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Abstract

To analyze a large class of stability problems, typically non-linear, uncertain,
time-varying, etc.. closed loop, an IQC approach is involved. In the context
of this toolbox, we use standard [QC description and focus on the algorithmic
issue. Usually the Kalman-Yakubovitch-Popov lemma based resolution is
involved but with the consequence to add an auxiliary matrix P whose the
size increases with the closed loop order. Finally this kind of approach leads
to a strong increase in the number of optimization variables, which makes
it untractable for high order models. Here a specific technique has been
developed to solve the stability problem directly in the frequency domain
with the guarantee that the solution is valid on the whole frequency domain.
Some examples are given to illustrate the approach and a detailed description
of the tool is provided.



Chapter 1

IQC based Robustness Analysis
Technique

1.1 Introduction

The Integral Quadratic Constraint (IQC) technique, which appeared during
the Nineties at least in its ‘modern form’ [10], can be viewed as the merg-
ing of two well-known robustness analysis techniques, namely the (scaled)
small gain techniques, the best known being p analysis [3], and the positiv-
ity /passivity techniques which study the interconnection of an linear time in-
variant (LTI) operator with a non-linearity (the famous ” Lur’e problem”). As
a consequence, the IQC technique enables to study a wide range of problems,
namely the robust stability and performance properties of the interconnec-
tion M(s) — A of an LTT operator M(s) with a structured model uncertainty
A containing non-linearities, LTT and/or linear time-varying (LTV) param-
eters, neglected dynamics, delays, specific non-linearities such as friction or
hysteresis. . .The principle is to replace each block of uncertainty by an
IQC description of its inputs/outputs, i.e. the inputs/outputs of the block
(e.g. a non-linearity inside a sector, possibly with a bound on its slopes)
are supposed to satisfy a set of Integral Quadratic Constraints [10, 5]. The
finer the IQC description of the block is, the less conservative the result is.
This approach is very interesting for two reasons. It includes in the same for-
malism a large set of linear and non-linear stability theorems and finally the
IQC approach can be described as an unified formalism. And secondly this
unified formalism is based on inputs/outputs approach, namely a frequency
domain approach.

In the context of this toolbox, we use standard IQC description and focus
on the algorithmic issue. Let us remind that the stability criterion of this ap-



proach is based on Frequency Dependent Inequalities (FDI). Then the most
classical way to solve an IQC analysis problem consists in solving the state-
space LMI conditions derived from the KYP lemma, so that the optimization
variables come from the IQC multipliers, but also from the Lyapunov ma-
trix P. However, this solution becomes untractable when the order n of the
state-space representation becomes too high, since the number of scalar op-
timization variables in P grows quadratically with n. Noting moreover that
the initial state-space representation of M (s) is augmented with the state-
space representations of the dynamic multipliers, so that even if the order of
the initial state-space representation is low, it may increase very fast when
introducing dynamic multipliers. Different approaches based on Hamiltonian
matrix as been developed ([8] for example and references therein) to avoid
this problem. Here an alternative technique is implemented. The approach
developed here is particularly attractive due to its conceptual simplicity. Be-
sides the technique is based on very usual and common solver which is the
LMI Toolbox of Matlab. In brief the implementation is straightforward,
completely self-contained in Matlab environment, which might be useful for
engineers in need for efficient and fast answers to analyze stability of complex
problems.

A technique which consists in checking the validity of the solution on the
whole frequency domain has been developed. This technique is based on a
mathematical result on the singular value maximum of an LFT (Linear Frac-
tional Transformation) structure. More precisely when a solution is obtained
from a frequency domain griding the stability criterion which depends on
frequencies is put under an LFT form to make appear the frequency w as a
real parameter in a A, block of the LFT. Then the validity domain of the
solution is computed thanks to an algebraic approach extracted from [12] and
adapted to our problem [1]. If this domain is [0, +o0[ the solution is valid
on the whole frequency domain. Else, frequencies where the FDI are not
satisfied are detected and are added to the initial frequency domain griding
and a new solution is computed with the new griding and so on. If no solu-
tion is obtained on the griding the problem is considered as unfeasible. In
brief the stability problem is recast as an LMI feasibility problem where the
constraints (FDI) are added iteratively. Finally the number of optimization
variables is completely independent of the closed loop order, which makes it
very attractive for high dimensional systems [1].



1.2 1QC principle

An IQC describes a relation between inputs and outputs signals of an oper-
ator. Thus it is a mean to characterize this operator. These constraints can
be defined in the time or frequency domain since these two formulations are
completely equivalent. Nevertheless frequency domain constraints are more
often used, which leads to obtain stability conditions easier to handle. So
the definition of an IQC is given in the frequency domain:

Definition 1.2.1 Two signals respectively of dimension m et p, square in-
tegrable on [0,00][ i.e. :

v € LY30,00[, w e LL0,o00]
satisfy the IQC defined by 11 if and only if
T 06w T g [ 26w)
/_ [ W(jw) } (jw) [ () } dw >0 (1.1)

[e.9]

where v(jw) and W(jw) respectively correspond to Fourier transforms of
v et w such as w = Awv.

A priori the operator II, called multiplier, defined from j R in C'(m+p)x(m+p)
can be any measurable Hermitian-valued function. In most situations it is
sufficient to use rational operators that are bounded on imaginary ax.

e +
G(s)

Figure 1.1: Analysis problem.

The linear system G(s) is supposed stable and the problem consists in
analyzing the closed loop of figure 1.1 with a causal and bounded operator
A which can be non-linear and non-stationary. Let us suppose that inputs
and output signals of A satisfy the IQC defined by II. The following result
is extracted from [10].

Theorem 1.2.2 Let us suppose:

e the interconnection of G and TA is well posed for any T € [0, 1],
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o TA satisfies the 1QCs defined by 11, V1 € [0, 1],

e it exists € > 0 such as:

VweR { G(j.“) } T(jw) { G(}”) } < —el (1.2)
the closed loop system of the figure (1.1) is stable.
It is important to notice that if 7A satisfies several IQC I1y, ... 1I,, then

a sufficient condition for the stability is that it exists x1,...,x, > 0 such as

the inequality (1.2) is satisfied for I = z111; + ... + x,I1,.
A global multiplier

The following proposition is very useful to consider the case with several
multipliers [6].

Proposition 1.2.3 Let us suppose a block diagonal structure A = diag(Aq, . ..

and each A; satisfies the IQC defined by I1;. Then A satisfies the IQC defined
by I = daug(Ily, ... 11,,) where the operator daug is defined as follows. If

- n) 19
then
Iy 0 |1 O
daug(1ly, I1y) = qu H021 H013 H022 (1.4)
0 I, | 0 Iy

1.3 IQC Description

We have presented in the previous section the definition and the main stabil-
ity theorem. An important point is to define the multiplier IT explicitly. As
we will see, by the IQC approach, it is possible to recover numerous stability
theorems.

,A)



1.3.1 Slope restricted sector non linearity

Let us consider a non-linearity which is memoryless, static, and piecewise
continuous in ¢. It is required that the non-linearity satisfies a sector condi-
tion.

