertainty.
In Proc. of the 13th IFAC Triennial World Congress, San Francisco, California, pages

315–320. Pergamon, July 1996.

[23] J.C. Cockburn and B.G. Morton.
Linear fractional representations of uncertain systems.
Automatica, 33(7):1263–1271, 1997.

[24] R. D’Andrea.
Software for modeling, analysis, and control design for multidimensional systems.
In Proc. of the IEEE International Symposium on Computed Aided Control System Design,

Hawai’i, USA, pages 24–27, August 1999.

[25] R. D’Andrea and S. Khatri.
Kalman decomposition of linear fractional transformation representations and minimality.
In Proc. of the American Control Conference, Albulquerque, New Mexico, pages 3557–

3561, June 1997.

[26] C. Döll.
La robustesse de lois de commande pour des structures flexibles en aéronautique et espace.
Thèse présentée à l’Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SU-

PAERO), Toulouse, France, 2001.

[27] J.C. Doyle, A. Packard, and K. Zhou.
Review of LFTs LMIs and µ.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 175/181
NP

176 BIBLIOGRAPHY

In Proc. of 30th IEEE Conference on Decision and Control, Brighton, U.K., pages 1227–
1232, December 1991.

[28] J.C. Doyle, F. Paganini, R. D’Andrea, and S. Khatri.
Approximate behaviors.
In Proc. of 35th IEEE Conference on Decision and Control, Kobe, Japan, pages 688–693,

December 1996.

[29] C. Fielding.
Application of µ-analysis to flight control systems.
Minutes of the First Meeting of GARTEUR FM(AG11), Appendix D.1(FM(AG11)/SR-1),

May 1999.

[30] S. Font.
Méthodologie pour prendre en compte la robustesse des système asservis: Optimisation

H∞ et approche symbolique de la forme standard.
Thèse présentée à l’Université de Paris-Sud, Orsay, France, 1995.

[31] S. Hecker and A. Varga.
Generalized LFT-based representation of parametric uncertain models.
European Journal of Control, 10(4):326–337, 2004.

[32] S. Hecker, A. Varga, and J.F. Magni.
Enhanced LFR-Toolbox for Matlab.
Aerospace Science and Technology, 9:173–180, January 2005.

[33] A. Hiret.
Pilotage robuste d’un missile sur un large domaine de vol. Synthèse et analyse dans le

cadre H∞ et LPV.
Thèse présentée à l’Université de Paris-Sud, Orsay, France., 5879, Octobre 1999.

[34] A. Hiret, C. Valentin-Charbonnel, G. Duc, and J.P. Bonnet.
Different multidimensional reduction algorithms for the LFT model of a missile.
In Proc. CESA’98 Conference, Nabeul-Hammamet, Tunisia, 1:1016–1020, April 1998.

[35] I. Kaminer, A. Pascoal, P. Khargonekar, and E. Coleman.
A velocity algorithm for the implementation of gain-scheduled controllers.
Automatica, 31(8):1185–1191, 1995.

[36] P. Lambrechts, J. Terlouw, S. Bennani, and M. Steinbuch.
Parametric uncertainty modeling using LFTs.
In Proc. American Control Conference, San Francisco, CA, pages 267–272, 1993.

[37] D.J. Leith and W.E. Leithead.
Gain-scheduled and nonlinera systems: dynami analysis by velocity-based realisation

families.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 176/181
NP

BIBLIOGRAPHY 177

Int. J. Control, 70:289–317, 1998.

[38] D.J. Leith and W.E. Leithead.
Input-output linearizayion by velocity-based gain-scheduling.
Int. J. Control, 72:229–246, 1999.

[39] J.F. Magni.
Presentation of the linear fractionnal representation toolbox (LFRT).
In Proc. IEEE CACSD, Glasgow, September 2002.

[40] J.F. Magni.
Computation of the kernel of linear fractional representations.
In Proc. of the IEEE Conference on Control Applications, Istanbul, Turkey, June 2003.

[41] JF Magni.
Extension of the Linear Fractional Representation Toolbox (LFRT).
In Proceedings of the IEEE International Symposium on Computer Aided Control System

Design, Taipei, Taiwa, pages 261–266, September 2004.

[42] J.F. Magni, J.M. Biannic, and C. Döll.
An algorithm for computing an upper bound of the peak value of µ.
In Proc. IFAC Symposium on System Structure and Control, Prague, Czech Republic, Au-

gust 2001.

