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Abstract

The CCD Toolbox proposes Matlab computational tools for the convex
design of LTI feedback controllers and the convex design of gain-scheduled
LFT feedback controllers, using (extended) Youla parameterization.

LICENSE AGREEMENT, DISCLAIMER:

• You are free to use any of the files here for personal or academic use. The
express permission of the author is required for commercial use.

• You can redistribute the toolbox and its manual without modification provided
that it is for a non commercial purpose. Redistribution in any commercial form
including CD-ROM or any other media is hereby forbidden, unless with the
express written permission of the author.

• Neither the author nor ONERA accept any responsibility or liability with
regard to this software that is licensed on an ”as is” basis. There will be no
duty on author or ONERA to correct any errors or defects in the software.
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1 Introduction

The issue of convex control design [5] is twofold. The first is to check the feasibil-
ity of design specifications: does there exist an LTI controller, whose order is free,
which satisfies a set of design specifications on an LTI closed loop? The second is
to translate in a direct way a set of specifications into the design procedure. Using
Youla-parametrization many design specifications (most nominal performance spec-
ifications and unstructured robustness ones) can be translated as convex constraints
on the design parameters, or as the minimization of a convex objective.

The convexity of the optimization problem is crucial since it enables to check
the feasibility of these specifications. A great deal of work has been devoted to
the non-convex design of fixed-order controllers, which satisfy a set of design spec-
ifications. Despite the interest of these methods it is worth emphasizing that the
solution depends on the initialization, and if no solution is found this does not mean
that it does not exist.

The principles of convex control design are exposed in the pioneering work of [5].
Nevertheless, many practical problems remained unsolved, and especially the com-
putational requirement. Because of the industrial interest for the issue of checking
the feasibility of design specifications, and thanks to a regain of interest for convex
control design since the end of the 90’s the subject is now more mature. Our con-
tribution here is to propose computational tools for the convex design of feedback
controllers. The toolbox also contains a realistic design example of a flight control
system for a flexible aircraft, whose numerical data are extracted from [6]. See also
[12] for an other application. The design procedure is the following:

• Design of an initial controller, which is then put under the form of an observed-
state feedback controller [3, 4, 2], or direct design of an observed-state feedback
controller.

• Convex optimization over the Youla parameter Q(s) =
∑

i θiQi(s). Filters
Qi(s) are fixed, while the θi are the design parameters. The feedback controller
K(s) is deduced from the initial controller and from the optimal value of Q(s).
H2 and H∞ specifications can be accounted for.

A specific effort was made on the computational requirement when solving the con-
vex optimization problem [10]. A first solution is to use a classical LMI solver: H2

and H∞ specifications can be translated into state-space LMI constraints. However
the practical application of this classical solution is (very) difficult:

• When applying e.g. the KYP lemma on the closed loop system, its order is
2nG + nQ, where nG (resp. nQ) is the order of the open loop plant model
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(resp. of Q(s)). Even if nG is low a large basis of filters Qi(s) is necessary
to check the feasibility of design specifications, so that the order of the closed
loop system is usually (very) high, which leads to an excessive computational
time when using an LMI solver.

• An analytic expression is necessary for H∞ templates when using state-space
solutions, noting that many design specifications are directly expressed in the
frequency domain (e.g. a constraint on the magnitude of a closed loop transfer
function over a limited frequency interval). Deducing from such a specification
an approximate analytic template is not so easy, and the order of the closed
loop system is increased by the order of this template.

We have thus developed a frequency-domain solution in the spirit of [11]. The convex
optimization problem is solved on a frequency gridding, and design specifications are
then checked between the points of the gridding. If necessary the gridding is refined
and a new convex optimization problem is solved. Moreover convex constraints at
each point of the gridding are approximated as linear ones, using a cutting planes
method. More precisely, the idea is to solve in an exact way the convex optimization
problem as a series of approximate LP problems.

The toolbox also contains a realistic engineering application, namely the design
of a flight control system for a flexible aircraft whose numerical data is extracted
from [6]. The paper is organized as follows. Section 2 first presents the structure
of the toolbox and software requirements. The principles of convex control design
are exposed in section 3, while the whole design procedure is detailed in section 4.
Last, section 5 deals with the extension of the method to the convex design of a
gain-scheduled LFT controller, with an application to a nonlinear missile model.

2 Toolbox structure and software requirements

The directoryDemo LTI flexible airplane, which presents the design of a feedback
controller on a flexible airplane model [6], contains the main files:

1. script 1 design initial controller.m: the initial observed state-feedback con-
troller is computed using a modal method. The design is willingly very sim-
ple, with only one tuning parameter. The file open loop model.mat, which
contains the open loop model, is used as the main input data. The file
obs state feedback.mat is produced.

