
LFT modeling with the GSS Library

Clément Roos and Jean-Marc Biannic

SMAC Final WORKSHOP

Toulouse, France. June 16th, 2016.

LFT modeling with the GSS Library 1 / 22 SMAC Final Workshop



Overview of the GSS library

The GSS (Generalized State Space) library of the SMAC Toolbox im-
plements the new Matlab class gss, which allows to model uncertain and
nonlinear systems as Linear Fractional Representations.

It replaces and extends the LFR Toolbox (not maintained anymore):

I more intuitive way to describe LFR,

I more user-friendly interface, including a Simulink library.

Several tools are proposed:

I to manipulate gss objects (addition, multiplication, inversion, concatenation,
feedback...)

I to obtain gss objects from symbolic models,

I to convert gss/lfr/uss objects,

I to manipulate the uncertainties and the nonlinearities (normalization, reordering,
random sampling),

I to perform order reduction or approximation.

LFT modeling with the GSS Library 2 / 22 SMAC Final Workshop



Overview of the GSS library
A large class of continuous- and discrete-time systems can be handled with:

I real or complex uncertain or varying parameters,
I polytopic-type uncertain or varying elements,
I linear time-invariant uncertainties,
I sector nonlinearities,
I saturations and deadzones,
I more general nonlinear operators.

System requirements:
I The GSS library can be used on all platforms (Linux, Mac and Windows).
I All routines run on Matlab 2012b or higher. They should run on older releases,

but no validation has been performed.
I Each routine is thouroughly documented.

Full compatibility is ensured with other modeling, analysis and control
libraries of the SMAC toolbox (APRICOT, SMART, IQC, SAW...).

The full version is freely available on the SMAC website
http://w3.onera.fr/smac/gss

LFT modeling with the GSS Library 3 / 22 SMAC Final Workshop



Description of a gss object

-

�

- -

∆

M(s)
ye

M(s): known and fixed dynamics of the system.

∆ = diag(∆1, . . . ,∆N ): block-diagonal oper-
ator with all uncertainties, varying parameters
and non-linearities.

Similarly, a gss object is a structured variable with two fields:

I M: ss/tf/zpk object representing the LTI model M(s) or M(z).

I D: 1×N structured array describing each of the N ∆i blocks of Delta, with fields:

I Name: name of the block.
I Type: type of the block (’PAR’,’POL’,’LTI’,’SEC’,’SAT’,’DZN’ or ’NLB’).
I Size: size of the block.
I NomValue: nominal value.
I Bounds: bounds information.
I RateBounds: bounds on the rate of variation.
I Measured: indicates whether a block can be measured or not.
I Normalization: stores bounds information in case of normalization.
I Misc: can be used to store any additional data.

LFT modeling with the GSS Library 4 / 22 SMAC Final Workshop



Generation of a gss object

There are several ways to create a gss object:

1 Conversion of an existing object (lfr object from the LFR toolbox, uss object
from the Robust Control Toolbox, ss/tf/zpk object or standard matrix).

2 Creation from variables M and D, where M is a ss/tf/zpk object or a numeric
array, and D is a 1×N structured array with fields Name, Type, Size, NomValue,
Bounds, RateBounds, Measured, Normalization and Misc.

3 Creation of elementary gss objects with a single block:
I properties and values→ sys=gss(’Property1’,Value1,’Property2’,Value2,...)
I values only→ sys=gss(Name,Type,Size,NomValue,Bounds,RateBounds,Measured,Normalization,Misc)
I simplified call in the parametric case→ sys=gss(Name,NomValue,Bounds,RateBounds)

4 Use of the reserved names Int and Delay to create elementary gss objects such
that M(s) = 1/s and M(z) = 1/z respectively, and ∆ is empty.

5 Interconnection of gss objects using the overloaded routines plus, minus, uminus,
mtimes, inv, mrdivide, mldivide, mpower, horzcat, vertcat, append, ctranspose,
transpose, ss, tf and feedback.