Definition 1.3.1 A memoryless non-linearity 1 : [0,00) x RP — RP? is said
to satisfy a sector condition if

(w — kv)" (w — kv) <0 (1.5)

where k and k are gains which represent the limits of the sector and w
and v represent the inputs/outputs of the non linearity.

|

Figure 1.2: Global sector non-linearities.

This definition is illustrated by figure 1.2 in SISO case. Equation (1.5)
can be formulated of the following way:

oo ] [ L]0 oo

As the integral of this function is positive and thanks to the frequency
and time domain equivalence the following inequality is obtained:

o0 N T 7 EN AL -
b(jw) —2kk k+k || 9(jw) S
Llaoa ) [ 25 i ez an
In brief Il pi0r = [ ;i@g k j‘2k 1 The stability of the closed loop which

corresponds to the interconnection of G(s) with a sector non-linearity (k, k)

b}



by a positive feedback is ensured if:

Ww € R, { G(}'“’) } [ ;i% Eff] [ G(iw) } <0 (18)

We find again with inequality (1.8) the circle criterion. It suffices to take
k=0,k=FKand G in —G (since the circle criterion is formulated with a
negative feedback) and the well known relation Re(G) > —1 is obtained for
a sector (0, k).

Sector non linearity with Popov criterion

The Popov criterion is widely used for this kind of non-linear analysis. Let
us remind that in SISO case the Popov criterion is written:

Re (1 + jhw)G(jw)) > —% (1.9)

If we use the Popov plot, i.e. the plot Re[G(jw)] versus wIm|G(jw)], the
closed loop stability is ensured if the Popov plot of G(jw) lies to the right of
the line that intercepts the point —1/k + 05 with a slope 1/\.

In brief let us consider a non-linearity with a sector (0,k), if it exists
A such as equation (1.9) is satisfied then the non-linear closed loop which
corresponds to the interconnection of G with the sector non-linearity is stable.
The multiplier which corresponds to the criterion Popov is [10, 4]:

B 0 Jjw
Hpopor = A { w0 } (1.10)
With several multipliers IIy, ..., II,, for one operator A, the final multi-

plier which corresponds to A is II = x1II; + ... 4+ z,II,, with z; > 0. Then
the final multiplier for the sector non linearity is II = 21lccior + I popou:

(1.11)

I = 2 seetor + M popor = [ —2xkk rk + 2k + jAw }

zk + zk — jAw —2x

As previously it suffices to take k =k, k = 0 and G = —G, to find again
in SISO case the Popov criterion of equation (1.9).

Remark 1: To compare Popov result with the IQC approach it is im-
portant to bear in mind that the IQC approach is involved with a positive



feedback whereas the circle/Popov criterion is involved with a negative feed-
back. Then it is necessary to multiply the linear part G(s) by —1 to switch
from IQC approach to circle/Popov criterion and vice versa.

Remark 2: The case where a sector (0,1) is considered is not at all
restrictive since any sector (k, k) can be transformed into a sector (0, 1) by
the loop shifting theorem [9)].

Remark 3: For a sector (0, 4+00) it is not judicious to replace k by a very
high value as 1e6, 1€9, etc... Let us consider an LTI model interconnected
by a negative feedback to a static non-linearity with a sector (0,+o00). The
SISO analysis shows that the Nyquist/Popov plot must lies to the right of
the point —1/k. In this case —1/k = 0. To recover an analysis problem with
a sector (0,1) it suffices to replace the linear part G(s) by G(s) = G(s) — 1,
which is equivalent ”to move” the nyquist plot of G(s) to the point —1. To
preserve the closed loop equivalence before and after this transformation (see
loop shifting theorem in [9] for example), it is necessary to replace the static
non-linearity by a static non-linearity interconnected to itself with a negative
(due to the negative feedback of the closed loop) and unitary feedback. It
is interesting to notice that this operation transforms a gain k into k = 1%@
Thus it is easy to see that when k£ = oo, k=1. And finally the problem
consists in analyzing the stability of the closed loop which corresponds to
the interconnection by a negative feedback of a linear part G(s) with a static
non-linearity of sector (0, 1). Let us remind that to involve the IQC approach
it is necessary to multiply G(s) by —1 to have a positive feedback (see remark
1). To be complete this kind of transformation remains valid in MIMO case,
since it suffices to apply it on each channel.

Slope restricted sector non-linearities

A more general multiplier has been developed [11] since it includes the Popov
multiplier case. The advantage is to take into account the slope restricted
feature of a static non-linearity, and consequently to reduce the conservatism
of the Popov multiplier. The multiplier used for a sloped restricted (0, /3)
sector (0, k) non-linearity ¢ is:

- 0 kx 4+ jw) + w?By
t, = kr — jwA + w?By —2x — 2wy (1.12)

with z,v > 0, and A € R. If v = 0 the Popov multiplier is recovered.



1.3.2 Dynamic uncertainty

Let us consider an LTT dynamic uncertainty A(s) such as [|A(s)]|s < 1. The
IQC which corresponds to dynamic uncertainties is:

X (jw) 0

2= 07 —x(w)

(1.13)
with X (jw) = z(jw)] = X(jw)* = z*(jw)I > 0. It is interesting to notice
the equivalence of this formulation with the upper bound of p in the case
of dynamic uncertainties. More precisely to ensure the stability of a M — A
structure, it suffice to find D = D* > 0 where D commutes with A such as:

IDMD ™o < 1
< VAma(DMD-1)*(DMD-1) < 1
& (DMD Y'DMD'<I
& MD*DM < D*D
& MXM<X

with X = D*D and G = M, inequality (1.2) with Il is find again.

1.3.3 Real uncertainty

Let us suppose that A = §I where § represents a real uncertainty of absolute
value < 1. The multiplier which corresponds to this case is the following one:

X(jw) Y (jw)
Yrjw) —X(jw)
with X (jw) = X (jw)* > 0 and Y (jw) = =Y (jw)*. If II; is used in inequality
(1.2) the mixed g upper bound is recovered with G = M, X = D and
Y = —jG; [3] (let us notice that Y* = =Y < G5 = G which is in accordance
with the mixed p upper bound). Be aware that G is named G in the p

definition and corresponds to a scaling to take into account the real nature
of §.

II; = (1.14)

1.3.4 Time varying real parameter

Let us consider A = §1 with § is a varying parameter and ||0|| < 1. In this
case the multiplier is static:



XY}

My — [ S0 (1.15)

where X = X7 >0 and Y = —Y7 are real matrices.

1.3.5 Slowly time varying real parameter

Here [0(t)] < 1 and 6(t) < d. Let X = R*R and Y = S — S*. Besides let us
define [7]:

Ro(s) = Cgr(sl — Ag)™!
Rp(s) = (sI —Agr) 'Bg
Sc(S) = Cs(S] — AR>_1
SB(S) = (SI — AR)ilBS

with the realizations R(s) = Cr(sI — Ar) '!Br+ Dg and S(s) = Cg(sI —
Ag)™1Bg + Dg. Then the following multiplier corresponds to LTV parame-

ters:

R*R + dI™T S — 5"

S*—S  R'R+drTr (1.16)

s =

Rp

with'=| Sp | and T = R:R.

S¢

Let us notice 3 important points:

The terms dI™T" and dT*T can be interpreted as penalty to take into
account the varying parameter nature.

