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Context and motivation

Since its introduction, µ-analysis has been extensively studied both in the
academic and in the industrial worlds.

Several methods have been developed in the last 30 years in order to tackle
the problem of computing the structured singular value µ, but few practical
algorithms have been implemented.

Some are available in the Robust Control Toolbox of Matlab, but:

I they can only address a limited number of issues,

I due to NP-hardness, bounds on µ are computed instead of the exact value, so
very pessimistic values of the stability margins and the performance levels are
sometimes obtained.

I even worse, a finite frequency grid is considered instead of the whole frequency
range, which can lead to inaccurate results and prohibitive computational costs.
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Objectives

An attractive alternative is the SMART library of the SMAC Toolbox
(SMART = Skew-Mu Analysis based Robustness Tools).

Main purposes of the SMART library

I Implement state-of-the-art algorithms to compute the (almost) exact value
of µ in (almost) all cases, even for medium/large size problems addressed
by control engineers.

I Ensure that reliable results are obtained, in the sense that no critical fre-
quency is missed and that the computed margins are guaranteed on the
whole frequency range.

I Solve a wide class of analysis problems, including (skewed) robust stabil-
ity margin, worst-case H∞ performance level and worst-case gain, phase,
modulus and delay margins.

I Propose a user-friendly Matlab toolbox, which can be used both by re-

searchers and by control engineers.
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Outline
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Problem statement

Stability/performance of LTI systems with time-invariant uncertainties.

-

�∆(s)

M(s)

M(s) is a stable and proper real-rational transfer
function ⇒ nominal system.

∆(s) = diag(∆1(s), . . . ,∆N (s)) is a block-diagonal
operator ⇒ model uncertainties. ∆i(s) can be:

I a time-invariant diagonal matrix ∆i(s) = δiIni , where
δi is a real/complex parametric uncertainty,

I a stable and proper real-rational unstructured transfer
function representing neglected dynamics.

∆ is the set of all matrices with the same block-diagonal structure and
the same nature (real or complex) as ∆(jω) ⇒ admissible uncertainties.

kB∆ = {∆ ∈∆ : σ(∆) < k} ⇒ maximum size of the uncertaintes.
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Robust stability margin

Definition

Let ω∈R+ be a given frequency. If no matrix ∆∈∆ makes I −M(jω)∆
singular, then the structured singular value µ∆(M(jω)) is zero. Otherwise:

µ∆(M(jω)) =
[

min
∆∈∆

{σ(∆), det(I −M(jω)∆) = 0}
]−1

Lemma

The interconnection M(s) − ∆(s) is stable ∀∆(s) ∈ krB∆, where the
robust stability margin kr is defined as the inverse of the largest value of
µ∆(M(jω)) over the whole frequency range:

kr =
[

max
ω∈R+

µ∆(M(jω))
]−1

The objective is to determine kr, i.e. to compute the best possible µ upper
and lower bounds µ∆ and µ

∆
over the whole frequency range.
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Standard computational method

The exact computation of the robust stability margin kr is NP hard in the
general case, so both lower and upper bounds are computed instead:

I a lower bound provides a guaranteed but conservative value of kr,

I an upper bound, usually associated to a worst-case parametric configuration,
allows to quantity the conservatism of the lower bound.

But even computing these bounds is a challenging problem with an infinite
number of frequency-domain constraints.

It is usually solved on a finite frequency grid (ωi)i∈[1,M ] and an estimate
of the robust stability margin is then obtained as:

1

max
i∈[1,M ]

(µ∆(M(jωi)))
≤ kr ≤

1

max
i∈[1,M ]

(µ
∆

(M(jωi)))
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Limitations of the standard approach

Problem

The grid must contain the most critical frequency point for which the
maximal value of µ∆ is reached.

If not:

I The upper bound on kr can be very poor, notably for flexible systems, for which
the function µ∆(M(jω)) often exhibits very high and narrow peaks.

I Even worse, the lower bound on kr can be over-evaluated, i.e. be larger than the
real value of kr.

Unfortunately, the aforementioned critical frequency is usually unknown!

In this context, the considered frequency grid must be sufficiently dense,
which can lead to a prohibitive computational cost.

But even so, it is still possible to miss a critical frequency. . .
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An alternative approach

To overcome these issues and compute both tight and reliable bounds on
kr, alternative methods are implemented in the SMART library:

I An µ upper bound is first determined at some frequency. A hamiltonian-based
technique is then applied to determine all frequency intervals on which this bound
remains valid. This strategy is repeated and a guaranteed lower bound on kr is
finally obtained when the union of all intervals covers the whole frequency range.