6 Application of the structured tree decomposition algorithm to a symbolic poly-
nomial expression using the routine sym2gss.

LFT modeling with the GSS Library 5 / 22 SMAC Final Workshop



A few useful comments (1/2)

I A systematic order reduction is performed by default with the routine mingss

each time a gss object is created or an elementary operation is applied to an
existing gss object (addition, multiplication, division, concatenation...).

Example: a=gss(’a’,2,[1 3]);b=[a a+a];size(b) returns

Continuous-time GSS object b with 1 output, 2 inputs and 0 state.
1 block in Delta: global size = 3x3.
Name Type Size Measured NomValue Bounds
a PAR (real) 3x3 no 2 min/max = [1 3]

if reduction is turned off and

Continuous-time GSS object b with 1 output, 2 inputs and 0 state.
1 block in Delta: global size = 1x1.
Name Type Size Measured NomValue Bounds
a PAR (real) 1x1 no 2 min/max = [1 3]

if reduction is turned on (because [a a+a] is the same as a∗[1 2]).

→ This setting can be changed using the routine setred.

I In case of an unexpected error, use the routine checkgss to check whether the
considered gss objects are consistent.

LFT modeling with the GSS Library 6 / 22 SMAC Final Workshop



A few useful comments (2/2)

I No systematic normalization is performed by default, but PAR and LTI blocks are
normalized in case of inversion or inconsistency problem with the routine dbnorm.

Example: a=gss(’a’,2,[1 3]);b=inv(a) returns

Warning: Normalization has been performed to avoid inversion problems.

------------------------------------------------------------------------------------------

Continuous-time GSS object b with 1 output, 1 input and 0 state.
1 block in Delta: global size = 1x1.
Name Type Size Measured NomValue Bounds
a PAR (real) 1x1 no 0 min/max = [-1 1]

------------------------------------------------------------------------------------------

Continuous-time interconnection plant b.M

M.a=[]
M.b=[]
M.c=[]
M.d=

-0.5000 -0.5000
0.5000 0.5000

------------------------------------------------------------------------------------------

Operator Delta composed of 1 block b.D(1)

D(1)=
Name: ’a’
Type: ’PAR’
Size: [1 1]

NomValue: 0
Bounds: [-1 1]

RateBounds: [0 0]
Measured: ’no’

Normalization: [1 3]
Misc: []

------------------------------------------------------------------------------------------

→ This setting can be changed using the routine setnorm.

LFT modeling with the GSS Library 7 / 22 SMAC Final Workshop



List of routines (1/2)

I Gss objects generation

gss - core function for gss objects generation
sym2gss - convert symbolic expressions into gss objects

I Overloaded functions

gss/plus - addition of two gss objects
gss/minus - subtraction of two gss objects
gss/uminus - change the sign of a gss object
gss/mtimes - multiplication of two gss objects
gss/mrdivide - right division for gss objects
gss/mldivide - left division for gss objects
gss/inv - inverse of a gss object
gss/mpower - repeated product of a gss object
gss/horzcat - horizontal concatenation of gss objects
gss/vertcat - vertical concatenation of gss objects
gss/append - append inputs and outputs of gss objects
gss/transpose - transpose of a gss object
gss/ctranspose - conjugate transpose of a gss object
gss/ss - construct a gss object from state-space matrices
gss/tf - construct a gss object from numerator and denominator
gss/feedback - feedback connection of two gss objects
gss/eq - check if two gss objects are equal
gss/ne - check if two gss objects are not equal
gss/isempty - check if a gss object is empty
gss/eval - evaluate a gss object
gss/subsref - subscripted reference for gss objects
gss/end - index of last I/O of a gss object
gss/length - length of a gss object
gss/size - size of a gss object
gss/display - display a gss object
gss/get - obtain some properties of a gss object
gss/set - change some properties of a gss object

LFT modeling with the GSS Library 8 / 22 SMAC Final Workshop



List of routines (2/2)