2. script 2 calc youla parameterization.m: on the basis of the initial controller
in obs state feedback.mat, the Youla parameterization is computed and saved
in youla file.mat. The Simulink file sys closed loop.mdl is used.
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3. script 3 design youla parameter.m: convex design of the optimal value of the
Youla parameter. The trade-off between the design specifications can be stud-
ied. The design spec. are defined in design spec.m. The tuning parameters
of the optimization algorithm are defined in design tuning.m. The optimal
controller is saved in controller.mat.

The routines of the CCD Toolbox are gathered in the directory Routines CCD,
the main routines being design convex.m and validation.m. The Optimization
Toolbox, the System Control Toolbox and Simulink are required.

3 Principles of convex control design with Youla

parameterization

3.1 Youla parameterization
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Figure 1: The design problem (a) and Youla parameterization (b).

Consider the standard design problem of figure 1.a, where P =

[
P11 P12

P21 P22

]
is

an augmented plant. The closed loop transfer matrix Fl(P,K) = P11 + P12K(I −
P22K)−1P21 is a highly nonlinear function of controller K. Suppose an initial stabi-
lizing controller K0, whose order is equal to the order of P22, is available. Additional
inputs and outputs v and e are introduced in K0 (see figure 1.b), with the key con-
straint that the closed loop transfer matrix between v and e is zero (a solution to
achieve this property is to put K0 under the form of an observed state feedback
controller). When connecting a free stable transfer matrix Q to these additional
inputs and outputs, Fl(P,K) can be rewritten as T1 + T2QT3, where fixed transfer
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matrices Ti depend on P and K0, while Q is the design parameter. Indeed, the

closed loop transfer matrix between (w, v) and(z, e) is

[
T1 T2

T3 0

]
.

3.2 Convexity of design specifications

Generally speaking, a norm constraint on the closed loop transfer matrix T1+T2QT3

is convex with respect to Q =
∑

i θiQi, where filters Qi are fixed while the θi are the
design parameters. As a consequence, when constraining or minimizing the norm of
various parts of the closed loop transfer matrix T1 + T2QT3, a convex optimization
problem with convex constraints is obtained. Optimal values of the design parame-
ters θi are computed, Q(s) is deduced as well as K(s) (see figure 1.b).

Remarks:
(i) The order of the controller K(s) is generally equal to the sum of the orders of
the plant model and Youla parameter Q(s).
(ii) Convex optimization offers two main advantages with respect to H∞ control.
It is possible to separately minimize or constrain H∞ norms of different SISO or
MIMO transfer functions of Fl(P,K) instead of minimizing a unique large MIMO
transfer matrix Fl(P,K). Moreover, a limited frequency domain can be considered
and analytic expressions of the templates are not required.

Consider now an H∞ constraint:

σ

[
T1(jω) + T2(jω)

(∑
i

θiQi(jω)

)
T3(jω)

]
≤ α(ω) (1)

or the minimization of γ under the constraint:

σ

[
T1(jω) + T2(jω)

(∑
i

θiQi(jω)

)
T3(jω)

]
≤ γα(ω) (2)

where α(ω) is a fixed frequency-domain template. The above constraints are convex
with respect to the θi. They can be translated at each frequency as LMI constraints,
but we prefer in this toolbox to solve them with a computationally more efficient
cutting planes method.

Note finally that the square of the H2 norm of the transfer function T (s, θ) =
T1(s) + T2(s)(

∑
i θiQi(s))T3(s) on a finite frequency interval [ω, ω]:

1

2π

∫ ω

ω

Trace(T ∗(jω, θ)T (jω, θ))dω (3)
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can be approximated as a quadratic criterion f0 + fT θ + θTQθ using a fine enough
frequency gridding. An H2 constraint can then be considered in the toolbox:√

1

2π

∫ ω

ω

Trace(T ∗(jω, θ)T (jω, θ))dω ≤ α (4)

where the positive scalar α is fixed. When minimizing the H2 norm of different
transfer functions (e.g. T1(s) and T2(s)) the following criterion is minimized:

p1

∫ ω1

ω1

Trace(T ∗
1 (jω)T1(jω))dω + p2

∫ ω2

ω2

Trace(T ∗
2 (jω)T2(jω))dω (5)

where p1 and p2 are weighting factors.

3.3 Problems to be solved

Despite the pioneering work of [5] many practical problems remained unsolved:

• How to choose the basis of filters? A large basis of filters Qi(s) is necessary
to check the feasibility of design specifications, this basis should even be the-
oretically infinite.

