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Introduction

I Convex design technique of an LTI controller satisfying closed
loop spec. proposed in the book ”Linear Controller Design.
Limits of Performance”, S.P. Boyd and C.H. Barratt, 1991.

I Book issue: to check the feasibility of design spec. by solving
an infinite dimensional optimization problem, whose minimiza-
tion objective and constraints directly correspond to time- and
frequency-domain specifications.

I At Onera, application of this technique till the end of the 90’s,
and development of a software in the context of flexible A/C
control problems, with high order models.

I Technique and software extended to the LFT case, see es-
pecially the paper ”Convex gain-scheduled control of an LFT
model”, G. Ferreres and P. Antoinette, Proc. of the ECC 2009.
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Introduction

Structure of the presentation:

I Convex design of a Youla parameter for the control of an LTI
plant model.

I Convex design of a Youla parameter for the gain-scheduled con-
trol of an LFT plant model.
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Convex design of a Youla parameter for an LTI plant

Principle:

1 Design of initial controller K0(s), typically under observed state
feedback form, for augmented open loop plant model P (s).

2 Youla parameterization: closed loop transfer matrix = T1(s) +
T2(s)Q(s)T3(s). Free Youla parameter Q(s). The fixed Ti(s)
depend on P (s) and K0(s).

3 Convex design of Q(s): time- and frequency-domain closed loop
spec. are convex w.r.t. Q(s) because the closed loop transfer
matrix is an affine function of Q(s).

4 K(s) is deduced from K0(s) and the optimal value of Q(s).

Main limitation: only one plant model is considered. If several plant
models or structured robustness objectives are introduced, the con-
vexity property is lost.
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Convex design of a Youla parameter for an LTI plant

The feasibility of design spec. can be checked:

I Parameterization of the whole set of stabilizing controllers.

I Does there exist a controller, without constraint on its order,
that satisfies a set of design spec. ?

I Study of the trade-off between conflicting design objectives,
e.g. minimization of a comfort criterion VS actuator activity.

I Impossible to conclude if a non-convex optimization problem:
”locally unfeasible” constraints, but may be ”globally feasible”.

I Computation of a reference performance obtained with an op-
timal (very) high order controller: if the same performance can
be obtained with a low-order one, it is validated as a quasi-
optimal controller.
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Convex design of a Youla parameter for an LTI plant

Minimization of the peaks of the closed loop frequency domain re-
sponse of a flexible aircraft VS actuator activity (extracted from the
software demo):

Convex design of controllers (G. Ferreres) 6 / 17 SMAC Final Workshop



Convex design of a Youla parameter for an LTI plant

Solving an infinite- / approximate finite-dimensional optimization
problem:

I Use of a basis of filters Q(s) =
∑

i θiQi(s), with fixed filters
Qi(s). Convex optimization w.r.t. θi.

I Choice of the dynamics (poles) of the basis using the knowledge
of the open or closed loop plant.

I Use of an orthonormal basis for the numerical conditioning of
the optimization problem.

I Ideally, an infinite dimensional basis should be used to cover
the whole set of asymptotically stable transfer matrices Q(s) /
asymptotically stabilizing controllers.

I Progressive design of Q(s): stop when adding more filters does
not further minimize the objective.

I Other theoretically more proper methods exist to deal with the
infinite-dimensional aspect.
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Convex design of a Youla parameter for an LTI plant

Progressive design with 8, 16,. . . , 80 filters, when minimizing the
peaks of the closed loop frequency domain response of a flexible
aircraft for a given actuator activity:
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Convex design of a Youla parameter for an LTI plant

In practice:

1 For a given (augmented) open loop plant, design of the ini-
tial controller directly under an observed state-feedback form:
modal design of the state feedback and observer gains, loop
shaping H∞ design technique with I/O spec, LQG controller
design (. . . ). Otherwise, methods exist for putting any (full
order) controller under an observed state feedback form.

2 Poles choice for orthonormal filter basis (possibly one repeated).

3 Specifications: shaping freq. domain responses over finite freq.
intervals, for several channels, using extended H∞, H2 spec.

4 Use of a frequency domain cutting planes solver to compute
the optimal value of the Youla parameter.

Software tested with about 100 states in the flexible aircraft model.
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Convex design of a Youla parameter for an LTI plant

Use of a frequency domain cutting planes solver:

I Dedicated to the control of a high order state-space model.

I Use of an initial small size design frequency gridding, on which
the spec. should be satisfied. Validation on a fine gridding,
iterative refinement of the design frequency gridding.