I Conversions

gss - convert various objects to gss objects
gssdata - get matrices and dimensions of a gss object
abcd2gss - from static gss objects to dynamic gss objects
lfr2gss - convert lfr objects into gss objects
gss2lfr - convert gss objects into lfr objects
uss2gss - convert uss objects into gss objects
gss2uss - convert gss objects into uss objects

I Manipulation of the Delta block

dbnorm - normalize a gss object
dbunorm - unnormalize a gss object
setnorm - set preference for gss objects normalization
dborder - reorder the Delta blocks of a gss object
dbsample - generate random samples from a gss object

I Order reduction

mingss - reduce the order of a gss object
setred - set preference for gss objects reduction

I Simulink interface

slk2gss - from Simulink block diagrams to gss objects
gsslib - Simulink library for gss objects manipulation

I Miscellaneous

checkgss - check whether a gss object is consistent
distgss - compute the distance between two gss objects

LFT modeling with the GSS Library 9 / 22 SMAC Final Workshop



The Simulink library GSSLIB

GSS	Library	v1.0																																
Copyright	ONERA,	June	2015													
Written	by		J-M.	Biannic																					

u y	GSS
	OBJECT

GSSO_sys

	GSS
	PARAMETER

GSSB_sys_par

	GSS
	DEL	(LTI/NL)

GSSB_sys_del

1
s

tf(1,[1	1])

LTI

1

[A]

From

[A]

Goto

simout

1
w

1
z

LFT modeling with the GSS Library 10 / 22 SMAC Final Workshop



Nothing beats a good example!

The considered open-loop plant is the series interconnection of:

I a 1st order actuator with uncertain time constant and position limits,

I a 2nd order system with uncertain frequency and damping.


ẋ1 = −τx+ u

v = sat[−2,3](x1)

τ ∈ [ 0.08 0.12 ]



ẍ2 = −2ξωẋ2 − ω2x2 + ω2v

y =
[
x2 ẋ2

]T
ω ∈ [ 1 3 ]

ξ ∈ [ 0.1 0.5 ]

Objective

Design a PID controller such that the uncertain closed-loop plant behaves
like a second-order system with frequency > 1 rad/s and damping > 0.7.

LFT modeling with the GSS Library 11 / 22 SMAC Final Workshop



Creation of the open-loop gss object (1/3)

The actuator with uncertain time constant and position limits is modeled first.

>> sat=gss(’position’,’SAT’,[1 1],1,[-2 3]);

>> tau=gss(’tau’,0.1,[0.08 0.12]);

>> actuator=sat*tf(1,[tau 1]);

>> size(actuator)

Warning: Normalization has been performed to avoid inversion problems.

Continuous-time GSS object actuator with 1 output, 1 input and 1 state.

2 blocks in Delta: global size = 2x2.

Name Type Size Measured NomValue Bounds

position SAT 1x1 ? 1 limits = [-2 3]

tau PAR (real) 1x1 no 0 min/max = [-1 1]

The second-order system with uncertain frequency and damping is defined next.

I First solution: the state-space matrices are defined as gss objects.

>> xi=gss(’damping’,0.3,[0.1 0.5]);

>> omega=gss(’frequency’,2,[1 3]);

>> A=[0 1;-omega^2 -2*xi*omega];

>> B=[0;omega^2];

>> C=[1 0;0 1];

>> D=[0;0];

LFT modeling with the GSS Library 12 / 22 SMAC Final Workshop



Creation of the open-loop gss object (2/3)

They are turned into a dynamic model.

>> setred(’no’)

>> sys1=ss(A,B,C,D);

>> size(sys1)

Continuous-time GSS object sys1 with 2 outputs, 1 input and 2 states.

2 blocks in Delta: global size = 6x6.

Name Type Size Measured NomValue Bounds

damping PAR (real) 1x1 no 0.3 min/max = [0.1 0.5]

frequency PAR (real) 5x5 no 2 min/max = [1 3]

⇒ Frequency is repeated 5 times if no order reduction is performed.