Consequently if d = 0 the multiplier which corresponds to a constant
real scalar is recovered:

R(s)*R(s)  S(s) —S(s)"

Ms(s) = { S(s) — S(s) —R(s)*R(s) (1.17)

In the case of an arbitrary rate of variation, i.e. d — oo, the stability

criterion can be satisfied only if the multiplier II is constant. Indeed

[' =T = 0 which implies that R(s) = Dg and S(s) = Dg, and then
Mo = | JE 55 e ds to the multiplier f

5() gT _ g _prp | Which corresponds to the multiplier for

LTV parameter case.



1.3.6 Polytopic model

Let us consider a polytopic uncertainty A, € R™" . A, takes values in
the polytope D = hull{Aq,..., Ay} where A; represents the vertices of the
convex hull D ; N =2" and 0 € D. The multiplier which corresponds to the
polytopic representation is the following one:

H%:{é;jgl (1.18)

where X = X7, Z = Z7 > 0 and Y are real matrices.

1.4 IQC parametrization

In this section the IQC parametrization w.r.t optimization variables to solve
the feasibility problem is presented. From this parametrization the global
multiplier is built and formulated under a factorized form to be implemented
and solved thanks to the Matlab LMI toolbox.

1.4.1 Slope restricted sector non linearities

IQC for sector non-linearity with a sector (0, k) is the following one:

0 k
Hsector = |: L —9 :| (119)

0 Jjw

M popos = A [ i 0 ] , YA€ER (1.20)

where finally the multiplier:

0 xk 4+ jw

II = stectoT + HPOPOU - |: zk — ]W)\ —2x

},xZO, AER (1.21)

It is possible to have a formulation with a sector (k, k). But if k > 0 for
example, conditions to involve the stability criterion (1.2) are not fulfilled,
since the 7A must satisfy IQC defined by II for any 7 € [0, 1]. Besides it is
well known that any sector (k, k) can be transformed of equivalent way into
a sector (0, k) by the loop shifting theorem.

If the slope restriction (0, ) is used we obtain the following multiplier:

B 0 kx + jw + w?By
ty = kx — jwl + w?Bry —2x — 2w?y (1.22)

10



1.4.2 Dynamic uncertainty

As indicated previously the multiplier is:

X (jw) 0

s = 0 —X(jw)

(1.23)
The resolution of X (jw) is based on the following parametrization:

X (jw) = R(jw)*UR(jw) = R(jw)*R(jw) (1.24)

with A(jw) € C™* U = UT, R(jw) = blkdiag(F,F,...,F) where F is
repeated n times, with F' = [1; filtery;...; filter,]. Typically these filters are
first order low-pass filters.

1.4.3 Uncertain real scalar

For this case the multiplier is:

X(w)  Y(jw)

M= | &V , 1.25
TV —XGe) 2
The parametrization used for X (jw) and Y (jw) are:
X(jw) = R(jw)'UR(jw) = R(jw) R(jw)
Y(jw) = VS(jw)— S(jw)* V! =8 —5* (1.26)

with A = 61,,, R(jw) = S(jw) = [I,.; filtery x I; filtersxI,; . .. ; filter,x
I.], U = UT. Let us notice that this parametrization is coherent with
X(jw) = X(jw)* and Y (jw) = =Y (jw)".

As previously this parametrization preserves the convexity of the opti-
mization problem since the stability criterion is affine with decision variables.

1.4.4 Slowly time varying real parameter

Let us consider the multiplier which corresponds to LTV parameters [7]:

R*R + dI™T S — 5"

S*—S  R‘R+drT (1.27)

Hsy =

with I" and T defined as previously. With the parametrization (1.26) the
following multiplier is obtained:

11



o _ [ RUR+d(RRs + SpSp + VSeSeVT) VS-SvE
@ = SVT - VS —R*'UR+ dR*URcR5UR
We can see clearly that this multiplier is bilinear in U and V. Then to
search for a multiplier Ils( such as:

G(jw) 1" [ [ dVSeSEVT 0 G(jw)
- - o~ ~ ) <
{ I } H 0 akURoRsUR | T | T | =Y
(1.28)
. R*UR+ d(R5Rp + S455) VS —S*VT ] .
with II;, = [ g*‘(/TB_ ‘E‘;g 558) _BUR } is not a convex

problem.

To make convex this problem let A = [ G(}w) } and W = [ \/ES/S \/C_ZI:ZE)URC } ,

then inequality (1.28) becomes:

AT A + AWW*A <0 (1.29)

From this relation it is possible to involve the Schur lemma which is based
on the following property where A(¢), B(§),C(§) and D(§) are affine in &:

A(€) > 0 A) B(e) c©) B
C(€) — BT(E)AE)B(E) > 0 ﬁ{BT@ C(€) ] >O@{B<s> A(E) ]>O

In brief the Schur lemma allows to transform a quadratic constraint into
an affine one. Finally inequality (1.28) is equivalent to the following LMI
constraint:

e A (1.30)

where II;;,, and W are affine in U and V. Of course if d = 0 then W = 0,
and it remains only the first term of the LMI, A*Il;;,, A, which corresponds
to LTT uncertainties case.

[AH“”A AW]<0

1.4.5 Time varying parameters and polytopic form

These multipliers are easily implemented since X, Y, Z are real matrices and
independent of frequency. The general form is:

12



XY } (1.31)

HA:{YT ~Z

where X, Z = and Y are real matrices.

o if X =XT">0 Y =-Y" and Z = X the multiplier corresponds to
the time varying case with an arbitrary rate of variation;

o if X = X7 7 =77 > 0 the multiplier corresponds to the polytopic
case.

1.5 Resolution technique

1.5.1 State-space approach

The classical approach to solve the previous LMI feasibility problem (1.2) is
based on the Kalman-Yakubovitch-Popov lemma.

Lemma 1.5.1 Let us consider M a symmetric matriz, A, B,C, D a state-
space representation of ® such as ®(s) = C(sI — A)"'B+ D and Vw € R
det(jwl — A) # 0 then the two following propositions are equivalent: (i) the
quadratic constraint

Vw P(jw) " MP(jw) <0 (1.32)

is satisfied
(ii) it erists P = PT > 0 such as

(5 Jrte o1+ (2 B] [ 0] [0 5

The important point is that the second proposition can easily be solved since
it is a feasibility problem under LMI constraints. We notice that inequality
does not depend on frequency but a new optimization matrix P has appeared.
In other terms an infinite set of constraints has been transformed into one
constraint with a new optimization variable P. To involve the stability cri-
terion (1.2) in theorem 1.2.2 it suffices to choose the multipliers as:

S aill(je) = (o) MU(jw) (1.33)

where M is a symmetric matrix, structured according to the problem con-
sidered. This matrix contains all optimization variables. With

13



P(jw) = ¥(jw) { Gg“) ] =C(jwl —A)'B+D (1.34)

the previous lemma allows to transform the infinite set of inequalities (1.2)
into one LMI w.r.t. optimization matrices P and M.

1.5.2 Frequency domain approach

With the previous resolution technique an infinite number of LMI constraints
has been replaced by one LMI constraint. Nevertheless this transformation is
not " free” since a new optimization matrix P appears whose the size depends
on the order of G plus dynamics of ¥. More precisely the number of decision
variables grows quadratically, which can lead to computational problem.