I A poles migration technique is applied to compute the smallest possible per-
turbation ∆̃(s) ∈ ∆ such that the interconnection between M(s) and ∆̃(s) is
unstable. A µ lower bound, and thus a guaranteed upper bound on kr, is ob-
tained. Frequency is an optimization parameter, which allows to detect critical
frequencies and usually leads to very accurate bounds.

I A branch & bound algorithm is implemented, which tightens the gap between
the bounds on kr to the desired accuracy at a reasonable computational cost.
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Addressed issues

Different kinds of problems can can be solved with the SMART library:

-

�∆(s)

M(s)

-

�

- -

∆(s)

M(s)
ye

1 robust stability margin - Compute the robust stability margin kr
for a given block structure ∆.

2 skewed robust stability margin - Compute the skewed robust sta-
bility margin ks for a given block structure ∆.

3 worst-case H∞ performance level - Compute the highest value
k∞ of the H∞ norm of the transfer matrix from e to y when ∆(s)
takes all possible values in B∆.

4 worst-case input-output margins - Compute the worst-case gain,
modulus, phase and delay margins kg , km, kp and kd, i.e. the high-
est value of the (real or complex) gain, the phase shift or the time
delay that can be inserted between y and e without destabilizing
the system when ∆(s) takes all possible values in B∆.
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Choosing the appropriate analysis routine

LB = lower bound, UB = upper bound, BB = both bounds with desired accuracy

SR = single real, MR = multiple real, RC = mixed real/complex

Quantities
Bounds Uncertainties

Routines
LB UB BB SR MR RC

kr, ks

X X X X muub, muub mixed

X X mulb, mulb 1real

X X mulb, mulb nreal

X X mulb, mulb mixed

X X X X mubb, mubb mixed

k∞

X X X mulb, hinflb real

X X mulb, mulb mixed

X X X X muub, muub mixed

X X X X mubb, mubb mixed

kg , km, kp, kd X X X X X X iomargins

Some routines are available for each kind of analysis problem!
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About the Matlab code

The SMART library has been tested on systems with up to 100 states
and 500 uncertainties (counting repetitions). It usually gives very accurate
results, only requires a moderate computational effort, and has proved
successful in many real-world applications.

I It can be used on all platforms (Linux, Mac and Windows).

I All routines run on Matlab R2010b or higher. They should run on older releases,
but no validation has been performed.

I The Control System Toolbox and the Robust Control Toolbox are always required.
The Optimization Toolbox is sometimes required.

I Each routine is documented and a complete on-line documentation is available.

The full version is freely available on the SMAC website
http://w3.onera.fr/smac/smart
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A user-friendly library for all kinds of users

The routines are divided into two main categories:

1 The first ones are designed for non-expert users.

I The most adapted computational method is selected automatically,

I The analysis is performed using default tuning parameters.

2 The second ones are designed for expert users.

I The analysis routine must be chosen manually,

I All optional tuning parameters can be freely customized.

The uncertain system can be described with:

I a gss object created with the GSS library,

I a lfr object created with the LFR Toolbox,

I a uss object created with the Robust Control Toolbox,

I a ss object representing the nominal system and a 2-column matrix describing the
uncertainties structure as in the routine mussv of the Robust Control Toolbox.

An insight into the SMART library 14 / 37 SMAC Final Workshop



Introduction to µ-analysis The SMART library Validation Selected examples

Outline

1 Brief introduction to µ-analysis

2 Presentation of the SMART library

3 Results accuracy and comparison with existing tools

4 Selected numerical examples

An insight into the SMART library 15 / 37 SMAC Final Workshop



Introduction to µ-analysis The SMART library Validation Selected examples

List of benchmarks

A large set of 36 challenging benchmarks is considered:

I a few academic systems and many real-world applications

I purely real, mixed real/complex or purely complex uncertainties

I large number of states (from 2 up to 70)

I large number of uncertainties (from 1 up to 28), repeated or not, even highly
repeated in some cases (size of ∆ up to 507× 507)

I both rigid & highly flexible models (aircraft, telescope mockup, satellite...)

I several fields of application (civilian & fighter aircraft, launcher, re-entry vehicle,
satellite, telescope, helicopter, spacecraft, missile, hard disk drive, biochemical
network, car, hydraulic servo system, spark ignition engine...)