>> setred(’default’)

>> sys1=ss(A,B,C,D);

>> size(sys1)

Continuous-time GSS object sys1 with 2 outputs, 1 input and 2 states.

2 blocks in Delta: global size = 4x4.

Name Type Size Measured NomValue Bounds

damping PAR (real) 1x1 no 0.3 min/max = [0.1 0.5]

frequency PAR (real) 3x3 no 2 min/max = [1 3]

⇒ Frequency is repeated 3 times if order reduction is performed.

LFT modeling with the GSS Library 13 / 22 SMAC Final Workshop



Creation of the open-loop gss object (3/3)
I Second solution: The state-space matrices are defined as symbolic objects.

>> syms frequency damping

>> A=[0 1;-frequency^2 -2*damping*frequency];

>> B=[0;frequency^2];

>> C=[1 0;0 1];

>> D=[0;0];

They are turned into a dynamic model.

>> abcd=sym2gss([A B;C D]);

>> sys2=abcd2gss(abcd,2);

>> set(sys2,’damping’,’NomValue’,0.3,’Bounds’,[0.1 0.5]);

>> set(sys2,’frequency’,’NomValue’,2,’Bounds’,[1 3]);

>> size(sys2)

Continuous-time GSS object sys2 with 2 outputs, 1 input and 2 states.

2 blocks in Delta: global size = 3x3.

Name Type Size Measured NomValue Bounds

damping PAR (real) 1x1 no 0.3 min/max = [0.1 0.5]

frequency PAR (real) 2x2 no 2 min/max = [1 3]

⇒ Frequency is repeated twice, which corresponds to the minimal realization.

It can be checked that the two gss objects are equivalent.
>> distgss(sys1,sys2) ⇒ the returned value is zero!

The gss object sys2 is simpler and is thus considered in the sequel: >> sys=sys2;

LFT modeling with the GSS Library 14 / 22 SMAC Final Workshop



Open-loop analysis

The linearized open-loop plant is analyzed. The saturation is ignored and 200
random samples are computed.

>> sys_lin=eval(sys,’position’,’nominal’);

>> [sys0,samples]=dbsample(sys_lin,200);

-1.5 -1 -0.5 0

real part

-4

-3

-2

-1

0

1

2

3

4
im

ag
in

ar
y 

pa
rt

The damping ratio and the frequency lie inside the considered bounds in all cases.

LFT modeling with the GSS Library 15 / 22 SMAC Final Workshop



Controller design (1/3)

The actuator and the 2nd order system are finally connected.

>> sys=sys*actuator;

>> size(sys)

Continuous-time GSS object sys with 2 outputs, 1 input and 3 states.

4 blocks in Delta: global size = 5x5.

Name Type Size Measured NomValue Bounds

position SAT 1x1 ? 1 limits = [-2 3]

damping PAR (real) 1x1 no 0.3 min/max = [0.1 0.5]

frequency PAR (real) 2x2 no 2 min/max = [1 3]

tau PAR (real) 1x1 no 0 min/max = [-1 1]

A PID controller is now designed using pole placement.

u y	GSS
	OBJECT

GSSO_sys

K

controller

1
s

Objective

Design the 1 × 3 static matrix gain K so that the uncertain closed-loop plant
sys behaves like a 2nd order system with freq > 1 rad/s and damping > 0.7.

LFT modeling with the GSS Library 16 / 22 SMAC Final Workshop



Controller design (2/3)

An augmented open-loop plant including an integrator is first computed.

u y	GSS
	OBJECT

GSSO_sys

1
s 11

I Direct computation

>> Int=gss(’Int’);

>> sysaug1=[-Int 0;1 0;0 1]*sys;

I Use of the Simulink library GSSLIB

>> sysaug2=slk2gss(’open_loop_plant’);

I Comparison

>> distgss(sysaug1,sysaug2) ⇒ the returned value is zero!
>> sysaug=sysaug1;

LFT modeling with the GSS Library 17 / 22 SMAC Final Workshop



Controller design (3/3)

An LTI model corresponding to the lowest damping ratio and the lowest frequency
is considered for design.