In this article the optimization problem is solved directly from frequency
domain inequalities thanks to a griding. Of course the drawback to this ap-
proach is the lack of guarantee on the validity of the solution on the frequency
domain continuum.

For this, a specific technique is involved to guarantee that the solution is
valid on the whole frequency domain. In fact the basic idea is to represent
the frequency as a real uncertain parameter in an LFT. The issue is to de-
termine a complex matrix S, for a given strictly positive frequency wy such
as:

Z(j(wo + dw)) = F1(S(wo), dwl,,) Vow > —wp

where Z(s) is dynamic system, (Az, Bz, Cz, D=) a state-space representation
of Z(s) and m the order of =(s). Besides it is well known that:

I
=(7 ) = F(Z;, —=—) VYw>—
(4 (wo + dw)) i( 0’w0+(5w) W 2 —Wp
with ;
=0 B A
Vi TIOE
Besides let us notice that:
L F(T,éwl,,)
[ —— w m
wo + 0w e

with: X
I, 1,
In brief we have an LFT of an LFT:

14



E(j(wo +ow)) = Fi(Z, F(T,éwl,)) Yw > —wy
= E(S(wo)aéwjm)

where S(jwg) can be written as follows:

S(wo)=<Df _%4:)*<wio<_[[ _[I ))

where * is the star product. Let us remind that the star product corresponds
to the interconnection of two LFTs. This kind of result is widely used in
p-analysis.

The validation on the frequency domain continuum is based on following
lemma [12]:

&|{$ [

Lemma 1.5.2 Let us consider the general case of a lower LFT Fj(M,A,)
where A, is a real diagonal model perturbation, whereas M is a complex
matriz which is partitioned as:

Let:

My 0 } [ 0 le] _1[M12 0 }
H = * - * X *
{ 0 M, M, 0 M
| I Mn
=g 1]
Let us suppose that 7(My1) < 1 and let k < 1/pa,(Mas). Then

F(F(M,A,)) <1 VA, € kB,

iof and only of )
det(I — AH)#0 VA, € kBa,

where p represents the structured singular value [2] and Ba, the unit ball in
the space of the structured perturbation A,.

This technical result can be applied to S(wp) interconnected to dw as a lower
LFT where dw is the real parameter in A,.

15



Proposition 1.5.3 if 5(Z(wp)) < 1 then a(F(S(wp),0wl,,)) < 1 holds true
for wo + dw € |w,w| where w and W are computed as follows:

S Sie
S(wn) =
(o) { S S
and S
|1 11
=g 7]
Let then:
_ | S22 0 | | 0 Sy 1| S12 0
H[ - S] [STZ - }x v (1.35)
Let m, be the real negative eigenvalue of H of maximal magnitude. Then:
1
W=uwy+ — (1.36)
M
Let n,, be the real positive eigenvalue of H of maximal magnitude. Then:
_ 1
W=uwy+ — (137)
Tlp

This proposition is an application of lemma 1.5.2. It suffices to write
Fy(S(wo), 0wl,,) = Si1+0wS12(I, —0wSae) 1 Sa;. Besides condition o(My;) <
1 of lemma 1.5.2 is equivalent to @(Sy;) < 1 which corresponds to the con-
dition 7(=(wp)) < 1 of proposition 1.5.3. The assumption k& < 1/pua, (Mas)
means that F;(S(wp), dwl,,) is well-posed for dw = —wy and thus for all dw >
—wp. And finally lemma 1.5.2 can be applied by noting that det(I —owH) =0
can be rewritten as det(I /0w — H) = 0.

In brief if we consider a transfer matrix =, in order to determine the fre-

quency domain containing wy such as the maximal singular value of Z(jw) is
inferior to 1, it suffices to evaluate w and w as above.
But it remains a problem since the IQC formalism involves a positivity condi-
tion (1.2) and not a weak gain condition as used here. To solve this problem a
specific bilinear transformation is used. This transformation, named Cayley
transform, is the following one:

FE)<1eZ+2°2>0 (1.38)

with 2 = (I — Z)(I + Z)~!. In other terms if Z represents the stability cri-
terion typically the positivity condition by taking the opposite of inequality
(1.2), an inequality of type weak gain which is completely equivalent to the
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positivity condition is obtained by this transformation. This equivalence re-
quires that (I+72) is invertible. Let us notice that in the IQC context Z = Z*.

Remark 4: It is important to notice that A, has no link with the A
block of the closed loop, where A contains all uncertainties, non-linearities,
etc... of the analysis problem. This A block is not used explicitly by the IQC
approach, since it is replaced by a multiplier II which ”describes” more or
less finely the input/output behavior of the A block thanks to a quadratic
constraint. And finally a positivity condition (1.2) on transfer function ma-
trix which corresponds to the stability criterion is got. When a solution is
obtained, the Caley transform is involved to derive a weak gain condition
and to evaluate the solution validity. This evaluation is based on an LFT
realization of Z(w) where S(wy) is interconnected to A, block which contains
the repeated real scalar dw.

Sketch of the algorithm

The algorithm can be summarized by the following steps:

1. A solution is searched for on a frequency domain griding (at worst only
one frequency can be used at the beginning) to satisfy the stability

G(jw) ]*H { G(jw)

T T < 0

criterion [

2. If no solution is found stop. Else go to step 3;

3. A frequency domain, where the stability criterion is satisfied with the
solution obtained previously, is computed. If the frequency domain is
[0 + oo| the solution is validated on the whole frequency domain and
the stability is proved. Stop. Else go to the step 4;

4. Critical frequencies where the stability criterion is not satisfied are
added to the frequency domain griding. Go to the step 1.

As indicated the resolution is based on the feasibility problem under LMI
constraints. Consequently the Matlab function feasp.m is involved to solve
the convex optimization problem represented by the stability criterion at
each frequency domain point.

By this iterative approach the validation step is performed a priori and
during the LMI optimization problem resolution. The choice of the initial
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griding has no influence on the feasibility problem. It is possible to choose
at the first iteration just a singleton. But to limit the number of iterations,
and consequently the calculation time, without any knowledge a priori, it
is recommended to take some frequencies roughly spread on the frequency
domain. It is possible, when first solutions are obtained, to tune this initial
frequency domain griding to decrease the number of iterations.

Concerning the choice of critical frequencies, more precisely 3 frequency
domain points are chosen. Two frequencies, for instance named w, and
wyp, correspond to frequencies where the stability criterion intercepts the
x/frequencies ax, and the last one corresponds to a frequency domain in-
termediate point. This point is chosen as follows: 10 uniformly distributed
frequency responses are evaluated between w, and wjy, and the frequency
which corresponds to the highest domain frequency response among the 10
ones is chosen. This solution does not necessarily allow to detect the H.,
norm in the interval [w, wp] as illustrated in the figure 2.3. But it is usually
sufficient to obtain a solution which satisfies the weak gain condition at the
next iteration. The algebraic evaluation of a band-limited H,, norm, typi-
cally an Hamiltonian matrix based technique, is possible. But it is question-
able for state-space representation of several hundreds states and/or several
dozens inputs/outputs in term of numerical robustness and calculation time
for a gain which seems very hypothetical. A last point is the case where the
frequency domain is [w,, +0oo[: only 2 frequency domain points are added (w,
and 10w,).