• Computational requirement, as explained in the introduction: despite its con-
vexity the optimization problem which we solve is not an easy one, since it has
an infinite number of constraints and a (very) large number of optimization
parameters.

• The order of the controller can be (very) large, necessarily greater than the
order of the open loop plant model.

• Structured robustness specifications are non-convex, as well as multi-model
design.
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4 The design procedure

4.1 Introduction of the open loop model

sys open loop
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Figure 2: Definition of the open loop model.

The file open loop model.mat contains the open loop model sys open loop (with
ss format) as well as feedback inputs (resp. feedback outputs) which describes
the list of the inputs (resp. outputs) used for feedback. Some inputs or out-
puts can be used for design specifications, but not for feedback. THE PLANT
MODEL SEEN BY THE FEEDBACK CONTROLLER, i.e. the transfer matrix
sys open loop(feedback outputs, feedback inputs), MUST BE STRICTLY PROPER.

In the context of our flexible aircraft example sys open loop has 4 inputs and 9
outputs, but only the first 2 inputs and first 4 outputs are used for feedback. Thus:

feedback_inputs=1:2;

feedback_outputs=1:4;

The 2 additional inputs correspond to additive disturbances on the control inputs,
as indicated on the figure. sys open loop contains actuators as well as rigid and
flexible models of the aircraft (4 rigid states and 6 bending modes). See [6] for more
details.

Remark: the 9 outputs of sys open loop are ny, p, r, ϕ + rigid and flexible ny
+ actuator rates + β. The 4 inputs are aileron and rudder deflections + additive
disturbances on these control inputs.

4.2 Design of an initial controller

A first solution is to directly synthesize an observed-state feedback controller, as
done in script 1 design initial controller.m. Otherwise, any controller whose order
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is at least equal to the order of the plant model can be put under the form of an
observed-state feedback controller, with possibly an initial value Q0(s) of the Youla
parameter [3, 4, 2].

In script 1 design initial controller.m the computation of the observed state
feedback controller is willingly rough. The issue is just to satisfy with an automatic
LQ method a stability degree requirement for the closed loop poles. Remember the
stability degree of a state-matrix A is defined as:

α = −max
i

ℜ(λi) (6)

where λi is an eigenvalue of matrix A. Thus, the degree of stability is positive if the
plant is stable. Other more sophisticated techniques could be used. Remember the
better the initial controller is, the simpler the convex design of Q(s) is.

4.3 Choice of the basis of filters

Remember Q(s) =
∑

i θiQi(s), where filters Qi(s) are fixed. The orthonormal basis
of [1] is used:

Qi(s) =

√
2Re(ai)

s+ ai
Πi−1

k=1

s− ak
s+ ak

(7)

The poles, which are chosen on the basis of our physical knowledge of the plant,
are fixed. The use of an orthonormal basis reduces numerical problems which can
be encountered in practice (especially when solving the LP problems in the cutting
planes method, see below).

4.4 Definition of the problem

The design specifications are defined with the Simulink file sys closed loop.mdl and
with variables specif and puls specif , specified in the file design spec.m.

4.4.1 Use of the Simulink file sys closed loop.mdl

sys closed loop.mdl is to be modified according to the structure of the problem. Re-
member feedback inputs and feedback outputs contain the list of plant inputs and
outputs used for feedback, but that other I/O can be used for design specifications.

In the context of our flexible aircraft example, figure 3 presents the corresponding
file sys closed loop.mdl. Input # 1 corresponds to the disturbances in the control
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inputs, which were integrated inside the open loop model sys open loop. Input #
2, named v, corresponds to additional inputs of the augmented controller. In the
same way, outputs # 1 and # 2 correspond to all plant outputs and to the controller
outputs, while output # 3, named e, corresponds to additional outputs of the aug-
mented controller. These additional I/O v and e will be used to connect the Youla
parameter Q(s). Last note that ”Selector 2” is used to select only the outputs used
for feedback.

When changing sys closed loop.mdl and especially when adding or removing
I/O, the issue is to place the additional I/O of the augmented controller as the last
ones. A way to test the modifications of sys closed loop.mdl is to check whether
the affine closed loop form T1 + T2QT3 is well obtained, by checking that the trans-
fer matrix between all inputs and outputs of the Simulink file is under the form

T (s) =

[
T1(s) T2(s)
T3(s) 0

]
.

