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Chapter 1

Introduction

As a main drawback for practitioners, many control design techniques account for
a given set of design specifications only in an indirect way, so that it often appears
difficult to satisfy them without a large amount of tuning. It appears even more dif-
ficult to check their feasibility, and more generally to explore the necessary trade-offs
between these specifications, especially when a non-convex optimization problem is
to be solved: nothing can be concluded if the solver does not succeed in satisfying
the constraints, i.e. the design specifications, since only a local optimum is obtained.
The global optimum may satisfy them, or not.

In this context, a two-step solution was proposed in [6] for the control of an
LTI model. The first step is to build a Youla parameterization of all stabilizing con-
trollers, on the basis of on initial stabilizing controller possibly under an observed
state feedback form [4, 5, 17, 12, 2]. Next, a Youla parameter Q(s) is computed so
as to satisfy the design specifications. Last, the feedback controller is deduced as a
combination of the initial stabilizing controller and of the optimized Q(s).

As a crucial point, computing the Youla parameter reduces to a convex opti-
mization problem, where the minimization objective and constraints directly corre-
spond to the closed loop time- or frequency-domain design specifications. Since the
whole set of stabilizing controllers is handled, this enables to check their feasibility,
and more generally to explore the necessary trade-offs between these specifications.
See e.g. [11] for an application to a flexible aircraft model.

Extending this valuable method to the gain-scheduled and nonlinear cases needs
to solve two different problems:

• Extending the Youla-parameterization technique: see e.g. [14, 3, 9] for the
case of a nonlinear or gain-scheduled plant, possibly under an LFT form. The
main point is to determine if the whole set of stabilizing controllers is obtained.

• Designing the Youla parameter: when the issue is to satisfy LTI design speci-
fications on a set of LTI models corresponding to a continuum of trim points
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1. Introduction

or to a trajectory of the nonlinear plant, to a large extent the problem can be
reduced to a convex optimization problem, as in the original LTI case. This is
(much) less obvious in the other cases, especially in the case of a fully nonlinear
plant.

The report is organized as follows:

• Chapter 2 presents the technique for the case of an LTI model. Youla pa-
rameterization is explained first, before discussing how to design the initial
controller. A cutting planes frequency-domain solver is also presented, for
the convex design of a Youla parameter satisfying time-and frequency-domain
specifications. This solver is especially suited to the case of high order models,
for which state-space solutions [21, 24] cannot be applied.

• Chapter 3 presents an application to the lateral control of a flexible aircraft,
extracted (and modified) from [8, 11]. The initial observed state feedback
controller can be designed using a LQ/modal technique, or a loop shaping H∞
technique [17, 12]. The Youla parameter is computed with the cutting planes
solver, and the trade-off between the two design specifications is studied.

• Chapter 4 presents an extension of the technique to the LFT case [9], with
an application to a missile example extracted from [19] in chapter 5. One
focuses on the case of an LFT model describing LTI models corresponding
to a continuum of trim points, parameterized as a function of time invariant
scheduling parameters. Thus, the design specifications are to be satisfied on
the continuum of LTI models. The initial observed state feedback LFT con-
troller is designed using a (multi-model) polytopic technique [7] extended to
the gain-scheduled case, and validated with a µ analysis technique [8, 10]. In
the same way, the Youla parameter is designed on a gridding of models, and
this multi-model design is validated on the continuum using µ analysis.
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Chapter 2

Convex design of a Youla
parameter for an LTI plant model

2.1 Youla parameterization

2.1.1 Principle
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Figure 2.1: The design problem (a) and Youla parameterization (b,c).

Consider the standard design problem of figure 2.1.a, where P =
[
P11 P12
P21 P22

