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Main issues related to LFRs

LFR powerful and widely used for system analysis & control design

Efficiency � LFR complexity � order of M +  size of ∆∆∆∆

Complexity ≈≈≈≈ conservatism & numerical intractabilityM

∆∆∆∆

MM(s)

∆∆∆∆

e y

Industrial applications: physical systems = NL analytical expressions + tabulated data

1.  get a linear model with a polynomial/rational dependence on physical parameters

� not so many solutions...                      APRICOT library

2.  convert the model into a linear fractional form

� ∃∃∃∃ efficient software such as the Matlab/Simulink GSS or LFR Toolbox

APRICOT (Approximation of Polynomial and Rational-type for Indeterminate Coefficients via Optimization Tools):
� from tabulated/irrational data to simple yet accurate polynomial/rational expressions

• Aerospace modeling including aero coefs from CFD, wind tunnel, flight tests

• Controllers scheduled w.r.t. flight parameters
Ex:  
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Common modeling approaches

(**) O. Celis "Rational approximation of vertical segments"  (Numerical Algorithms, 2007)
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Improved versions of OLS and QP methods have been developed and are available in the APRICOT library

� uncertainty interval for each yk
convex, but non sparse

� several local minima + non sparse

� very efficient algo + sparse,
but polynomial

� the simplest, but non sparse

Method Model Principle References 

LS polynomial linear LS problem Magni 2006 

OLS polynomial OLS-based variant with selection 
of the most relevant monomials 

Morelli 1993 
Hardier 2004 

NLS rational nonlinear LS problem Curve Fitting 
Toolbox (Matlab©) 

QP rational Quadratic Programming problem Celis 2007 

 

(*)

(**)

(*) E. Morelli "RSM using multivariate orthogonal functions"  (AIAA ASM, 2001)
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Advanced modeling approaches

� direct approach by using a symbolic regression technique

� Genetic Programming + Nonlinear Least Squares

� indirect approach by benefitting from intermediate surrogate modeling

� Orthogonal Least Squares + Particle Swarm Optimization + Separable Nonlinear Least Squares

Two new methods to generate sparse rational models:

- data overfitting (the simpler the better!)

- extending the good perfos of polynomial tools (OLS) to the rational case

- expressions                    result in 

Why looking for sparse rational expressions?

),,( 1 nxxf K ],,[diag
11 npnp IxIx K=∆

strongly depend on the number of occurrences of      in

� the fewer the occurrences of     , the smaller the size of    ! 

jxjp f

∆jx

Pb statement: to determine at the same time the model complexity (structural estimation)
and its internal coefs (parametric estimation)

15
& 1010deg ⇒≤∈ 2

Rx rational candidates!� standard techniques irrelevant:
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� A Genetic Programming approach

Limitations of the usual local baseline algos!  � global optimization technique?

GP ∈∈∈∈ evolutionary family (as GAs), binary coding replaced by syntax trees (*)

Parse trees more suitable for symbolic optimization � different sizes and shapes

Alphabet flexible enough to encode math op., eq., complex models, computer programs,...

Evolution of a population of individuals through generations via "Darwinian" mechanisms:
reproduction, mutation, crossover, gene duplication, gene deletion

××××

x1 x1

x1

x2 x2x2

−−−−

÷÷÷÷

++++

××××

root node

terminal
nodes internal

nodes

××××

x1 x1

x1

x2 x2x2

−−−−

÷÷÷÷

++++

××××

root node

terminal
nodes internal

nodes

2212121 )()1(),( xxxxxxxf +−=Ex. of parse tree:

Two sets of nodes:

F = internal nodes = functions or operators

T = terminal nodes = variables or constants

� subtrees = monomials of a polynomial develpt

},,,,1{T},{F 210 nxxxx K==⊕×+=If

(*) J. Koza "A Genetic Programming tutorial"  (Burke Ed., 2003)
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� Evolutionary GP mechanisms: example of mutation
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� Evolutionary GP mechanisms: example of crossover

1st child

2nd child
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Ex. of parse tree used by TRACKER
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� Numerator and denominator encoded by separate chromosomes
including several genes (monomials)

� Syntax rules for polynomial structure

� Parsing to avoid spurious genes

∃∃∃∃ previous attempts to adapt GP optim to LP models (Linear-in-their-Parameters) for polynomial case
- GP-OLS Matlab Toolbox (*)

- GPTIPS Matlab Toolbox (**)

...but no tool convenient for rational models
� the parametric stage becomes nonlinear !