>> syslti=eval(sysaug,{’position’ ’tau’ ’damping’ ’frequency’},{’nominal’ ’nominal’ 0.1 1});

>> damp(syslti)

An eigenstructure assignment algorithm is applied and the static controller
K = [ 4.80 −5.64 −3.54 is obtained (not detailed here).

The open-loop and the controller are interconnected to get the closed-loop plant.

>> syscl=feedback(sysaug,K,[],[],1);

Note that it can also be done using the Simulink library GSSLIB.

LFT modeling with the GSS Library 18 / 22 SMAC Final Workshop



Closed-loop analysis (1/3)

The linearized closed-loop plant is analyzed. The saturation is ignored and 200
random samples are computed.

>> syscl_lin=eval(syscl,’position’,’nominal’);

>> [sys0,samples]=dbsample(syscl_lin,200);

-1.5 -1 -0.5 0

real part

-4

-3

-2

-1

0

1

2

3

4
im

ag
in

ar
y 

pa
rt

The damping ratio and the frequency lie inside the considered bounds in all cases.

LFT modeling with the GSS Library 19 / 22 SMAC Final Workshop



Closed-loop analysis (2/3)

The nonlinear closed-loop plant is analyzed. A simulation is performed (including
the saturation) for each of the 200 random samples computed previously.

u y	GSS
	OBJECT

GSSO_sys

K*	u

controller

1
s

reference

	GSS
	PARAMETER

GSSB_sys_damping

	GSS
	DEL	(LTI/NL)

GSSB_sys_position

saturation	[-2	3]

	GSS
	PARAMETER

GSSB_sys_frequency

samples(k).damping

damping

samples(k).frequency

frequency

	GSS
	PARAMETER
GSSB_sys_tau

samples(k).tau

tau

1

LFT modeling with the GSS Library 20 / 22 SMAC Final Workshop



Closed-loop analysis (3/3)
>> subplot(1,2,1),hold on,grid on

>> reference=1;

>> for k=1:length(sys0)

>> [t,x,y]=sim(’closed_loop_plant’);

>> plot(t,y);

>> end

>> subplot(1,2,2),hold on,grid on

>> reference=3;

>> for k=1:length(sys0)

>> [t,x,y]=sim(’closed_loop_plant’);

>> plot(t,y);

>> end

0 2 4 6 8 10

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ou
tp

ut
 fo

r 
re

fe
re

nc
e 

=
 1

0 2 4 6 8 10

t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

ou
tp

ut
 fo

r 
re

fe
re

nc
e 

=
 3

The closed-loop behavior is in accordance with the specifications, but the influ-
ence of the saturation can be seen for a reference input of 3.

It seems to work. . . but further validation is required. This can for example be
achieved with other libraries of the SMAC Toolbox (SMART, SAW, IQC)!

LFT modeling with the GSS Library 21 / 22 SMAC Final Workshop



Conclusion

The GSS library replaces the LFR Toolbox:
I a larger class of systems can be handled,

I a few useful features have been added (e.g. the overloaded tf function),

I some rarely used features have been removed to make the tools simpler,

I a huge effort has been done to improve ergonomics (more intuitive way to describe
LFR, more user-friendly interface. . . ),

I compatibility with in-house Matlab objects such as uss is ensured.

Advantages of the gss object compared to the classical uss object:
I more complete (neither varying parameters nor nonlinearities in the RCT),

I more efficient reduction techniques,

I more intuitive and user-friendly.

The latest version (v1.2) is available on the
SMAC website: http://w3.onera.fr/smac/gss

It will be further improved in a near future, depending on people needs. So feel
free to contact us to request some additional features!

LFT modeling with the GSS Library 22 / 22 SMAC Final Workshop