32 benchmarks are available in the control literature. The other 4 ones
have been developed by ONERA in cooperation with industrial partners.
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kr upper bound computation (⇔ µ lower bound)

All existing polynomial-time µ lower bound algorithms are applied to com-
pute upper bounds on kr for each benchmark:

Description Uncertainties Matlab code

1 Power algorithm all Robust Control Toolbox

2 Gain-based algorithm all but complex Robust Control Toolbox

3 Poles migration technique all Carsten Döll

4 Poles migration technique real SMART library

5 Poles migration technique all Mark Halton

6 Direct nonlinear optimization all Mark Halton

7 Direct nonsmooth optimization all Alberto Simoes

8 Geometrical approach real Jongrae Kim
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Results for purely real problems (1-29)

Algorithm
Number of times the gap Mean gap Mean

w.r.t. the best µ lower bound is w.r.t. the best CPU
=0% ≤5% ≤25% µ lower bound time

1 6 9 13 44.10% 1.7 s
2 2 19 24 11.87% 27.1 s
3 5 16 22 18.81% 1.0 s
4 26 27 29 0.88% 0.9 s
5 22 26 26 8.95% 22.8 s

6 (g) 5 18 24 11.09% 448.8 s

6 (i) 9 20 23 15.72% 97.8 s

7 (g) 8 17 23 17.44% 1694.9 s

7 (i) 24 25 25 9.36% 124.3 s

8 0 8 17 24.38% 749.4 s

The most relevant algorithm is the poles migration technique of Fer-
reres & Biannic [CEP 2001] with by far the highest accuracy and also
the lowest computational time.
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Improvement for purely real problems

Improving the poles migration technique is not a trivial issue.

Idea: combine several algorithms

1 algorithm 4 is executed first (most efficient technique in almost all cases),

2 algorithm 2 is then executed only for a few selected frequencies with previous
results as initialization,

3 particle swarm optimization is finally applied with previous results as initialization.

This strategy has been implemented in the SMART library.

Benchmark
Algorithm 4 Other algorithms Combination

value time best value time algo value time

20 0.9380 0.5 s 0.9947 41.6 s 7 0.9947 5.5 s

26 0.9881 2.2 s 1.2134 184.9 s 7 1.2144 18.0 s

29 724.15 46.9 s 733.86 2864.8 s 2 753.10 580.0 s

The best lower bound is obtained for all benchmarks with this strategy.
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Results for purely complex and mixed problems (30-36)

Only algorithms 1-3-5-6-7 can be applied.

Algorithm
Number of times the gap Mean gap Mean

w.r.t. the best µ lower bound is w.r.t. the best CPU

=0% ≤5% ≤25% µ lower bound time

1 4 7 7 0.10% 1.1 s

3 0 4 6 16.60% 0.9 s

5 2 2 3 57.12% 140.8 s

6 (g) 1 7 7 0.34% 2648.8 s

6 (i) 0 5 7 4.26% 874.2 s

7 (g) 4 4 6 10.63% 3972.6 s

7 (i) 2 5 6 7.91% 249.5 s

The most relevant algorithm is the power algorithm of Young & Doyle
[TAC 1997] with the highest accuracy and almost the lowest computational
time.
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Improvement for purely complex and mixed problems

Idea: better exploit the power algorithm

1 algorithm 1 is applied on a rough frequency grid (e.g. 20 frequency points)

2 the grid is gradually tightened around the peak frequencies until improvement in
the µ lower bound becomes marginal

At each frequency, algorithm 1 is not only initialized with the best result obtained

at the previous frequency, but also with one or more random values.

This strategy has been implemented in the SMART library.

Benchmark
Algorithm 1 Other algorithms Improved algo 1

value time best value time algo value time

33 0.4346 0.7 s 0.4362 1380.1 s 7 0.4362 0.6 s

34 0.9587 1.1 s 0.9604 565.8 s 7 0.9606 1.3 s

35 0.9910 1.7 s 0.9927 12.3 s 5 0.9927 2.1 s

The best lower bound is obtained for all benchmarks with this strategy.
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kr lower bound computation (⇔ µ upper bound)

What about conservatism, i.e. the gap w.r.t. the exact value of kr?

A lower bound on kr is computed for each of the 36 benchmarks using the
hamiltonian-based technique of Ferreres et al [CEP 2003] and Roos
& Biannic [ACC 2010] implemented in the SMART library.