Development of the tool TRACKER included in APRICOT:

"Toolbox for Rational Approximation
Computed by Knowing Evolutionary Research"

� A new GP-based tool

(*) J. Abonyi "Genetic Programming for system identification"  (Conf. on Intelligent Systems Design and Application, 2004)
(**) D. Searson "GPTIPS: an open source GP toolbox for multigene symbolic regression"  (Multiconf. of Engineers and C omputer Scientists, 2010)
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Pb no more LP: the criterion used for the LS estimation of            becomes nonlinear),( ii ba














+














−−≈−= ∑∑∑

===
)(ˆ1)()()(

110
ki

n

i
ikki

n

i
kiki

n

i
ikkk xrbyxrybxrayxf Q

Q
Q

Q
P

P

ε

Implementation of a suitable technique used for parametric estimation in the frequency domain

Algorithm widely used with transfer functions (*)

Linearization at it I about the previous denominator estimates )1(ˆ −Ibi

� Outlines of TRACKER algorithm

� 2 nested optimization loops...

nonlinear LS optimization of
for all evolved individuals
of the current generation

),( ii ba
Parametric estimationParametric estimation

Structural estimationStructural estimation
Evolutionary optimization of
via Darwinian mechanisms

),( QP
ii rr Symbolic regression

• monomials � partial degrees of xi , i∈[1,n]

• number of terms nP ,nQ

• global degrees of numerator/denominator

• regression coefficients (ai ,bi)

Roos/Hardier"Creating sparse rational approximations for LFR modeling using GP " (IFAC ICONS, 2013)
(*) Sanathanan/Koerner "Transfer function synthesis as a ratio of two complex polynomials" (IEEE Trans. on Automatic Control, 1963)
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Linear 
Fractional

Representations
Polynomial 
& Rational
Functions

specific 
Surrogate

Models

� Indirect approach using intermediate surrogate models

About the indirect approach...

� to introduce auxiliary surrogates during the optim process for building rational approximants

� to reuse very powerful tools developed for other purposes

Development of the tool KOALA included in APRICOT
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� Which type of surrogate models ?

Pros of RBF nets vs standard Neural NetworksPros of RBF nets vs standard Neural Networks

� integration of physical constraints

� suited for heterogeneous data distribution

� initial knowledge & final interpretation easier (vs black box)

� facilitates a local adjustment from sparse partial data

� local approximation (vs global)

� sequential optimization of the different parameters

� constructive procedure possible (number of kernels,...)

� generalize to other models (LLM,...)

Radial Basis Function nets

ΣΣΣΣ.....
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Kernel methods � measure of the similarity degree between andx c (m = nb of kernels)
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Local Linear Models

� Which type of surrogate models ?
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Local Linear Models (LLM)
� weighted sum of linear affine models

� weighting max inside the (local) validity domain & goes to 0 outside

� if some individual regressors

are suppressed (by local regularization)

� intermediate modeling between RBF and LLM

)(xrx ji

� simple adaptation of the constructive algos

1 kernel � (n+1) regressors

� expectation: same accuracy with fewer kernels

LLM = extension of standard RBFLLM = extension of standard RBF

� more powerful than RBF nets
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� Back to rational models in 4 steps...
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2/ by choosing Gaussian kernels

∑
∑ =

−

=

−
=

n

i

cx

i

n

i
jij

ji

jii

exwxf 1

)(

0

2

2

)()(
σ

Roos/Hardier "Creating sparse rational approximations for LFR modeling using surrogate modeling "  (IFAC ICONS, 2013)