]
is an augmented plant. The closed loop transfer matrix Fl(P,K) = P11 +P12K(I −
P22K)−1P21 is a highly nonlinear function of controller K, especially because of the
need to invert I −P22K. Suppose an initial stabilizing controller K0, whose order is
at least equal to the order of P22, is available. Additional inputs and outputs v and
e are introduced in K0 (see figure 2.1.b), with the key constraint that the transfer
matrix between v and e is zero: see figure 2.1.c. A solution to achieve this property
is to put K0 under the form of an observed state feedback controller [4, 5, 2], see also
below. Then, when connecting a free stable transfer matrix Q to these additional
inputs and outputs, Fl(P,K) can be rewritten as T1 + T2QT3, where fixed transfer
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2. Convex design of a Youla parameter for an LTI plant model

matrices Ti depend on P and K0, while Q is the design parameter.
The parameterization T1+T2QT3 covers the whole set of achievable closed loops:

given any stabilizing feedback controller K, there exists a corresponding value of
the stable Youla parameter Q that gives the same closed loop (i.e. Fl(P,K) =
T1 + T2QT3), and conversely. As a consequence let Q = ∑

i θiQi, where filters Qi

are fixed while the θi are the design parameters. If the infinite dimensional basis of
filters Qi covers the whole set of stable transfer matrices, the whole set of stabilizing
feedback controllersK is described. Thus, it becomes possible to check whether there
exists a controller, whose order is free, that satisfies a set of design specifications.

Summarizing, given a standard design problem, see figure 2.1.a, there are 5
steps in practice:

1. Computation of the initial controller K0(s).

2. Computation of the Youla parameterization T1(s) + T2(s)Q(s)T3(s).

3. Choice of a finite-dimensional basis of filters Q(s) = ∑n
i=1 θiQi(s), i.e. choice

of the filters Qi(s).

4. Convex design of the Youla parameter Q(s) by optimizing w.r.t. the parame-
ters θi, so as to satisfy a set of time- and frequency domain specifications.

5. Computation of the feedback controller K(s) as the interconnection of K0(s)
and Q(s), see figure 2.1.b.

2.1.2 The case of an observed state feedback controller
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Plant

yu

e
v

Youla Parameter
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+ +

−

+

−

++

+

+

0

B

KfA

CB

Initial Controller K

ŷ
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Figure 2.2: Youla parameterization with an observed state feedback controller.
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Figure 2.2 presents the architecture of the controller, when using an observed
state feedback controller (or a controller that was put under such form) as the initial
one for Youla parameterization. e is now the prediction error, while v is an additive
disturbance on the control input u. Assume that x = x̂ at t = 0 and that the open
loop plant model, which is embedded inside the observer, exactly coincides with
the ”true” open loop plant. Despite a non-zero input v the prediction error e stays
identically zero, since the observer accounts for the measured disturbance v. Thus,
the transfer function between v and e is zero, as required.

In the same way, the transfer function between ur = H(s)yr and e is zero, which
means that a non-zero reference input yr, introduced with a feedforward controller
H(s), just excites the closed loop state feedback dynamics, not the observer one nor
the dynamics of Q(s), at least in the absence of model uncertainties.

2.1.3 Choice of the basis of filters

For the ease of presentation, only the SISO case is considered. When choosing a
basis of filters the main point is to choose its dynamics, i.e. its poles. As a first
simple example, if a real pole −a and a complex pole with frequency ω and damping
ratio ξ are considered, a basis of 4 filters is obtained as:

Q(s) = θ1 + θ2

s+ a
+ θ3

s2 + 2ξωs+ ω2 + θ4s

s2 + 2ξωs+ ω2 (2.1)

Nevertheless, to improve the numerical conditioning of the convex optimization
problem which will be to be solved, it is much better using an orthonormal basis of
filters. In the following, the basis of [1] will be used:

Qi(s) =

√
2Re(ai)
s+ ai

Πi−1
k=1

s− ak
s+ ak

(2.2)

Here again, the issue is to choose the real or complex conjugate poles −ai on the
basis of our physical knowledge of the open- or closed-loop plant. As an additional
advantage of using an orthonormal basis instead of (2.1), it is possible to guarantee
that the whole set of asymptotically stable Q(s) is recovered when using the infinite
dimensional basis (2.2), under a condition on its poles.