This is done in script 3 design youla parameter.m by choosing a basis Q(s) =∑
i θiQi(s), a frequency gridding and a random value of θ. The corresponding value

of Q(s) is computed and applied to T (s) (i.e. connected to the additional I/O of the
augmented controller). The closed loop frequency response F (jω) is computed (in
the context of figure 3 F (s) is the transfer function between input # 1 and outputs
# 1 and # 2, after input # 2 and output # 3 were connected to Q(s)). In the same
way, the closed loop frequency responses Fi(jω) are computed by connecting T (s)
to each Qi(s). The quantity:

F (jω)− T1(jω)−
∑
i

θi(Fi(jω)− T1(jω))

should be very small, ideally 0. Indeed, F (jω) is expected to be:

F (jω) = T1(jω) + T2(jω)(
∑
i

θiQi(jω))T3(jω)

while Fi(jω) is expected to be T1(jω) + T2(jω)Qi(jω)T3(jω).
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Figure 3: The simulink file sys closed loop.mdl.
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4.4.2 Definition of specif and puls specif

We explain in the following how to define the structured cells specif and the row
vector puls specif . We first give some generalities:

• The length of the cell is equal to the number of design specifications. If there
are two specifications, then specif{1} and specif{2} have to be defined.

• The nature of spec #i is defined by specif{i}.obj.

• specif{i}.input and specif{i}.output contain the list of inputs and outputs in
sys closed loop.mdl, which describe the SISO or MIMO transfer function to
be shaped or minimized.

• A unique vector puls specif is used for all specifications. Here:

puls_specif=[5 25 0 logspace2(1e-2,1e3,100)]

Note that logspace2(1e− 2, 1e3, 100) means 100 logarithmically spaced points
between 10−2 and 103 rad/s.

4.4.3 H∞ constraint

This one corresponds to specif{i}.obj = 0. Consider the following example where
Gain roll off and omega roll off (in rad/s) are tuning parameters:

%

% Hinf constraint between two disturbance inputs and two feedback controller outputs

%

num=Gain_roll_off;

den=conv([1/omega_roll_off 1],[1/omega_roll_off/omega_roll_off 1.4/omega_roll_off 1]);

[a,b,c,d]=tf2ss(num,den);

sys=ss(a,b,c,d);

%

specif{3}.input=[1 2];

specif{3}.output=[10 11];

specif{3}.list=3:length(puls_specif);

specif{3}.template=squeeze(abs(freqresp(sys,puls_specif(3:end))));

specif{3}.obj=0;

specif{3}.lin_log_x=1;

specif{3}.lin_log_y=1;

specif{3}.interp=1;
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With reference to figure 3, the above specification defines a roll-off constraint be-
tween input # 1 and output # 2 (the size of output # 1 is 9).
specif{3}.list describes the list of specified frequencies. Remember:

puls_specif=[5 25 0 logspace2(1e-2,1e3,100)]

so that:

specif{3}.list=3:length(puls_specif)

means that all frequencies are used except the first 2 ones. The size of specif{3}.template
must be the same as the one of specif{3}.list, i.e. the template has to be defined only
on the frequency points of interest, not on the whole initial frequency gridding. The
template, which must only contain positive real values, can be defined in two different
ways between the points of the frequency gridding, according to specif{3}.interp =
0 (rectangular interpolation, see figure 4.a) or specif{3}.interp = 1 (linear interpola-
tion, see figure 4.b). Note finally that specif{3}.lin log x (resp. specif{3}.lin log y)
defines the linear or logarithmic nature of the x (resp. y) axis for visualization.

(b)(a)

B
B
B

�
�

�
�
�
�

6

-

6

-

Figure 4: Definition of the interpolation method.

4.4.4 H∞ minimization

The fields (input, output, list. . . ) are the same as in the previous subsection, except
that specif{i}.obj = 1. Note also that the simultaneous minimization of different
transfer functions is possible, as in the following example:

%

% Hinf min. of the transfer function between the 1st disturbance input and ny
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%

specif{1}.input=1;

specif{1}.output=1;

specif{1}.list=[1 2];

specif{1}.template=1e-3*[1 1];

specif{1}.obj=1;

specif{1}.lin_log_x=0;

specif{1}.lin_log_y=0;

specif{1}.interp=0;

%

% Hinf min. of the transfer function between the 2d disturbance input and ny

%

specif{2}.input=2;

specif{2}.output=1;

specif{2}.list=[1 2];

specif{2}.template=1e-3*[1 1];

specif{2}.obj=1;

specif{2}.lin_log_x=0;

specif{2}.lin_log_y=0;

specif{2}.interp=0;

With reference to figure 3, the above specification defines the minimization of both
SISO transfer functions between the 2 scalar inputs in input # 1 and the first scalar
output in output # 1, which corresponds to an acceleration ny.

template defines the relative weight, with which each transfer function has to be
minimized. In the above example, if T1 (resp. T2) is the transfer function between the
first (resp. second) disturbance input and the first output, the issue is to minimize
γ under the following constraints on the frequency interval [5 rad/s, 25 rad/s]:

|T1(jω)| ≤ 0.001γ (8)

|T2(jω)| ≤ 0.001γ (9)