4/ for converting the model into LFR: global expansions of num/den, factorization of the den, sum of terms

to be used as a radial basis in the estimation algo!
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� Nonlinear regressions: parametric optimization
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"Beauty" of LP models = incremental ops. � analytical eqs. for adding/subtracting a regressor

Constructive procedure to get m and w: starting from empty set of kernels

& sequentially adding them one by one (≡ OLS for polynomials)

� Very efficient recursive expressions for speeding up the process (Gram-Schmigt algo),

computing w, C,... updates & decoupling the new regressors from previous ones!

If If we knew how to select the kernels we knew how to select the kernels c,c,σσσσσσσσ......
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2/ SNLS-type pb 

� dim of parameter space 	 but m?

LP/w
non LP/c,σ





but the models remain LP (Linear-in-some-of-their-Parameters)

� We cannot avoid a joint structural/parametric estimation ! 

Seren/Hardier "On-line estimation of longitudinal flight parameters "  (SAE Aerotech, 2011)
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Sequential determination of reliable regressors (� constructive process using yk)

� by constructing regression trees (� greedy heuristics)

� by optimizing the spatial localization of the regressors ☺☺

Selection within a predefined pool of regressor candidates (� OK for a set of monomials) ��

��

� iterative recruiting of m regressors from a pool of candidates (forward selection)

� iterative suppression of terms amongst an overestimated set (backward elimination)

M. Orr "Combining regression trees and RBF networks"  (Journal of Neural Systems, 2000)

Evolutionary AlgorithmsEvolutionary Algorithms

• Genetic Algorithms

• simulated annealing          CPU time
• boosting

• Particle Swarm Optimization

Classical local methodsClassical local methods

init, convergence,

local minima
→ →

�

� Nonlinear regressions: structural optimization

……butbut the kernelsthe kernels c,c,σσσσσσσσ are unknownare unknown
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� Particle Swarm Optimization (PSO)

� recent global optimization technique (1995) using a SMALL population of individuals

� bio-inspired from the social behavior of animal groups

(bird clouds, fish school, ant colonies, bee swarms)

� the group members share the discoveries and experience
acquired by other individuals

� a swarm = set of active agents cooperating and interacting 

� as for GAs, the metaheuristics is stochastic and iterative

group of particles

shared informant
between groups

group of particles

shared informant
between groups

in the parameter space, each particle is defined
by a position      and a speediu

r

iv
r

iu
r

components = parameters to be optimized
(i.e. kernel centers and radii)

M. Clerc "Particle Swarm Optimization "  (ISTE Ed., 2006)
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� A Kernel Optimization Algorithm for Local Approximation

Summary of the KOALA toolSummary of the KOALA tool

• progressive construction of surrogate models: from LLM to Rational to LFR

• mixed optimization process: OLS + PSO 

• asynchronous optimization of SNLS-type

• advanced  PSO options: adjusting perfos w.r.t. CPU time

• other advanced options: optim., validation, cvgce,...

Fully connected Ring Von NeumannFully connected Ring Von Neumann

- static & dynamic spatial topologies

- advanced motion laws

- multi-swarms strategies

- hybrid local/global optimization

- charged particules, ...

This tool (like the other routines of APRICOT) can be used by both non-expert users and specialists

� default settings are defined for all the advanced extra functionalities!

Hardier "Approches constructives pour la synthèse de modèles locaux de type RBF "  (www-mip.onera.fr/projets/JSO-2012, 2012)
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Overview of the APRICOT library

� f  = P (LS)
� f  = P (OLS)
� f  = P/Q (QP)

� f  = P/Q (GP)
� f  = P/Q (SM)

for rational f, non singularity is ensured
by an additional µµµµ–analysis technique

Common user friendly interface

� sampled data to be modeled

� corresponding explanatory variables

� max deg of the polynomial/rational f
� [max admissible approx error]

}{ n
R∈kx

}{ ][ 21 qqq
R

×=∈ky
Inputs:

}ˆ{ ][ 21 qqq
R

×=∈ky� approximated data

� parametric description of f

� symbolic object for f

� LFR for f (GSS or LFR object)

Outputs:
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Application to a real aeronautical benchmark
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Longitudinal motion of a rigid aircraft

Set of aerodynamic coefs                   to be approximated

to create LFR models for analysis and control design
MLD CCC ,,

drag coef                      on a fine validation gridding),( MachCD α

usually available as nonlinear n-D look-up tables

� from CFD computations

� from wind tunnel tests

� from real flight tests

MLD CCC ,,

Drawn from an industrial study case

Benchmark, data and comparisons available at w3.onera.fr/smac/?q=apricot_example1
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Some results in the rational case: GP,SM,QP

GP degree 8
31 terms
LFR size 17

SM degree 8
24 terms
LFR size 16

Roos/Hardier "Polynomial and rational approximation with the APRICOT library of the SMAC Toolbox "  (IEEE MSC, 2014)
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QP degree 8
90 terms
LFR size 23

SM degree 16
48 terms
LFR size 32

Some results in the rational case: GP,SM,QP

at LFR size ≈,  RMSE÷2
w.r.t.  QP (max) degree 12
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Comparison of the most powerful approaches: rational case

Roos/Hardier "A comparison of techniques to get sparse rational approximations for LFR "  (ICAS, 2014)

Method Degree Monomials RMSE (x 104) Max error ( x 103) LFR size 

6 56 9.73 1.91 17 

8 90 5.80 1.27 23 

10 132 4.57 1.22 29 

12 182 4.56 1.21 35 

QP 

(improved) 

14 � � � � 

6 34 9.46 4.86 15 

8 31 7.85 4.47 17 

10 29 6.92 3.47 21 

12 36 6.61 3.23 26 

GP 

(TRACKER) 

14 43 6.53 3.05 28 

6 18 (47) 12.7 6.24 12 

8 24 (79) 7.87 5.12 16 

10 30 (119) 6.74 3.46 20 

12 36 (167) 5.44 2.56 24 

14 42 (223) 4.10 2.12 28 

16 48 (287) 2.81 1.38 32 

SM 

(KOALA) 

24 72 (623) 1.83 1.07 48 

same LFR size
(≈≈≈≈ 28)

numerical pbs

CPU time

lack of dof

no limit
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Polynomial vs Rational: no definite answer...

Ex #2
for models in matrix form including low complexity coefs � the pros of rational expressions can be wasted  

during the final conversion into LFR form

cf. aircraft benchmark in the next presentation � final LFR size much better by using olsapprox !

olsapprox deg 12

LFR size: 40

koala deg 12 (6 kernels)

LFR size: 24

RMSE: -33% RMSE: -15% RMSE: -25%

32 RR →:f

Ref. data

Ex #1
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Computing LFT scheduled gains not suitable for embedded systems

� very accurate surrogate models can be achieved with APRICOT...

On-line implementation of LFT controllers

rational modeling

derived from exact sampled values

by using the koala tool

),,(ˆ][ 321321 CCCfKKK SM=

33 RR →:LFTf

Ex: adaptive control of a civil aircraft
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Summary and Conclusions

Orthogonal Least Squares (olsapprox)

� polynomial and sparse expressions
� very low computational cost
� numerical problems for degrees ~ over 12
� remains a good solution for low complexity coefs

Quadratic Programming (qpapprox)

� rational and full expressions
� low computational cost
� numerical problems for degrees ~ over 12
� non singularity guaranteed by extra µµµµ-analysis technique

Genetic Programming (tracker)

� rational and sparse expressions
� computationally demanding
� set of Pareto solutions available
� non singularity guaranteed by extra µµµµ-analysis technique

Surrogate Modeling (koala)

� rational and few relevant monomials (factorized expressions)
� low computational cost
� almost no limit to get very accurate approximations
� non singularity implictly guaranteed

There is still room for improvement for GP-based and SM-based approaches!