Last note that the basis of [1] includes the special case of Laguerre (Kautz)
basis, which is recovered by choosing for all −ai the same real pole (the same pair of
complex conjugate poles). But the interest of [1] is to be able to introduce different
dynamics in the same basis, so that if the choice of the poles −ai is adequate, less
filters are needed to cover the same part of the whole set of asymptotically stable
transfer matrices. Thus, the computational burden is reduced.
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2.2 A cutting planes method for time- and frequency-
domain specifications

Generally speaking, a norm constraint on the closed loop transfer matrix T1 +T2QT3
is convex with respect to Q = ∑

i θiQi. As a consequence, when constraining or
minimizing the norm of various parts of the closed loop transfer matrix T1 +T2QT3,
a convex optimization problem with convex constraints is obtained. Optimal values
of the design parameters θi are computed, Q(s) is deduced as well as K(s) (see figure
2.1.b).

A state-space LMI solution can be found in [21, 24]: let (AQ, BQ, CQ, DQ) be
a state-space representation of Q(s). AQ and BQ are supposed to be fixed in [21],
while the optimization matrix is N = [CQ DQ]. If Q(s) = ∑N

i=1 θiQi(s), a state-
space representation of Q(s) can be found where the optimization parameters θi are
gathered in CQ and DQ.

Nevertheless, this LMI method becomes untractable when the order of the state-
space model becomes too high, which is especially the case of a flexible aircraft model
[11]. As a consequence, a cutting planes method is proposed in the following, which
deals with the special case of time- and frequency-domain constraints. A case which
is often encountered in practice.

2.2.1 Time-domain specifications

Let:
z(t) = T (s, θ)w(t) =

(
T1(s) + T2(s)(

∑
i

θiQi(s))T3(s)
)
w(t)

Assume that the unmeasured disturbance signal w(t) is fixed (e.g. a step). Not-
ing z0(t) = T1(s)w(t) and zi(t) = T2(s)Qi(s)T3(s)w(t), on obtains z(t) = z0(t) +∑
i θizi(t). As a consequence, in the context of e.g. a step response, minimizing the

overshoot is equivalent to minimize the scalar optimization parameter γ under the
constraint:

z0(t) +
∑
i

θizi(t) ≤ γ ∀t

In the same way, a constraint on the settling time can be written as:

0.9 ≤ z0(t) +
∑
i

θizi(t) ≤ 1.1 ∀t ≥ T

Generally speaking, when stacking the time-domain specifications, an LP problem

Aθ ≤ b is obtained, or possibly A
[
θ

γ

]
≤ b, where γ is to be minimized.
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2.2.2 Frequency-domain specifications

Here again, let T (s, θ) = T1(s)+T2(s)(∑i θiQi(s))T3(s), and let α(ω) be a frequency-
domain template. The H∞ constraint over a finite frequency interval:

σ (T (jω, θ)) ≤ α(ω) ∀ω ∈ [ω1, ω2]

is convex w.r.t. the optimization parameters θi, because of the affinity of the closed
loop transfer matrix T (s, θ) w.r.t. θ.

Analogously, an H∞ minimisation objective corresponds to the minimisation of
γ under the convex constraint:

σ (T (jω, θ)) ≤ γ α(ω) ∀ω ∈ [ω1, ω2] (2.3)

In the same spirit, one can consider either a convex constraint on the extended
H2 norm of the transfer matrix T (s, θ) on a finite frequency interval:√

1
2π

∫ ω4

ω3
Trace(T ∗(jω, θ)T (jω, θ))dω ≤ C (2.4)

where C is a constant, or the convex minimization of this extended H2 norm. In
both cases, the square of the H2 norm in (2.4) can be approximated as a quadratic
criterion f0 + fT θ + θTQθ using a fine enough frequency gridding.

2.2.3 Principle of the frequency-domain cutting planes method

Wu just explain the principle of this classical method. The idea is to approximate
the non-differentiable convex constraint (2.3) at θ = θ0 by an affine one:

σ(T (jω, θ0)) + ST (θ − θ0) ≤ γ α(ω) (2.5)

where S is called a subgradient. Indeed, for all θ:

σ(T (jω, θ0)) + ST (θ − θ0) ≤ σ(T (jω, θ))

When approximating (2.3) at differents points θ = θi and at different frequencies
ω = ωi, all these affine constraints (2.5) can be stacked into an LP constraint

A

[
θ

γ

]
≤ b. More generally, when considering the minimization of a convex objec-

tive under convex constraints, a lower bound of the minimal value γ∗ of the objective
is computed as the minimal value of γ under the LP constraints above. The idea
is to refine this affine approximation of the convex optimization problem until γ∗
is computed with a satisfactory accuracy, as illustrated by the following sketch of
algorithm:
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2. Convex design of a Youla parameter for an LTI plant model

1. Compute the value θ̃ of θ that minimizes γ under the LP constraints. Let γlb
be the associated minimal value of γ.

2. Compute an upper bound γub of γ∗, noting that any value of θ satisfying the
constraints provides an upper bound. If the gap between the bounds is close
enough STOP. Otherwise approximate convex constraints and minimization
objectives at θ = θ̃ and at critical frequencies, where constraints are the most
violated. Return to step 1.