Note that the templates could depend on frequency, and that two different weights
could have been chosen. If the following specification was added:

num=Gain_roll_off;

den=conv([1/omega_roll_off 1],[1/omega_roll_off/omega_roll_off 1.4/omega_roll_off 1]);

[a,b,c,d]=tf2ss(num,den);

sys=ss(a,b,c,d);

%

specif{3}.input=[1 2];

specif{3}.output=[10 11];
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specif{3}.list=3:length(puls_specif);

specif{3}.template=squeeze(abs(freqresp(sys,puls_specif(3:end))));

specif{3}.obj=1; % AN ADDITIONAL MINIMIZATION OBJECTIVE

specif{3}.lin_log_x=1;

specif{3}.lin_log_y=1;

specif{3}.interp=1;

The issue would be to minimize γ under the following constraints:

|T1(jω)| ≤ 0.001γ (10)

|T2(jω)| ≤ 0.001γ (11)

σ(T3(jω)) ≤ γα(ω) (12)

where T3(s) and α(ω) are defined by specif{3}.

4.4.5 H2 minimization

It corresponds to specif{i}.obj = 2. Here is an example:

specif{4}.input=1;

specif{4}.output=1;

specif{4}.wmin=5;

specif{4}.wmax=25;

specif{4}.weight=1;

specif{4}.obj=2;

%

specif{5}.input=2;

specif{5}.output=1;

specif{5}.wmin=5;

specif{5}.wmax=25;

specif{5}.weight=2;

specif{5}.obj=2;

specif{i}.wmin and specif{i}.wmax define the frequency interval, on which the H2

norm is computed. specif{i}.weight allows to weight the minimization of the H2

norm of each transfer function, when different transfer functions are simultaneously
considered. In the above example if T1 (resp. T2) is the transfer function between
the first (resp. second) disturbance input and the first output, the following quantity
is minimized: ∫ 25

5

|T1(jω)|2dω + 2

∫ 25

5

|T2(jω)|2dω (13)
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specif{i}.weight must be a positive scalar. Nevertheless, let J be the above quan-

tity: note that the ”cumulative H2 norm”, which is displayed on screen is
√
J

2π
, i.e.

it’s homogeneous to an H2 norm.

4.4.6 H2 constraint

The only differences with the above subsection are specif{i}.template, which re-
places specif{i}.weight, and specif{i}.obj = 3. Here is an example:

specif{4}.input=1;

specif{4}.output=1;

specif{4}.wmin=5;

specif{4}.wmax=25;

specif{4}.obj=3;

specif{4}.template=0.13;

The corresponding constraint is:√
1

2π

∫ 25

5

|T1(jω)|2dω ≤ 0.13 (14)

specif{i}.template must be a positive scalar.

4.4.7 Summary

The following table summarizes the design specifications:

nature of the spec. obj list of required fields in specif
H∞ constraint 0 obj, input, output, list, template, lin log x, lin log y, interp

H∞ minimization 1 obj, input, output, list, template, lin log x, lin log y, interp
H2 minimization 2 obj, input, output, wmin, wmax, weight
H2 constraint 3 obj, input, output, wmin, wmax, template

Several H∞ (resp. H2) minimization objectives can be accounted for, but it is not
possible to simultaneously minimize H∞ and H2 objectives. The special case of the
H2 minimization of an objective under H2 constraints is not allowed.
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4.5 Convex optimization with a cutting planes method

To simplify the exposition we assume that the problem is to minimize γ under the
constraints:

σ(T1(jω, θ)) ≤ γ α1(ω) (15)

σ(T2(jω, θ)) ≤ α2(ω) (16)

where Ti(jω, θ) are affine functions of θ. Thus, there is anH∞ minimization objective
and an H∞ constraint. The case of H2 specifications is simpler to explain.

4.5.1 Principle of the cutting planes method

First note that the convex constraint (16) can be approximated at θ = θ0 by an
affine one:

σ(T2(jω, θ0)) + ST (θ − θ0) ≤ α2(ω) (17)

where S is called a subgradient. Indeed, for all θ:

σ(T2(jω, θ0)) + ST (θ − θ0) ≤ σ(T2(jω, θ)) (18)

When approximating (16) at different points θ = θi and at different frequencies
ω = ωi all these affine constraints (17) can be stacked into an LP constraint Aθ ≤ b.
In the same way, the convex constraint (15) can be approximated at θ = θ0 by:

σ(T1(jω, θ0)) + ST (θ − θ0) ≤ γ α1(ω) (19)

Let γ∗ be the minimal value of γ under constraints (15,16) on a frequency
interval. Using the above approximations a lower bound of γ∗ can be computed as
the minimal value of γ under the LP constraints:

Aaug

[
θ
γ

]
≤ baug (20)

An upper bound of γ∗ is also computed, noting that any value of θ which satisfies
the H∞ constraint (16) provides a value of γ. Thus, the principle of the cutting
planes algorithm is as follows:

1. Compute the value θ̃ of θ which minimizes γ under the LP constraint (20).
Let γlb be the associated minimal value of γ.