[43] T. Mannchen, Y. Klett, C. Petermann, B. Weinert, and T Zöbelein.
Flight control law clearance of the HIRMplus fighter aircraft model using µ-analysis.
Technical Report TP-119-12, Group for Aeronautical Research and technology in EURope

GARTEUR-FM(AG11), 2001.

[44] A. Marcos.
A linear parameter varying model of the Boeing 747-100/200, longitudinal motion.
Master’s thesis, University of Minnesota, Minneapolis, USA, January 2001.

[45] A. Marcos and G.J. Balas.
Development of linear-parameter-varying models for aircraft.
Journal of Guidance Control, and Dynamics, 27(2):218–228, March-April 2004.

[46] B. Morton.
New applications of mu to real-parameter variation problems.
In Proc. of 24th IEEE Conference on Decision and Control, Fort Lauderdale, Florida,

pages 233–238, December 1985.

[47] G. Papageorgiou.
Robust control system design: H∞ loop shaping and aerospace applications.
PhD thesis, Darwin College, Cambrige, UK, July 1998.

[48] R.T. Reichert.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 177/181
NP

178 BIBLIOGRAPHY

Robust auropilot design using µ-analysis.
In Proc. American Control Conference, pages 2368–2373, May 1990.

[49] W.J. Rugh and J.S. Shamma.
Research on gain scheduling.
Automatica, 36(10):1401–1425, 2000.

[50] J.S. Shamma and J. Cloutier.
Gain-scheduling missile autopilot design using linear parameter varying transformations.
Journal of Guidance, Control, and Dynamics, 16(2):256–261, 1993.

[51] J.C. Terlouw and P.F. Lambrechts.
A MATLAB Toolbox for Parametric Uncertainty Modelling.
Technical Report CR-93455-L, National Aerospace Laboratory, NLR, Amsterdam, 1993.

[52] A. Varga and G. Looye.
Symbolic and numerical software tools for LFT-based low order uncertainty modeling.
In Proc. of the IEEE International Symposium on Computed Aided Control System Design,

Kohala Coast, Hawai’i, USA, pages 176–181, August 1999.

[53] A. Varga, G. Looye, D. Moormann, and Grübel G.
Automated generation of LFT-based parametric uncertainty descriptions from generic air-

craft models.
Mathematical Modelling of Dynamical Systems, 4:249–274, 1998.

[54] W. Wang, J. Doyle, C. Beck, and K. Glover.
Model reduction of LFT systems.
In Proc. of 30th IEEE Conference on Decision and Control, Brighton, England, pages

1233–1238, December 1991.

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 178/181
NP

179

Index

A
approximation 104, 106, 112, 140
avoiding duplication of ∆ 67, 157

B
blk structure . 165

C
commutativity 58, 86, 96
constant block 38, 42, 43, 165
continuous time systems 24, 161
controllability .47

D
DC gain . 156
delay . 161, 165
differentiation . 125, 157
discrete time systems 24, 161
dummy parameter 39, 43

E
elementary LFR-objects 51
equilibrium surface 122, 124, 135, 142

F
factorization . 67
full complex blocks . 118
functions . 163

abcd2lfr 35, 73, 78, 131, 145
actualval . 44, 166
bnds2lfr 12, 74, 112, 140
data2lfr . 141
diff . 132, 157
distlfr 54, 62, 70, 168

eval . 32, 38, 43, 138
feedback . 118
gmorton . 78
lf2lfr . 70
lfr2mubnd . 13, 33
lfr2mussv . 14, 33
lfr2mustab . 13, 33
lfr2mu . 13, 33
lfr2rob . 14, 24
lfrdata . 23
lfrs 48, 52, 53, 61, 120
lfr14, 22, 23, 25, 33, 34, 118
min_max . 111
minlfr1 . 96
minlfr . 61, 86, 111
normalizelfr 42, 43, 131, 133, 166
ns_rad . 48
reduclfr . 14, 112
rf2lfr . 69
rlfr . 31, 34, 41, 42
set . 41, 43
size . 23, 31, 41
sym2lfr 14, 51, 54, 81, 85
symtreed 14, 85, 86, 131
udistlfr . 112
unnormalize 44, 166
uplft . 23, 31, 42, 43
wp_rad . 48

H
Horner factorization . 80

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 179/181
NP

180 INDEX

I
installation . 169
interpolation . 139, 142

L
Laplace variable 161, 165
least squares approximation 140
left factorization . 67
LFR definition. .12, 19
LFT definition . 9
license . 169
linearization . 121, 124
list of functions . 163
lower LFT . 27