Remark: more precisely, as illustrated in chapter 3, the above algorithm is performed
for a given design frequency gridding, i.e. the specifications are to be satisfied on this
gridding at the end of the algorithm. Next, the result, i.e. the optimal value of Q(s),
is validated on a (much) finer frequency gridding. If the specifications are satisfied
on this validation gridding, STOP. Otherwise, determine the critical frequencies,
where constraints are the most violated, add them to the design frequency gridding,
and perform the above algorithm on this new gridding.
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Figure 2.3: Minimized value of the objective as a function of the number of used
filters Qi(s).

The use of a cutting planes method makes possible a progressive convex design
in the case of a large number of optimization parameters θi. If there are e.g. 64
optimization parameters, only the first 8 optimization parameters are first used,
and the associated value of the minimized objective is computed. Then the first
16 optimization parameters are used, and the value of the minimized objective is
computed here again. Until all 64 optimization parameters are used. The decrease
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of the minimized objective is visualized as a function of the number of optimization
parameters: see the example of figure 2.3, extracted from next chapter. If the
value of the minimized objective tends towards an asymptotic value, this means that
adding more filters is useless, i.e. the value of the minimized objective, corresponding
to an infinite dimensional basis of filters, is obtained.
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Figure 2.4: Minimized value of the objective as a function of actuator activity.

During this progressive design subgradients are kept from an optimization to
an other in order to save a large amount of computational time. In the same way,
it is possible to study the trade-offs between the design specifications. The issue is
to minimize an objective under several constraints, where one of these constraints
takes several values. Depending on the hardness of this constraint it is more or less
possible to minimize the objective: see the example of figure 2.4, extracted from
next chapter, where the x-axis (more or less) represents actuator activity while the
y-axis represents the minimized objective. The lower the allowed actuator activity,
the harder the constraint, the higher the minimized objective. Here again it is
possible to save a large amount of computational time by keeping subgradients from
an optimization to an other.

IR 1/19678 DCSD
March, 2014

Page 15/47
SMP



16

UNCLASSIFIED

2. Convex design of a Youla parameter for an LTI plant model

2.3 Design of an initial controller

2.3.1 Modal design of an observed state feedback controller

Let (A, B, C, 0) be a state-space representation of the open loop plant model. The
issue is to design K and L, which place the eigenvalues of A−BK and A−LC. A
first solution exactly places all closed loop poles at given locations, which is possible
in the special cases of state feedback and observer gains. Nevertheless, it is necessary
to choose these eigenvalues, and also the associated eigenvectors if there is more than
one input or output.

A much simpler ”minimum energy” solution uses LQ control. Let K be the
optimal state feedback controller associated to the weights Q = 0 and R = I, for a
plant model ẋ = Ax+Bu. If the plant is asymptotically stable, K = 0 is obtained.
Otherwise, if there is an ”unstable” pole x + jy, with x > 0, the state feedback
controller moves it to −x+ jy (”mirror effect”). Even if the open loop plant model
is asymptotically stable, when using (A + λI, B) as the plant model with λ > 0,
poles can be moved if their real part is greater than −λ.

Obviously, this technique does not enable a fine placement of the closed loop
poles, since the only tuning parameter is λ. But this very simple method can be
used to design an initial controller which may satisfy, at least partly, the design
specifications: see section 3.2.

Last note that the method is easily extended to the case of an observer gain,
by applying the LQ control technique to the plant model (AT + λI, CT ).