19

2. Compute an upper bound γub of γ∗. If the gap between the bounds is close
enough stop. Otherwise approximate convex constraints (15,16) at θ = θ̃ and
at the critical frequencies, where constraints are the most violated. Return to
step 1.

Thus, the issue is to refine the affine approximation of the initial convex optimization
problem, until γ∗ is computed with a satisfactory accuracy.

The case of an H2 minimization objective or constraint is simpler (see the end
of section 3.2), since it reduces either to the minimization of γ under the constraint:

θTQθ + fT θ + f0 ≤ γ

or to the constraint (C is fixed):

θTQθ + fT θ + f0 ≤ C

In the same way as σ constraints these quadratic constraints can be approximated
as affine ones.

4.5.2 The algorithm

Here again, we first consider the simplified optimization problem (15,16). The H∞
specifications are defined on a continuum of frequencies. Nevertheless, the poles of
the closed loop transfer function T1(s)+T2(s)Q(s)T3(s) are a priori known, so that it
is possible to define a fine frequency gridding which is a satisfactory approximation
of the continuum (i.e. if the constraints are satisfied on the gridding, they are most
probably satisfied on the continuum).

The simplest solution would be to directly apply the cutting planes algorithm
on this fine frequency gridding, but it can be time consuming, especially in the
case of flexible systems with numerous bending modes since the required frequency
gridding can be very large. A more efficient solution is to iteratively refine the
frequency gridding, which is used by the cutting planes algorithm:

1. Initialization: an a priori fixed fine frequency gridding is defined for validation
of H∞ specifications (and also for H2 ones if any). A second rough frequency
gridding is defined as the initial design gridding.

2. Convex optimization over the design frequency gridding: at the end of the
optimization H∞ specifications (15,16) are satisfied at each point of the design
frequency gridding for γ = γ∗, where γ∗ is the minimized value of the H∞
objective.
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3. Validation of H∞ specifications over the fixed fine frequency gridding: the issue
is to check whether theH∞ specifications (15,16) are still satisfied for γ = γ∗ at
each point of the fine frequency gridding (with some numerical tolerance, e.g. 1
%). If yes stop. Otherwise just choose for each H∞ constraint or minimization
objective the critical frequency, where the constraint or minimization objective
is the most violated. Add this set of critical frequencies to the design gridding
and go back to step 2.

It is worth emphasizing that the final design gridding is usually much smaller than
the one used for validation. The value of γ∗ increases at each iteration, since a larger
number of frequencies and thus of constraints is considered. Moreover, subgradients
are kept from one optimization to an other: if the LP constraints A1θ ≤ b1 were
obtained at the end of the first optimization, with a rough frequency gridding, the
initial value of the LP constraints at the beginning of the second one will still be
A1θ ≤ b1, in order to keep all information from the first optimization. This trick
enables to save a large amount of computational time.

The case of H2 specifications is very simple, since these ones already correspond
to the fine frequency gridding. The associated quadratic criterion corresponds to
a single minimization objective or to a single quadratic constraint (which is inde-
pendent of frequency). Note finally that it would be possible to avoid the use of a
fine frequency gridding using a frequency sweeping technique described in [8]. But
remember the poles of the closed loop transfer function T1(s) + T2(s)Q(s)T3(s) are
a priori known, so that it is possible to refine as much as necessary the gridding
around the natural frequencies of the closed loop flexible modes, if any.

4.5.3 One-shot vs progressive design

A progressive design is possible for the case of a large number of optimization pa-
rameters. If there are e.g. 80 optimization parameters, only the first 8 optimization
parameters will be used. Then the first 16 optimization parameters are used. . . Until
all 80 optimization parameters are used. The decrease of the minimized objective
is visualized as a function of the number of optimization parameters. Subgradi-
ents are kept from an optimization to an other in order to save a large amount of
computational time.