Remark 5: It is necessary to check the positivity constraint of the multi-
plier X (jw) = R(jw)*UR(jw) for all w. Of course it is possible to proceed of
the same way: frequencies where the multiplier is negative are added in the
optimization problem by an iterative approach. But this approach is useless
and increases the computational burden. By noting that hardly always X is
positive when the stability condition is satisfied for any frequency, the positiv-
ity condition of X is checked by the technique presented previously just once,
i.e. when the stability criterion is satisfied on the whole frequency domain.
In the exceptional case where it exists a frequency such as X (jw) < 0 then
this frequency is added in the optimization problem and another solution is
searched to satisfy the stability condition and the positivity of X.
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Chapter 2

Frequency domain resolution
tool

In this chapter we will illustrate the use of the IQC frequency domain reso-
lution tool. We will see thanks to some simple examples how to involve the
different multipliers which correspond to the analysis problem. This tool is
based on Matlab file data.m which contains all necessary data for the analysis

problem.
The following results have been obtained with Matlab 2012b, Windows 7
64bits, an Intel(R) Xeon(R) CPU W3530 @2.80GHz and 6.00 Go of RAM.

2.1 Data

The choice of different multipliers is done according to the different fields
which are filled in the Matlab file data.m. You can find in the following lines
the different fields which can be/must be filled.

wvalid=[0 logspace(-1,3,100)];
wopt=[1 5 10 20 100];

load closedloopmodel G

VectDelta=[];
PolesFilterDU=[];

VectdeltaRU=[];
PolesFilterRU=[];
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VectdeltalPV=[];
VarLPV=[];

NL.sector=[];
NL.slope=[];

VectdeltaPoly=[];

IQCoptions.LMIiter=100;

IQCoptions.LMIbound=1e6;
IQCoptions.LMILiter=100;
IQCoptions.LMIDisplay=1;

IQCoptions.TolReel.methodl=1e-8;
IQCoptions.Visu=2;
IQCoptions.Visulter=1;

The frequency domain griding represented by the vector wvalid is used
for the frequency domain representation of the solution (see section 2.1.2).
But it is important to keep in mind that these points are not used to valid the
solution but just for the representation of this one. Let us remind that the
validation is based on technique presented in section 1.5.2, and when a so-
lution is obtained, necessarily this one is valid in the whole frequency domain.

The frequency domain griding represented by the vector wopt corresponds
to the initial frequency domain griding (see section 1.5.2) used to determine a
solution for the feasibility problem. Of course, if it is necessary to have several
iterations, the length of this vector increases since new critical frequencies
are added iteratively. As indicated previously, the choice of the initial griding
has no influence on the feasibility problem. It is possible to choose at the
first iteration just a singleton. But to limit the number of iterations, and
consequently the calculation time, without any knowledge a priori, it is rec-
ommended to take some frequencies roughly spread on the frequency domain.
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The A block has a specific ordered structure. The different inputs/outputs
of the A block have to respect the following order:

Non-linearities

e Dynamic uncertainties
e Time varying parameters

Real uncertainties

Polytopic models

For example if we have to consider 2 static non-linearities, 1 MIMO dy-
namic uncertainty 2 x 2 and 1 parametric uncertainty repeated 3 times, the
first 2 inputs/outputs of A must correspond to the 2 non-linearities, the 2
following inputs/outputs of A must correspond to the dynamic uncertainty,
and the last 3 inputs/outputs of A correspond to the real uncertainty. This
order must be respected in any case.

A last point concerns the closed loop model. This model can be repre-
sented by a state-space realization or a transfer function. An easy way is
to load the model from a Matlab file mat. The file name is completely free
and can be chosen by the user. But the transfer function/state-space repre-
sentation name must be G. It is possible "to build” the closed loop model
directly in the Matlbab file data.m. But in no case the fields indicated in
this section and described in the next sections must be removed.

With Matlab file data.m it is possible to define options which are used by
the resolution algorithm. The default values are indicated in comment lines.
It is possible to change these default values by uncommenting lines and by
modifying values.

2.1.1 LMI options

These options correspond to the LMI toolbox options.

e IQCoptions.LMIiter=100: this option corresponds to the LMI toolbox
option OPTIONS(2), i.e. the maximum number of iterations;

e IQCoptions.LMIbound=1e6: this option corresponds to the LMI tool-
box option OPTIONS(3), i.e. the feasibility radius of the solution;
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e IQCoptions.LMILiter=100: this option corresponds to the LMI tool-
box option OPTIONS(4), i.e. the termination condition according to the
solution evolution;

e IQCoptions.LMIDisplay=1: this option corresponds to the LMI tool-
box option OPTIONS(5), i.e. when nonzero, the trace of execution is
turned off.

Please refer to the help for the Matlab function feasp for more details
concerning these options.

2.1.2 Resolution tool options

e IQCoptions.TolReel.methodl=1e-8: this option is a threshold to de-
tect the presence of real eigenvalues of H (1.35). Numerically it is un-
usual to obtain "pure real eigenvalues”, i.e. an imaginary part strictly
equal to 0. For simple models usually it is possible, but generally
speaking for models with several dozens or hundreds states a ”true real
eigenvalues” appears as a complex eigenvalue with a very low imag-
inary part in comparison with the real part. But the "low” level of
the imaginary part must be defined a priori as a threshold. By default
an eigenvalue is considered as real in our tool if the ratio imaginary
part/real part is inferior to le — 8;

e IQCoptions.Visulter=1: this option allows to displays on the same
figure (figure(1000)) the maximum singular value of Z(s) (1.38) at
each iteration. When a solution is obtained the stability criterion is
represented by a green line. Furthermore the red stars '*’ represents the
frequency domain points (named critical frequencies previously) used
by the algorithm to find a feasible solution. The frequency domain
griding used for the representation is wvalid;

e IQCoptions.Visu=2: this option corresponds to the final display of
results and can take different values:

— IQCoptions.Visu=-1: no result is displayed;

— IQCoptions.Visu=0: the SVD of =(s) (1.38) is represented in
figure(1). When a solution is obtained the maximum singular
value is inferior to 0 db. The representation is based on the Matlab
function sigma, consequently the frequency domain griding for the
representation is chosen by sigma function;
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— IQCoptions.Visu=1: figure(1) is the same one as IQCoptions.Visu=0.
The maximum singular value of Z(s) (1.38) and eigenvalues of
the stability criterion (1.32) are represented in figure(2) and
figure(3) respectively. Let us remind that equation (1.32) rep-
resents a factorized form of the stability criterion (1.2) where M
is a matrix which contains all decision variables and ®(s) all dy-
namics (closed loop + multipliers). Furthermore the frequency
domain griding used for figure(2) and figure(3) is wvalid;

— IQCoptions.Visu=2: figure(1l) and figure(2) are the same ones as
IQCoptions.Visu=1. Figure(3) and figure(4) respectively repre-
sent the SVD and eigenvalues of the equivalent stability criteria
(1.2) and (1.32). The continuous line represents the factorized sta-
bility criterion (1.32) which is explicitly used by the optimization
program and "*’ the original stability criterion (1.2). Furthermore
the frequency domain griding used for figure(3) and figure(4) is
wvalid. Of course the continuous line and *’ coincide.