2.3.2 Loop shaping H∞ control

Principle

Classical H∞ control shapes closed loop transfer matrices, whereas loop shaping
H∞ control shapes the open loop. Let G(s) be the plant model. Pre- and post-
compensators W1(s) and W2(s) are determined, so that the ideal open loop is
Gs(s) = W2(s)G(s)W1(s). The issue is to preserve this open loop shape as much as
possible. To this aim loop shaping H∞ control synthesizes a controller K∞(s), that
stabilizes Gs while maximizing the robustness to neglected dynamics on the coprime
factors of Gs. A direct solution to this specific H∞ problem, without γ iterations, is
available, as well as a natural observed-state feedback form for K∞(s) [17, 12]. The
final controller is W1(s)K∞(s)W2(s).

In practice, the main issue is to choose the pre- and post-compensators W1(s)
and W2(s). In the context of the design of an initial controller for Youla parameter-
ization, these compensators should be chosen as simple as possible, as illustrated in
section 3.2.
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Numerical computation

Let (A,B,C, 0) be a state-space model of W2(s)G(s)W1(s), noting that a non strictly
proper model could be handled. The issue is to solve the two Riccati equations:

A′X +XA−XBB′X + C ′C = 0 (2.6)
AZ + ZA′ − ZC ′CZ +BB′ = 0 (2.7)

The minimal value of the H∞ norm is obtained as:

γmin =
√

1 + λmax(XZ) (2.8)

In practice, γ is chosen slightly higher than γmin. The controller K∞(s) has the
observed state feedback form:

˙̂x = (A− LC −BK)x̂+ Ly +Bur (2.9)
u = −Kx̂+ ur (2.10)

u and y are the I/O of the open loop model, namely W2(s)G(s)W1(s), ur is a
reference input and the state feedback and observer gains K and L are computed as:

L = ZC ′ (2.11)
K = −γ2B′XW−T

1 (2.12)
W1 = I +XZ − γ2I (2.13)

A last issue is to deduce an observed state feedback controller for G(s), since
the controller K∞(s) above is applied to W2(s)G(s)W1(s). In other words, one
would like to obtain an observed state feedback form for the true feedback con-
troller W1(s)K∞(s)W2(s). Following [11] and the next applicative chapter, one just
considers the following special case. If W2(s)G(s)W1(s) = S G(s) Kref , then the
observed state feedback controller is:

˙̂x = (A− LSC −BKrefK)x̂+ LSy +Bur (2.14)
u = −KrefKx̂+ ur (2.15)
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Chapter 3

A flexible aircraft application

3.1 Problem description
The issue is to design a lateral flight control system, whose structure is given on
figure 2.2, for a flexible transport aircraft. The model, whose order is 21 with 2
inputs (aileron and rudder deflections) and 4 outputs ny, p, r, φ, contains 4 rigid
states (the sideslip angle β, the rotational rates p and r, and the bank angle φ), 12
flexible states corresponding to 6 bending modes, and 5 actuators states [8].

The design specifications are the following. Consider the interconnection of the
aircraft model with the controller K(s). Let z denote the controller output. An
additive unmeasured disturbance input w is added at the plant input. Since there
are 2 plant inputs, the dimension of w and z is 2. When introducing a block of
neglected dynamics between w and z, this block corresponds to an unstructured
direct additive model perturbation at the plant input, representative of unmodeled
high frequency bending modes.

Let M1(s) (resp. M2(s)) be the closed loop SISO transfer function between
the disturbance w1 (resp. w2) on the first (resp. second) aircraft input and the
acceleration ny. Let M3(s) be the closed loop MIMO transfer matrix between w

and z. The issue is to minimize α under the constraints (for ω between 5 and 25
rad/s):

|M1(jω)| ≤ α

|M2(jω)| ≤ α

and under the additional constraint (for ω between 0 and 1000 rad/s):

σ(M3(jω)) ≤ |F (jω)| (3.1)

where:

F (s) = G

(1 + 1.4 s
ω0

+ s2

ω2
0
)(1 + s

ω0
)
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The choice of the tuning parameters G and ω0 will be discussed later.
The issue is to globally minimize the frequency-domain peaks on output ny,

due to flexible modes (whose effect is roughly between 5 and 25 rad/s), under a
double constraint:

1. on the actuator activity: this corresponds to the constraint (3.1) at low and
middle frequencies, and thus, to some extent, to the tuning parameter G.