4.5.4 On screen

We just explain with a few words what appears on screen during convex optimiza-
tion:
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SEARCH OF A FEASIBLE POINT

1: constr_max = 3.233e+000 (8 variables)

2: constr_max = 3.206e+000 (8 variables)

3: constr_max = 3.311e+000 (8 variables)

4: constr_max = 2.272e+000 (8 variables)

5: constr_max = 1.282e+001 (8 variables)

6: constr_max = 5.959e+000 (8 variables)

7: constr_max = 8.121e+000 (8 variables)

8: constr_max = 1.321e+001 (8 variables)

9: constr_max = 8.985e-001 (8 variables)

MINIMIZATION OF THE OBJECTIVE

1: 0.000e+000 <= gamma <= 3.835e+001 (8 variables)

2: 1.375e+001 <= gamma <= 3.835e+001 (8 variables)

3: 2.697e+001 <= gamma <= 3.835e+001 (8 variables)

4: 2.982e+001 <= gamma <= 3.835e+001 (8 variables)

5: 3.072e+001 <= gamma <= 3.478e+001 (8 variables)

6: 3.121e+001 <= gamma <= 3.478e+001 (8 variables)

7: 3.169e+001 <= gamma <= 3.478e+001 (8 variables)

8: 3.185e+001 <= gamma <= 3.478e+001 (8 variables)

9: 3.190e+001 <= gamma <= 3.478e+001 (8 variables)

10: 3.215e+001 <= gamma <= 3.392e+001 (8 variables)

11: 3.220e+001 <= gamma <= 3.392e+001 (8 variables)

12: 3.238e+001 <= gamma <= 3.392e+001 (8 variables)

Minimization objective between 32.379 and 33.921 (4.546e-002 percent)

A feasible point is first computed. A convex optimization problem without
constraints is solved. constr max represents the maximal value of the normalized
H∞/H2 constraints. The feasibility algorithm stops as soon as constr max is less
than 1, which means that the constraints are feasible. The objective is now min-
imized. An interval is computed for the minimized objective ”gamma”, see e.g.
”1.375e+ 001 <= gamma <= 3.835e+ 001”.

4.5.5 Advanced tuning of the optimization algorithm

Advanced tuning parameters can be found in the file design tuning.m, and espe-
cially:

• Display of intermediate results inside the convex optimization algorithm.

• Minimal gap between the lower and upper bounds of the minimized objective.
The algorithms stops as soon as this gap is achieved.
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• eps cvge cutting plane: ideally it should be zero. A small positive value may
increase the speed of the algorithm, but it’s dangerous. The algorithm may
conclude that the constraints are not feasible, even if they are feasible. The
idea is indeed to slightly over-constraint the problem in the LP solver.

• Maximal infinity norm of the vector of optimization parameters: ideally it
should be ∞, but it’s dangerous for the algorithm. Moreover, if big numerical
problems occur with the LP solver, constraining this norm may be a solution.
In any case, at the end of the optimization the infinity norm of the optimal vec-
tor of optimization parameters is given. If it is strictly less than the maximal
norm this means that this constraint was not active.

4.6 Description of obs state feedback.mat

This file contains an initial controller under an observed-state feedback form. It
must contain:

• sys open loop, feedback inputs, feedback outputs: see section 4.1.

• K, L: stabilizing state-feedback and observer gains.

• sys Q: an initial value of the Youla parameter.

• sys K: the corresponding value of the feedback controller K(s).

Let:

A=sys_open_loop.a

B=sys_open_loop.b(:,feedback_inputs)

C=sys_open_loop.c(feedback_outputs,:)

D=sys_open_loop.d(feedback_outputs,feedback_inputs)

D must be zero since the open loop transfer matrix between the plant inputs and
outputs used by feedback must be strictly proper. The closed loop state-matrices
A − BK and A − LC are supposed to have all their eigenvalues in the Left Half
Plane. sys Q is supposed to be a STABLE transfer matrix, whose I/O dimensions
are the same as those of the feedback controller. In our example the zero matrix
gain sys Q was computed as:

sys_Q=ss([],[],[],zeros(length(feedback_inputs),length(feedback_outputs)));

Note that the corresponding initial controller sys K uses a POSITIVE feedback.
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4.7 Description of youla file.mat

This file contains an initial value sys Q of the Youla parameter, a structure youla
which will be described below, and specif inputs and specif outputs which are the
lists of the open loop plant I/O used by the design specifications. These 2 lists are
used to compute the Youla parameterization in youla. In our example:

specif_inputs=3:4;

specif_outputs=1:9;

If all plant outputs may be used by the design spec., as in the example above, the
plant inputs used by the feedback controller cannot be used by the spec. The fields
of the structure youla are:

1. youla.sys T : a state-space representation of T (s) =

[
T1(s) T2(s)
T3(s) 0

]
.

2. youla.idxI2 and youla.idxO2 are the lists of inputs and outputs of T(s), cor-
responding to the feedback with Q(s).