I The use of a dedicated solver enables to save much compu-
tational time when progressively introducing the filters in the
design and when exploring trade-offs:

I A series of optimization problems to be solved.
I With interior point LMI/sdp methods, each design is indepen-

dently performed. Difficulty to introduce an initial pt.
I With the frequency domain cutting planes solver, introduction

of a feasible initial point + the subgradients which approximate
the minimization objective and constraints are kept from an
optimization to another.
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Convex design of a Youla parameter for an LTI plant

Software:
I Inputs of the solver for computing optimal value of Q(s):

I Augmented closed loop T (s) =

[
T1(s) T2(s)
T3(s) 0

]
, so that the

interconnection of T (s) with Q(s) is T1(s) + T2(s)Q(s)T3(s).
I Freq. domain spec. on specified I/O of T1(s)+T2(s)Q(s)T3(s).
I Poles of the basis of Q(s), tuning parameters of the solver (. . . ).

I Not an automated procedure for computing the initial controller
and Youla parameterization, i.e. T (s):

I Depends on the design method of the initial controller + open
loop plant + closed loop spec. (. . . ).

I The demo files, which use Simulink, have to be adapted to
compute the initial controller and Youla parameterization.

If T (s) 6=
[
T1(s) T2(s)
T3(s) 0

]
, interconnection of T (s) with Q(s)

not an affine function of Q(s): tested in the software to check the
validity of Youla parameterization.
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Convex design of a Youla parameter for an LFT plant

Case considered:

I The TI scheduling parameters δi of the open loop LFT plant
model are measured.

I The open loop LFT plant model should describe the continuum
of linearized models about trim points (or around a trajectory).

I LTI (modal and H∞) spec. to be satisfied on a continuum.

Other cases: TV parameters inside the LPV/LFT model, nonlinear
model.
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Convex design of a Youla parameter for an LFT plant

Principle:

I Design of an initial controller under an LFT observed state
feedback form = embedded LFT open loop plant model +
fixed/gain-scheduled state-feedback and observer gains.

I Computation of T1(s, δ) + T2(s, δ)Q(s, δ)T3(s, δ), by connect-
ing the LFT plant model and initial controller.

I Design of a δ-dependent Youla parameter Q(s, δ) = design of
an augmented LTI Youla parameter Q(s).

I Convex multi-model design of Q(s) with the frequency-domain
cutting planes solver + validation on a fine parameter gridding,
or on the continuum with µ analysis. Addition of worst-case
models if spec. are violated.

To a large extent, guaranteed convergence of this iterative scheme
due to the convex nature of the optimization problem.
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Convex design of a Youla parameter for an LFT plant

Software applied to several flexible aircraft LFT models.

Application to an LFT missile model (software demo):

I ”Dynamic scheduling of modern robust control autopilot design
for missiles”, R.T. Reichert, IEEE Control System Magazine,
1992.

I A rather low complexity LFT model: angle of attack repeated
4 times, Mach 6 times, 4 states.

I Modal design of the state feedback and observer gains us-
ing a multi-model polytopic technique, extended to the gain-
scheduled case.

I Validation with µ analysis, to check the robustness of the pole
placement inside a truncated sector.
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Convex design of a Youla parameter for an LFT plant

Design of the Youla parameter Q(s) for the LFT missile model:
minimization of the frequency-domain peak on the angle of attack
under a constraint on the actuator rate output.

Minimization of maxδ∈D ‖H1(s, δ,Q(s))‖∞ under the constraint
maxδ∈D ‖H2(s, δ,Q(s))‖∞ ≤ C:

I H1(s, δ,Q(s)) = TF between an additive disturbance δu on the
plant input and the angle of attack, affine w.r.t. Q(s).

I H2(s, δ,Q(s)) = TF between δu and the actuator rate output.
I Computation of maxδ∈D ‖Hi(s, δ,Q(s))‖∞ for a given Q(s):

I Upper bound provided by skew µ upper bound.
I Lower bound provided by the validation over a fine parameter

gridding.
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Convex design of a Youla parameter for an LFT plant

bounds of maxδ∈D ‖H1(s, δ,Q(s))‖∞ (minimized objective):

w.c. perf. level between 0.192 and 0.206 (gap = 6.7 percent)

Equivalent result for the initial controller:

w.c. perf. level between 0.660 and 0.693 (gap = 4.7 percent)

bounds of maxδ∈D ‖H2(s, δ,Q(s))‖∞ (normalized constraint):

w.c. perf. level between 0.993 and 1.034 (gap = 3.9 percent)
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Conclusion

I Development of a software for designing an LTI or gain-scheduled
LFT controller:

1 Computing initial controller under observed state feedback form.
2 Deducing a Youla parameterization: the closed loop transfer

function is an affine function of the free Youla parameter Q(s).
3 ComputingQ(s) by solving a convex optimization problem, where

closed loop frequency domain specifications are to be satisfied.
A frequency domain cutting planes solver was developed for the
case of a high order plant model.

I Software used either to check the feasibility of design spec., or
to design a controller satisfying extended H∞ or H2 spec.

I Perspectives:
I Introduction of time-domain spec. in software.
I Closed loop reduction of the optimized LTI controller, whose

order = order of the open loop plant + order of Q(s). Optimal
closed loop performance to be preserved.
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