The mean gap between the best kr lower and upper bounds is:

I 12.71% for purely real problems

I 0.39% for purely complex and mixed real/complex problems

Is it the lower or the upper bound which is responsible for this gap?

Claim

The kr upper bound almost always equals the exact value of kr.

No proof, but true in many practical cases!
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Towards a reduction of conservatism

Purely complex and mixed problems:

I For 6 benchmarks out of 7, the gap is 0.00%.

I For the last one, the branch & bound algorithm of Roos et al [MSC 2011]
implemented in the SMART library allows to increase the lower bound on kr
until a gap of 0.00% is obtained.

The exact value of kr is obtained in all cases.

Purely real problems:

I For 19 benchmarks out of 29, the gap is 0.00%.

I For the 10 others, the branch & bound algorithm allows to increase the lower
bound on kr, leading to a gap of 0.00% in 7 cases, and of 0.12%, 1.99% and
10.00% in the last 3 cases.

The mean value of the gap over all 29 benchmarks is now only 0.42%.

The exact value of kr is (almost) obtained in all except one case.
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Towards a reduction of computational time

Branch & bound allows to reduce conservatism to an arbitrarily small value
for systems with only real parametric uncertainties.

Problem

Computational complexity grows exponentially as a function of the number
of uncertainties. Computing tight kr lower bounds can be extremely long.

Several solutions can be considered to reduce computational time:

I µ-sensitivities to focus on the most relevant uncertainties → available

I less conservative µ upper bound characterizations → future release

I faster LMI solvers (SeDuMi. . . ) → future release

The µ-sensitivities can be computed easily and are used to identify which
uncertainties have the largest influence on the µ upper bound.
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Use of the µ-sensitivities to improve branch & bound

Idea: partition the uncertainties with the highest µ-sensitivities only.

The number of selected uncertainties allows to handle the tradeoff between
accuracy and computational complexity.

Benchmark Gap
Standard B&B Use of the µ-sensitivities

CPU time CPU time

19 2% 1787 s 104 s

22 5% 348 s 180 s

23 5% 688 s 481 s

27
10% ∞ 901 s

85% 280 s 10 s

29 10% 36269 s 1485 s

The same accuracy is obtained with a much lower computational time.
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Example 1: passenger aircraft model

The considered model describes the lateral behavior of a passenger aircraft.
G. Ferreres, ”A practical approach to robustness analysis with aeronautical applications”, Kluwer, 1999.

m
��@@

�

-

-

-

�

-

?
- -

6

rigid

model

flexible

model

∆f

∆r

+

+

actuatorscontroller ⇔
-

�∆

M(s)

I The nominal closed-loop system M(s) has 46 states.

I ∆ is composed of 26 non-repeated real parametric uncertainties (14 stability
derivatives in ∆r, 6 frequencies and 6 damping ratios in ∆f .

I Some weighting factors are added: all uncertainies vary by ±2 % when ∆ takes
all possible values inside B∆.
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Computation of the robust stability margin

Several guaranteed µ lower and upper bounds (i.e. kr upper and lower
bounds) are computed using the SMART library respectively.

Bound on µ Value Critical frequency (rad/s) CPU time (s)

upper 0.99029 13.38484 2.2

upper 0.96021 13.37233 18

upper 0.94083 13.36999 98

lower 0.94058 13.37042 3.5

An almost exact value is obtained for kr.

A µ upper bound is now computed using a standard grid-based approach.
A very fine frequency grid composed of 1000 points is defined and the
routine mussv of the Robust Control Toolbox is applied.
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Computation of the robust stability margin

A very sharp peak can be observed, but the maximum value is less than
the µ lower bound computed previously.
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The critical frequency is missed, whereas it is detected very quickly using
the SMART library (computational time is 10 times smaller).
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Computation of the worst-case input/output margins

Assuming that the uncertainties do not deviate by more than 2 % from
their nominal values, several lower and upper bounds on the worst-case
gain, modulus, phase and delay margins are computed using the
SMART library.