3. youla.idxI1 and youla.idxO1 are the lists of inputs and outputs of T(s), cor-
responding to the design specifications.

4. youla.puls valid is a fine frequency gridding that will be used for validation
and H2 spec. See Routines CCD/comp puls valid.m for its computation.

As for the design specifications, sub-transfer matrices will be shaped inside
T1(s) + T2(s)Q(s)T3(s), so that it’s necessary to know the meaning of these closed
loop inputs and outputs, i.e. to which open loop plant inputs and outputs they
correspond.

5 Convex design of a gain-scheduled LFT con-

troller

This section presents Matlab computational tools for computing a gain-scheduled
feedback controller under an LFT form, on the basis of an open loop LFT model,
using an extension of the Youla-parameterization to the LFT case. The technique,
which is described in [7], is illustrated on a nonlinear missile example [13] in the
directory Demo LFT missile, which contains 3 main files:
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• script 1 LFT initial controller.m: design of an LFT state-feedback observer
with calc state feedback obs lft one shot.m and calc state feedback obs lft valid.m
(in Routines CCD/∗). The main input data is the open loop missile LFT
model, loaded frommissile LTI open loop.mat, which describes the lineariza-
tions at a continuum of trim points parameterized by Mach and the angle of
attack α 1. The Simulink file open loop missile.mdl is also used. The result
is saved in sf obs controller.mat.

• script 2 LFT Y oula parameterization.m: computation of the Youla parame-
terization on the basis of the initial controller, loaded from sf obs controller.mat.
The file closed loop youla.mdl is used. The result is saved in youla.mat.

• script 3 LFT design Q.m: design of the Youla parameter Q(s) on the LFT
model. Q(s) is synthesized on a gridding of models using youla lft design one shot.m
(in Routines CCD/∗). The associated tuning parameters are extracted from
design tuning.m. The Youla parameterization is loaded form youla.mat. Q(s)
is validated on a (larger) gridding of models and on the continuum of models
using youla lft validation 1/2.m (in Routines CCD/∗).

The Optimization Toolbox, the System Control Toolbox, the Robust Control Tool-
box and Simulink are required, as well as the LMI Control Toolbox for the synthesis
of the initial observed state feedback LFT controller.

A few additional remarks:

• The LFT continuum of closed loops is validated using mu margin.m, which
is extracted from the Skew Mu Toolbox [9].

• The missile example is a bit complexified by the presence of an integrator
on the output α: since the state of the integrator can be measured, we have
chosen to introduce the integrator in the state-feedback design, but not in
the observer model. A simpler solution would be to introduce this integrator
in the observer model, i.e. an LFT observed state-feedback controller could
be computed on the basis of a generic augmented model with the additional
output

∫
α.

• Since the overall design is convex, it would be possible to iteratively compute
the LFT feedback controller with guaranteed convergence properties: the con-
troller is synthesized on a finite set of design models, then it is validated on the

1missile LTI open loop.mat contains sys M and blk. blk describes the structure of the model
perturbation ∆ (musyn format). sys M is a state-space representation of M(s), whose first I/O
correspond to the interconnection with ∆. The last input is the physical one, i.e. the control input,
while the last 3 outputs are Nz, q, α.
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LFT continuum (i.e. ∀δ ∈ D, where δ is the vector of normalized scheduling
parameters and D is the unit hypercube). If spec. are not satisfied on the
continuum, a worst-case model is added to the set of design models. . .
But validating the controller on the LFT continuum is (very) time-consuming,
so that our choice was a one-shot design on a finite set of models, followed
by a validation on the continuum a posteriori. In this context, it is worth
strengthening the spec. in the one-shot design, with respect to the valida-
tion step. Another possibility is to choose worst-case models inside kD, with
k > 1, during the multi-model design stage, and then to check if the spec.
are satisfied ∀δ ∈ D. For an example, see the design of the observer gain in
Demo missile/script 1 LFT initial controller.m.

About the specifications:

• When synthesizing the Youla parameter on the gridding of models, specif
and puls specif are defined in the same way as for an LTI feedback controller:
H2 and H∞ spec. can be accounted for. There’s only an additional field
specif{i}.models which gives the list of models, on which spec. # i must be
satisfied. Logically, this spec. is to be satisfied on all models of the gridding
since it is to be satisfied on the continuum. Nevertheless, if an additional aim
is to retune the gain-scheduled controller at specific trim points, additional
spec. may be added which are to be satisfied only at specific points described
by the field specif{i}.models.

• When validating the Youla parameter on the LFT continuum, only H∞ spec.
can be accounted for. Computing a worst-case H2 performance level is a much
more difficult problem than computing a worst-case H∞ performance level.
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