2. on the roll-off, and thus on the robustness to unmodeled high frequency bend-
ing modes: this corresponds to the constraint (3.1) at high frequencies, and
thus, to some extent, to the tuning parameter ω0.

Remark: if K(s) = 0, M1(s) (resp. M2(s)) corresponds to the open loop SISO
transfer function between the first (resp. second) aircraft input and ny, so that
the effect of the feedback controller on the frequency-domain peaks can be directly
evaluated.

3.2 Design of the initial controller
The methods of sections 2.3.1 and 2.3.2 are tested. The issue is to determine to
which extent each method is able to provide an initial controller satisfying (part of)
the design specifications. One focuses on the minimization of the frequency-domain
peaks on output ny.

The modal / LQ control design technique is tested first, with λ = 1. Figure 3.1
(resp. 3.2) presents the open loop transfer function between the first (resp. second)
plant input and output ny, as well as the closed loop transfer function between w1
(resp. w2) and ny. The peaks due to flexible modes are reduced to some extent.

The loop shaping H∞ design technique is considered next. Let G(s) be the
open loop aircraft model with 2 inputs (aileron and rudder deflections) and 4 out-
puts ny, p, r, φ. A willingly very simple choice for the pre- and post-compensators
is W1(s) = I and W2(s) = diag(w, 1, 1, 1), i.e. the augmented open loop plant is
diag(w, 1, 1, 1) G(s), where the weight w on the output ny is chosen as w = 20.

Figure 3.3 (resp. 3.4) presents the open loop transfer function between the
first (resp. second) plant input and output ny, as well as the closed loop transfer
function between w1 (resp. w2) and ny. Here again, the peaks due to flexible modes
are reduced to some extent.

As a conclusion, peaks can be reduced with the 2 methods, and the reduction
ratio depends on one tuning parameter. Nevertheless, an advantage of loop shaping
H∞ control is to directly account for I/O specifications, so that this method is cho-
sen in the following to design the initial controller.
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Remark: a more sophisticated use of these techniques would be required to account
for handling qualities [11], i.e. the specifications on the rigid part of the aircraft.

5 10 15 20 25
0
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0.04

0.06

0.08

0.1

0.12
1st input −−> ny (open loop = b−−)

Figure 3.1: Open (dashed line) and closed (solid line) loop frequency response to
the first input with the observed state feedback controller.
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2d input −−> ny (open loop = b−−)

Figure 3.2: Open (dashed line) and closed (solid line) loop frequency response to
the second input with the observed state feedback controller.
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1st input −−> ny (open loop = b−−)

Figure 3.3: Open (dashed line) and closed (solid line) loop frequency response to
the first input with the loop shaping H∞ controller.
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Figure 3.4: Open (dashed line) and closed (solid line) loop frequency response to
the second input with the loop shaping H∞ controller.
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3.3 Design of the Youla parameter and computa-
tion of design tradeoffs

The basis of [1] is used with the following poles, whose damping ratio is 0.7 and
whose frequency is chosen between 5 and 25 rad/s:

5−1± j√
2

8−1± j√
2

12−1± j√
2

15−1± j√
2

(3.2)

Since Q(s) has 2 outputs and 4 inputs this corresponds to 64 filters. Following
section 3.1, two H∞ objectives are minimized under an H∞ constraint, with tuning
parameters ω0 = 20 rad/s and G = 5.

A progressive design is performed with 8, 16,. . . , 64 filters. An asymptotic value
for the minimized objective α ≈ 3.3 is obtained on figure 2.3, which suggests that the
value α of the minimized objective, corresponding to an infinite dimensional basis of
filters, is obtained. The computational time is 59 s, which is very reasonable when
considering the complexity of this high dimensional problem. The H∞ constraint is
displayed on figures 3.5 and 3.6 for the initial and optimal controllers: as expected,
the constraint is (highly) active after optimization.

Remarks:
(i) Our computational experience is that the computational cost of a progressive
design is usually close to the one of a one-shot design, and more information is pro-
duced.
(ii) When using another initial controller, the asymptotic value of α should remain
the same, since the whole set of stabilizing controllers is obtained whatever the
initial stabilizing controller. Nevertheless, the minimal size of the basis for Q(s),
necessary to achieve the asymptotic value, depends on the initial controller. The
more satisfactory the initial controller, the simpler the design of the Youla parame-
ter to obtain the asymptotic achievable performance.
(iii) It would also be possible to introduce H2 constraints or minimization objectives
on M1(s) and M2(s).