2.2 Output arguments

When the execution of the tool is ended, it is possible do know the values
of the different optimization variables/matrices. Theses differences variables
are the following ones:

e xsolSector: this scalar decision variable corresponds to x > 0 for
static non-linearities in section 1.4.1;

e xsolPopov: this scalar decision variable corresponds to the Popov
scalar A € R for static non-linearities in section 1.4.1;

e xsolPark: this scalar decision variable corresponds to the Park scalar
~v > 0 for static and slope restricted non-linearities in section 1.4.1;

e xso0lDU: this matrix decision variable corresponds to the real and sym-
metric matrix U = U? > 0 for dynamic uncertainty in section 1.4.2.

e X_c: this matrix decision variable corresponds to the transfer function
matrix X (s) = z(s)] = X (s)* = x(s)*I > 0 for complex uncertainty in
section 1.4.2;

e xsolRUx: this matrix decision variable corresponds to the real sym-
metric matrix U = UT > 0 for real uncertainties/parameters in section
1.4.3 and 1.4.4;
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e X_r: this matrix decision variable corresponds to the symmetric trans-
fer function matrix X (s) = X (s)* > 0 for real uncertainties/parameter
in section 1.4.3 and 1.4.4;

e xsolRUy: this matrix decision variable corresponds to the real matrix
V for real uncertainties/parameter in section 1.4.3 and 1.4.4;

e Y: this matrix decision variable corresponds to the anti-symmetric trans-
fer function matrix Y (s) = —Y(s)* for real uncertainties/parameters
in section 1.4.3 and 1.4.4;

e Xp: this matrix decision variable corresponds to the real and symmetric
matrix X = X7 for polytopic model in section 1.4.5;

e Yp: this matrix decision variable corresponds to the real matrix Y for
polytopic model in section 1.4.5;

e Zp: this matrix decision variable corresponds to the real, symmetric
and positive matrix Z = —Z1 > 0 for polytopic model in section 1.4.5;

e Msol: this matrix represents the solution matrix of the factorized sta-
bility criterion (1.38).

2.3 Termination condition

To solve the stability analysis problem the Matlab function feasp is used.
Two kinds of results are obtained: the problem is feasible or not. Let us
remind the help provided by Matlab for the function feasp:

Given an LMI feasibility problem
Find x such that L(x) < R(x),
feasp solves the auxiliary convex program:

Minimize t subject to  L(x) < R(x) + tx*I

The system of LMIs is feasible iff. the global minimum TMIN is
negative. The current best value of t is displayed by feasp at
each iteration.

In our optimisation problem R(x)=0. If the best value of t is negative
then a feasible solution is obtained at the current iteration. You can find in
the following example a typical solution:
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Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + tx*I
The best value of t should be negative for feasibility

Iteration : Best value of t so far
1 0.282057
2 0.064808
3 0.064808
4 0.037917
5 0.037917
6 0.012852
7 0.012852
8 0.012852
9 6.110689e-03

10 6.110689e-03
11 6.110689e-03
12 3.713162e-03
13 3.713162e-03
14 2.292605e-03
15 2.292605e-03
16 1.348521e-03
17 1.348521e-03
18 9.791401e-04
19 9.791401e-04
20 6.292507e-04
21 6.292507e-04
22 9.828145e-05
23 4.871256e-05
24 6.046967e-06
25 3.558655e-06
26 6.411722e-07
27 -1.676272e-06

Result: Dbest value of t: -1.676272e-06
f-radius saturation: 0.148% of R = 1.00e+06

Here t=-1.676272e-06, consequently, either the solution is valid on the
continumm frequency domain and the stability is proved, or it is not the case,
then it is necessary to add critical frequencies and to solve the optimisation
problem with the new frequncy domain griding (see section 1.5.2).
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In the example below, no solution is obtained:

Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes
The best value of t should be negative for feasibility

Iteration

©O© 00 N O O d W N -

I e e i e
O O 0 NO Ok WN -~ O

*okok

21
K%k

22
*okk

23
*okok

Result:

Best value of t so far

=, W WwWwoloo P O DN

—

new lower bound:

t

subject to

0.173464
0.046868
0.029950
0.025091

.450290e-03
.934380e-03
.991907e-03
.991907e-03
.563769e-04
.138023e-04
.138023e-04
.138023e-04
.222925e-05
.22292be-05
.222925e-05
.899955e-05
.899955e-05
.325824e-05
.325824e-05
.716911e-06

3.064212e-07

new lower bound:

3.328994e-08

new lower bound:

3.328994¢-08
new lower bound: 5.155947e-10

best value of t: 3.328994e-08

f-radius saturation:

0.000% of R =

L(x) < R(x) + tx*I

=7.267890e-07

-2.262369e-07

-8.639019e-08

1.00e+06

Marginal infeasibility: these LMI constraints may be
feasible but are not strictly feasible
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Here the best value for t=3.328994e-08 which is a positive value, conse-
quently no feasible solution has been obtained. The algorithm stops since if
it is not possible to find a solution on a frequency domain griding, a fortiori
no solution can be valid on the continuum frequency domain (see section
1.5.2).
When a solution is obtained and valid on the whole frequency domain, for
real /dynamic LTT uncertainties, it appears the line Multiplier validation: OK.
It means the the positivity condition (see section 1.4.2, 1.4.3 and 1.4.4) of
X (s) on the whole frequency domain has been checked. The line Elapsed time is
corresponds to the calculation time.
All results are saved in the Matlab file M_So01A1l.dat.

2.4 Aircraft models

In the following section 2 models which are used to illustrate the approach
are presented.

2.4.1 Aeroelastic model

An aeroelastic model with two freeplays on elevators has been considered.
This model is characteristic of aeroelastic models used for load level eval-
uation or stability analysis. The main idea is to separate the condensed
structural non-linearities from the rest of the linear aircraft model. The
aeroelastic equation is written for the linear part, i.e. for the aircraft in
nominal configuration except for its control surfaces (two elevators in our
study), which are connected at their hinges but have no stiffness in rota-
tion. Thus the resulting modal basis includes the rotation modes of both
elevators which are at zero frequency. For each elevator, the non-linearity
is modeled as external force, applied between its attachments. Then both
linear and non-linear models are linked via the relative displacement of the
attachments and the actuator forces. The study of the non-linear aeroelastic
model can be viewed as a problem of closed loop [1].

To limit the computational effort for the frequency domain validation
step, it is interesting to reduce the order of G(s). In brief the optimization
problem is independent of the G(s) order but the validation step is based on
eigenvalues of H whose the size depends on G(s) order. To ensure stability
on the full order model a frequency domain error between the full and the
reduced model is modelled. This error is seen as a neglected dynamic repre-
sented by A(s). Finally G(s) is the linear part seen by the block A(s). G(s)
has four inputs/outputs which correspond to inputs/outputs of static non-
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linearities and A block. To reduce the model order a very classical approach
has been involved. This one is based on Gramian-based balancing of state-
space realizations. More precisely for stable systems, a balanced realization
is a state-space representation for which the controllability and observability
gramians are equal and diagonal. When this representation is obtained, the
states with the lowest controllability/observability gramians are considered
as negligible and then are eliminated. The full order aeroelastic model is of
order 550. Finally a reduced order model of order 152 is obtained.