M
Maple . 81, 131
matrix method . 87
maximum value . 159
minimality . 57
minimum value . 159
missile

equilibrium surface 135, 142
LFR model .131, 137
linearized model 128
nonlinear model . 125
numerical data 126, 129
Simulink model . 142

modelling approximation error 107, 113
Morton’s method . 76, 78
µ-analysis . 164

N
neglected dynamics . 115
new function names . 161
nominal value . 43, 52
non-singularity radius 46, 108
nonlinear models .122
normalization . 36, 89

O
operations

append . 149
concatenation . 149
conjugation . 153
differentiation. .157
feedback . 150
imaginary part . 152
inversion . 149
juxtaposition . 149
kernel . 150
lower LFT . 27
null space . 150
product . 51, 148
real part . 152
star product . 27
sum . 50, 148
upper LFT . 27

operations on ∆ 28, 33, 37
order reduction 63, 91, 99, 104

P
parameter gridding 139, 141
partial loop . 37, 155

Q
quasi-LPV models 121, 134

R
rational to polynomial dependency 67, 68
realization 50, 53, 76, 80, 83, 87
relative minimality . 59
right factorization . 67

S
scalar complex block 119
Scilab version . 170
star product . 27, 33
state-space representation . 9, 29, 71, 140, 143
Symbolic Toolbox 81, 131
system equivalence . 56

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 180/181
NP

INDEX 181

system factorization . 67
system modelling . 63
system similarity 57, 154

T
transfer function matrix 29
tree decomposition . 83
Tustin transformation 19, 33

U
uncertainty bounds 26, 41, 73
upper LFT . 27, 157

V
versions of the toolbox 161

W
well-posedness. .45
well-posedness radius 45, 135

TR 5/10403.01F DCSD
October, 2005 (revised Feb., 2006)

Page 181/181
NP

EMPTY PAGE

	Introduction
	Organization of the manual
	Getting started with the toolbox
	Acknowledgments
	Version 1.x
	Version 2.0

	Notations and generalities
	Generalities
	Definition of Linear Fractional Representations
	Special cases

	Feedback loops
	 Star product and fractional transformations
	Parameter dependent state-space representations
	 Transfer function matrices

	Normalization
	Standard normalization
	Normalization with non-centered nominal value
	Use of a dummy parameter for inversion

	Well-posedness and non-singularity
	Well-posedness
	Non-singularity

	Object-oriented realization of Linear Fractional Representations
	Discussion on minimality and commutativity
	General principles for parameter dependent system modelling

	Realization of parameter dependent systems
	Left and right factorizations
	Input/output and state-space realizations
	 Morton's method
	Realization using Horner factorization
	The structured tree decomposition
	The matrix method
	Comment on normalization

	Order reduction and approximation after realization
	Order reduction: The 1-D approach
	Order reduction: The n-D approach
	Order reduction and approximation: The generalized Gramian approach
	Interval of variations of a Linear Fractional Representations
	Necessity of having a reliable distance
	Technical result

	Dynamic uncertainties modelling
	Full complex blocks
	Complex scalar uncertainties

	Extensions to modelling of uncertain nonlinear systems
	Introduction
	From a nonlinear model to a Linear Fractional Representation: Part 1
	Modelling ignoring parameter dependency at equilibrium
	Differentiation of Linear Fractional Representations
	Missile model: Equations
	Missile model: Computation of the linearized models

	From a nonlinear model to a Linear Fractional Representation: Part 2
	Modelling considering parameter dependency at equilibrium
	Derivation of the equilibrium surface for a large class of systems
	Application to the missile model

	Techniques based on a gridding
	Interpolation
	Elementary system modelling

	Appendix
	Standard operation relative to LFTs
	Transposition
	Addition.
	Multiplication.
	Concatenation.
	Juxtaposition.
	Inversion.
	Feedback
	Kernel computation
	Real and imaginary parts
	Concatenation and conjugation
	Closing partially the upper loop
	DC-gain computation
	Upper LFT computation without duplication of
	Differentiation

	Alternative proof of Lemma 4.4.1
	From version 1.x to version 2.0
	List of MATLAB-functions
	Description of uncertainty blocks
	Names of variables
	Block description

	Installation of the toolbox
	SCILAB specificities

	Bibliography