Margin Bound Value Critical frequency (rad/s) CPU time (s)

gain
lower 0.0194402 0.97078 53

upper 0.0194405 0.97080 863

phase
lower 0.04586 0.69122 60

upper 0.04587 0.69121 723

modulus
lower 0.01922 0.95751 71

upper 0.02171 1.00000 629

delay
lower 0.00521 13.37527 851

upper 0.00534 13.37639 353

Almost exact values are obtained for kg, kp, km and kd.
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Example 2: passenger aircraft model

A set of linearized closed-loop longitudinal models provided by Airbus is
considered, which describe both the rigid and the flexible dynamics of a
civilian passenger aircraft. Each of them corresponds to:

I a flight point → Mach number (M) and calibrated air speed (Vcas),

I a mass configuration → amount of fuel in the center and outer tanks (δCT and
δOT ), and position of the center of gravity (Xcg).

An accurate LFR is obtained with the
APRICOT library:

I 40 states (incl. 10 flexible modes)

I ∆ is 446×446, with 5 parameters

�

-

- -
w z

y

∆

M(s)

e

bb
bb

- -

- -

e y

e y
G1(s)

GN (s)

⇒

The objective is to evaluate the impact of wind on passengers’ comfort:

I e ↔ vertical wind velocity

I y ↔ vertical load factor at the central point of the aircraft fuselage
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Computation of the worst-case H∞ performance level

frequency ω (rad/s)
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Benefits of the SMART library

I much faster (parametric gridding is in-
applicable and frequency gridding with
the RCT is almost 100 times slower),

I more relevant results (a worst-case con-
figuration is missed by the RCT).

Method γlb Worst-case configuration Time (s)

Parametric grid (norm.m) - - -

Frequency grid (wcgain.m)
Robust Control Toolbox

0.108 [−0.38,−1.00,−0.12, 1.00, 1.00] 64000

Poles migration technique
SMART library

0.206 [−0.31,−1.00,−0.37, 1.00, 1.00] 753
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Computation of the worst-case H∞ performance level

The result obtained with the SMART library is now checked. The H∞
norm is computed on a M - δOT grid for Vcas = −1, δCT = 1, Xcg = 1.
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A maximum of 0.205 is obtained for M = −0.37 and δOT = −0.37, which
is very similar to the value obtained with the SMART library.
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Example 3: flexible satellite

Two LFR of the Demeter satellite provided by the French National Cen-
tre of Space Research (CNES) are considered here. The objective is to
compute the robust stability margin kr with the SMART library.

1 2 badly damped uncertain flexible modes ⇒ 16 states, ∆ = diag(δ1I2, δ2I4).

The size of ∆ is moderate, so an LMI solver can be used.

Bound on µ Value Critical frequency (rad/s) CPU time (s)

upper 1.0224 0.0655 37

lower 1.0224 0.0655 0.6

The exact value kr = 0.9780 is computed in only a few seconds.

With the routine mussv.m of the RCT, µ upper and lower bounds 1.0200
and 1.0200 are obtained in 31 s (fine grid of 200 frequencies). The upper
bound is slightly less than the lower bound determined with the SMART
library ⇒ not reliable!
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Example 3: flexible satellite

2 8 badly damped uncertain flexible modes ⇒ 28 states, ∆ = diag(δ1I8, δ2I16).

The size of ∆ is quite large, which prevents the use of an LMI solver.

Bound on µ Value Critical frequency (rad/s) CPU time (s)

upper 9.1728 0.2025 2.7

lower 1.6673 0.5725 1.0

The gap between the bounds is very large! The branch & bound algorithm
of the SMART library is thus applied and a µ upper bound of 1.6673 is
obtained after 95 s.

The exact value kr = 0.5998 is computed in only 1.5 minutes.

With the routine mussv.m of the RCT, the only way to do would be to
compute a µ upper bound at each point of a fine frequency grid using an
LMI solver. But it would last hours, and the result might be inaccurate or
unreliable!
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Conclusion and future prospects

The SMART library of the SMAC Toolbox implements the most efficient µ-
analysis based algorithms developed within the Systems Control and Flight Dy-
namics Department of ONERA during the past 15 years.

It allows to compute:
I the (skewed) structured singular value,
I the (skewed) robust stability margin,
I the worst-case H∞ performance level,
I the worst-case gain, modulus, phase and delay margins.

It can be applied to high-order systems with numerous uncertainties.

It has been validated on many realistic benchmarks. Reliable and accurate results
are obtained in most cases. It is currently the most efficient available software.

The latest version (v1.4) is available on the SMAC website
without any restriction: http://w3.onera.fr/smac/smart

It will be further improved in a near future (less conservative µ upper bound
characterizations, faster LMI solvers. . . ).
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