2.4.2 Military aircraft

The objective is to analyze the closed loop stability, closed loop which cor-
responds to the interconnection of a military aircraft model with a control
law. In this analysis problem we have to consider:

e One critical static non-linearity which corresponds to a rate limiter.
This rate limiter has been transformed into a normalized dead zone;

e Two LPV parameters which correspond to the mach number and the
calibrated airspeed with a nominal rate of variation of 0.2 for both.
These two time-varying parameters represent the flight case. The mach
number and the calibrated airspeed respectively vary from 0 to 1 and
from 150 to 275 kts.

e Five real LTT uncertainties. These real uncertainties are combination of
different physical real uncertainties as mass, center of gravity position
etc... This transformation is necessary to obtain a limited size for the
LFT model. But the important think to keep in mind is the stability
analysis is done for the maximum variation of real uncertainties and not
a for restricted domain. In other words if the stability is guaranteed
with all LTI uncertainties, the stability is guaranteed for the whole
domain of physical parameters

The structure of A is the following one:

e One (0,1) sector non-linearity is considered;

e The Mach number is repeated twice;

The calibrated airspeed is repeated eight times;

Each real uncertainty is repeated once;

Finally the number of inputs/outputs of A is sixteen.
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2.5 Static non-linearity

2.5.1 Sector non-linearity

Let us consider a linear model interconnected with a static non-linearity &
which has been normalized to a sector (0, 1). The initial frequency griding is
wopt=[1 5 10 20 100]. For this it suffices to write:

NL.sector=[1]

Let us notice that the sector inferior limit £ is 0 by default and consequently
this value is omitted. Let us consider two examples. The first one is extracted
from [11] and corresponds to the 'Ex I":

s2—0.2s—0.1

2.1
§3+2s52 4+ 1 (2.1)

In this article a sector bounds are evaluated by a dichotomic approach.
To modify the sector size by a k factor, either the linear model G is multiplied
by k to analyze kG interconnected with a static non-linearity of sector (0,1),
or the value k is directly sets in the field NL.sector such as NL.sector=k
Finally the sector bound is obtained with & = 1.7636 in 6 iterations and
in 0.5 s. The final frequency domain griding contains 20 frequencies. The
maximum singular value of Z(s) (1.38) obtained at each iteration is given by
figure 2.1.

40

—40 | | | . )
-20 0 20 40 60 80
20log 10(oo)

Figure 2.1: Stability criterion iterative representation of a SISO non-linear
model
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A second example is based on an high dimensional aeroelastic model (see
section 2.4.1) interconnected with two static non-linearities which correspond
to freeplays. As two non-linearities of sector (0,1) are considered it suffices
to write:

NL.sector=[1 1]

2l
-4}
6|
8l

—10}F

12 | | | | | . . )
-20 -10 0 10 20 30 40 50 60
20log 10(oo)

Figure 2.2: Stability criterion iterative representation of a high dimensional
non-linear model

The result is obtained in 1 iteration and 1.5 s. Figure 2.2 represents

the maximum singular value of Z(s) (1.38) obtained at the first and alone
iteration.
From this example we notice that the calculation time is very low and a
state-space resolution is completely outperformed even with a very simple
stability analysis problem. For this kind of problem the KYP lemma based
resolution contains 11939 decision variables, which makes the optimization
problem untractable.

More generally if ng non-linearities with sector (0,n4), ..., (0, ng) are con-
sidered, then we write NL.sector=[n; ns... nel.

2.5.2 Slope restricted non-linearity

To involve the slope restricted feature the field NL.slope=[] must be modi-
fied as follows with 8 = 1 and a normalized sector (0,1) (see section 1.4.1):
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NL.sector=1
NL.slope=1

As previously the slope inferior limit is 0 by default, consequently this
value is omitted. The same examples are used to illustrate the non-linear
analysis problem. The initial frequency griding is wopt=[1 5 10 20 100].
For the example named previsouly 'Ex I’; a similar approach to determine
sector bounds is used. With NL.sector=4.5894 and NL.slope=4.5894 or
equivalently G(s) multiplied by 4.5894 a solution is obtained in 6 iterations
and 0.5 s. The stability criterion at each iteration is given by figure 2.3.

-20 -10 0 10 20 30 40 50 60
20log 10(oo)

Figure 2.3: Stability criterion iterative representation of a SISO non-linear
model

With the high order aeroelastic model it suffices to write in file data.m

NL.sector=[1 1]
NL.slope=[1 1]

Finally a solution is obtained very quickly in 1 iteration and 1.2 s.
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2.6 Complex/Dynamic uncertainty

0.01
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Figure 2.4: Iterative stability criterion of a high dimensional non-linear model
with dynamic uncertainty

To take into account a dynamic uncertainty in the stability analysis prob-
lem, it suffices to fill the following field:

VectDelta=[];
PolesFilterDU=[];

VectDelta is a vector which contains the size of each dynamic uncer-

tainty. For example if we have to consider two dynamic uncertainties A; €
C?*2 and A, € C3*3 partitioned in A such as A = blkdiag(A, As) then
VectDelta=[2 3].
PolesFilterDU is a vector which contains the multipliers dynamic. As indi-
cated in section 1.4.2, filters are low-pass filters of order 1 with the following
structure ﬁ, where s is the Laplace variable. For example if two filters
filter; and filtery are considered with respectively one pole at 1 rad/s and
2 rad/s we have to write PolesFilterDU=[1 2].

Let us consider the aeroelastic model. A neglected dynamic is taken into
account to ensure the stability on the full order model [1]. The neglected
dynamic is represented by complex/dynamic matrix A(jw) € C**2. One
low-pass filter with a pole at 1 rad/s is chosen, then:

VectDelta=2;
PolesFilterDU=1;
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As described in section 2.4.1 a dynamic uncertainty and two static non-
linearities are considered, then finally in the Matlab file data.m we have:

NL.sector=[1 1];
NL.slope=[1 1];

VectDelta=2;
PolesFilterDU=1;

The initial frequency griding is wopt=[1 5 10 20 100]. A solution is
obtained in 4 iterations and a calculation time of 8.9 s. As for previous
examples the maximum singular value of Z(s) is represented at each iteration
by figure 2.4. Let us notice that a KYP lemma based resolution leads to
consider 12889 decision variables, i.e. 12880 from P + 9 from M (which is
slightly different from [1] since here Park multiplier is involved).
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2.7 Real/parametric uncertainty

In this section real uncertainties are considered to take into account model
parametric uncertainties. To illustrate this section the model presented in
2.4.2 is used. For this we have to consider the following lines:

VectdeltaRU=[];
PolesFilterRU=[];

VectdeltaRU represents a vector which contains the repetition of each
real uncertainty. PolesFilterRU is a vector which contains the multipliers
dynamic. PolesFilterRU can be different from PolesFilterDU. For ex-
ample if two real uncertainties d;/5 and 9,1, are partitioned in d such as
0 = blkdiag(6115,0914) then VectDelta=[2 4].

For the model described in section 2.4.2 five real uncertainties are taken
into account and repeated once. One pole at 10 rad/s is chosen for X (s),
consequently we have:

VectdeltaRU=[1 1 1 1 1];
PolesFilterRU=10;

-0.12

~0.14 | | | | | . . )
-20 -10 0 10 20 30 40 50 60
20log 10(oo)

Figure 2.5: Iterative stability criterion of uncertain and non-linear model

Besides to take into account the rate limiter which is represented by a
normalized dead-zone NL.sector=1 and NL.slope=1. In brief a non-linear
closed loop with parametric uncertainties is analyzed:

34



VectdeltaRU=[1 1 1 1 1];
PolesFilterRU=10;
NL.sector=1;

NL.slope=1;

The initial frequency griding is wopt=[1 5 10 20 100]. The solution is

obtained in 4 iterations and 2.7 s. The maximum singular value of =(s) is
represented at each iteration by figure 2.5.
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2.8 Time varying parameter
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Figure 2.6: Iterative stability criterion of an LPV model

In this section time varying parameters are considered. These parameters
are measurable physical parameters, typically, for aeronautical application,
these ones correspond to the flight case (Mach number and true airspeed for
example). The fields are the following ones:

VectdeltalPV=[];
VarLPV=[];
PolesFilterRU=[];

The field PolesFilterRU is the same field used for LTI real uncertain-
ties. When LPV parameters and/or parametric uncertainties are taken into
account in the analysis problem this field must be filled. Consequently the
multipliers dynamic used for these 2 cases is the same one. The second field
must be filled as previously: VectdeltalPV is a line vector which contains
the repetition of each LPV parameters.

VarLPV=[] is a vector which contains the variation rate of each LPV
parameter. The values order is important since VarLPV(i) corresponds to
the variation rate of the parameter VectdeltalPV(i). Besides it is important
to keep in mind that all uncertainties (real or dynamic) and LTV parameters
are normalized to 1, consequently the variation rate must take into account
this normalization.

Let us consider the military aircraft model with:
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e 1 static slope restricted non linearity which corresponds to a rate lim-
iter;

e 2 LPV parameters, Mach number and CAS (calibrated airspeed) re-
peated respectively 2 times and 8 times, which allow to define the
flight case, with a variation rate of 0.2 for both;

e 5 real uncertainties repeated once for each one.

Globally a A block with 16 inputs/outputs is obtained. Finally we have
to write:

NL.sector=[1];
NL.slope=[1];
VectdeltaRU=[1 1 1 1 1];
PolesFilterRU=10;
VectdeltalPV=[2 8];
VarLPV=[0.2 0.2];

The initial frequency griding is wopt=[1 5 10 20 100]. A 310 decision
variables feasibility problem is solved. The result is obtained in 3 iterations
and 250 s. The stability criterion obtained at each iteration is given by figure

2.6
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2.9 Polytopic model

In this section a polytopic representation is used to describe the behavior of
a dynamic system. The following field has to be considered:

NbdeltaPoly=[];

NbdeltaPoly represents the polytope size. For example with N = 3
parameters NbdeltaPoly=3, these parameters describe the polytopic domain
A which contains 2% vertices A; such as A = hull{A;, ..., Ayn }. Furthermore
A; are diagonal matrices with 1 in the diagonal. Just for illustration since
no polytopic modelisation has been involved for the military aircraft model
(section 2.4.2) if N =4, i.e. 4 parameters are used to describe the polytopic
model, plus 1 static non-linearity we have to write:

NL.sector=1;
NbdeltaPoly=4;
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Figure 2.7: Maximum singular value plot polytopic model.
The initial frequency griding is wopt=[1 5 10 20 100]. Finally a solu-

tion is obtained in 2 s and 3 iterations. The stability criterion obtained at
each iteration is given by figure 2.7
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2.10 Troubleshootings

e A solution is obtained at the end of the LMI optimization but the rep-
resentation of the solution, either the maximum singular value of (1.38)
or the eigenvalues of (1.2), shows that this one is not valid on the fre-
quency domain continuum. Generally speaking it suffices to decrease
the option IQCoptions.LMIbound to a smaller value. By default this
values is 1le6 but it is possible and recommended in case of problem
to reduce it to 1e3 for example if necessary. This kind of problem can
appear when the number of decision variables is very limited (< 10)
and a large difference is obtained between the decision variables values;

e A solution is obtained at the end of the LMI optimization but the repre-
sentation of the solution, either the maximum singular value of (1.38) or
the eigenvalues of (1.2), shows that this one is not valid on the frequency
domain continuum. The value of the option IQCoptions.LMIbound has
been decreased but without noticeable improvement. In this case it can
be necessary to modify the value of IQCoptions.TolReel.methodl (see
section 2.1.2). The default value is 1e — 8, it means that all eigenvalues
of H (1.35) with a ratio between the imaginary part and the real part
superior to le — 8 is considered as complex. Consequently these eigen-
values does not correspond to a violation of the stability criterion (see
section 1.5.2). But it is possible that an eigenvalue with a ratio superior
to le — 8 was a "true” real eigenvalue and corresponds to a critical fre-
quency. This eigenvalue is not detected as a real eigenvalue due to the
threshold defined by IQCoptions.TolReel.methodl. In this case it can
be necessary to increase the value of IQCoptions.TolReel.methodl to
le — 6. It is not recommended to increase beyond le — 6. The value of
IQCoptions.TolReel.methodl should vary between le — 6 and le —8§;

e Another problem can appear in the case where the number of iterations
increases without any noticeable improvement of the solution between
each iteration (for example by displaying on figure(1000) the solu-
tion at each iteration thanks to the option IQCoptions.Visulter=1).
It is not easy to give a threshold beyond which the number of iter-
ations can be considered as unusual. But for a number of iteration
superior to 20 with no noticeable improvement between each itera-
tion, a convergence problem can be suspected. It can mean that some
eigenvalues are considered as real whereas they are complex (see sec-
tion 1.5.2). In this case it can be necessary to decrease the option
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IQCoptions.TolReel.methodl. The default value is 1e —8. This value
is sufficiently low for all tested problems. But if this option has been
increased to le — 6 (see previous point) maybe it is necessary to de-
crease it to le — 7 or le — §;

Several tests are involved to check that the expected data in the Mat-
lab file data.m are coherent, for example integer and positive values
for the repetition of real uncertainties, real values for the sector size,
etc...Error messages provided by the IQC tool should be sufficiently
clear to allow the user to fix problems. But all possible tests are not
involved, and it is possible that incoherent data lead to stop the IQC
tool with a typical red error message of Matlab. In this case please
check the data with the description given in the user’s guide.

Other options IQCoptions.LMIiter, IQCoptions.LMILiter,
IQCoptions.LMIDisplay (see section 2.1.1) can be tuned in case of
problem during the LMI resolution, but these options are specific to
the LMI toolbox, consequently the user should refer to the help pro-
vided by Matlab concerning the function feasp;

For any problem do not hesitate to contact the author at this email
address: fabrice.demourant@onera.fr.
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