Figure 2.4 presents the trade-off between the gain G, which more or less repre-
sents actuator activity, and the minimized value of α. The same basis (3.2) of Q(s)
is used, as well as the same initial H∞ controller. G belongs to the set 1, 3, 5, . . . ,
15, noting that the constraint seems infeasible for G = 1. As expected, the lower
the allowed actuator activity, the harder the constraint, the higher the minimized
objective.

One now details how the frequency domain cutting plane solver of section 2.2.3
works for ω0 = 20 rad/s and G = 5. A one-shot design is performed, i.e. all 64
filters are introduced at the same time. Remember the design frequency gridding
is iteratively refined by adding worst-case frequencies, computed by validating the
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optimized Youla parameter on a fine frequency gridding. Here is a sketch of the
result:

Minimisation objective between 2.868 and 2.918 (1.702e-002 percent)

Spec. 1 violated: max. value of the normalised objective = 6.862 greater than 2.947 at w = 13.567 rad/s

Spec. 2 violated: max. value of the normalised objective = 5.250 greater than 2.947 at w = 14.620 rad/s

Spec. 3 violated: max. relative violation of the template = 1.674 at w = 1000.000 rad/s

Minimisation objective between 3.022 and 3.024 (5.914e-004 percent)

Spec. 1 violated: max. value of the normalised objective = 4.279 greater than 3.054 at w = 8.720 rad/s

Spec. 2 violated: max. value of the normalised objective = 4.885 greater than 3.054 at w = 12.689 rad/s

Spec. 3 violated: max. relative violation of the template = 1.053 at w = 8.704 rad/s

(...)

Minimisation objective between 3.157 and 3.307 (4.537e-002 percent)

Relative tolerance, with which the frequency domain templates must be satisfied = 1.000e-002

Spec. 1 OK : max. value of the normalised objective = 3.307 less than 3.340 at w = 8.080 rad/s

Spec. 2 OK : max. value of the normalised objective = 3.239 less than 3.340 at w = 12.790 rad/s

Spec. 3 OK : max. relative value w.r.t. the template = 1.007 at w = 12.316 rad/s

alfa˙opt = 3.307e+000

A first minimization is performed with the initial design frequency gridding. When
validating the Youla parameter on the fine frequency gridding, all 3 specifications,
i.e. the 2 H∞ minimization objectives and the H∞ constraint, appear largely vi-
olated. A second minimization is performed: logically, the minimized objective
increases since the problem is more constrained, due to the larger size of the design
frequency gridding. At the end all 3 specifications are satisfied, up to a given spec-
ified numerical tolerance, namely 1 % here.

For a given design frequency gridding, here is an example of result of the cutting
plane solver:

SEARCH OF A FEASIBLE POINT

1: constrmax = 4.201e+000 (64 variables)

(...)

28: constrmax = 1.666e+000 (64 variables)

29: constrmax = 6.138e-001 (64 variables)

MINIMISATION OF THE OBJECTIVE

1: gamma between 2.899e+000 and 6.783e+001 (64 variables)

(...)

51: gamma between 3.022e+000 and 3.296e+000 (64 variables)
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52: gamma between 3.022e+000 and 3.024e+000 (64 variables)

Minimisation objective between 3.022 and 3.024 (5.914e-004 percent)

First, a feasible point is looked for, which satisfies the constraints (the normalized
constraint ”constrmax” above should be less than unity). Next, lover and upper
bounds of the minimized objective ”gamma” are computed, until the gap becomes
small enough.

As a last point, it is worth emphasizing that subgradients are kept from an
optimization to an other in all the above examples:

1. When iteratively refining the design frequency gridding, for a given number of
filters.

2. When progressively introducing the filters.

3. When studying the trade-offs.

This enables to save a large amount of computational time.
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Figure 3.5: Closed loop frequency response σ(M3(jω)) without the Youla parameter.
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Figure 3.6: Closed loop frequency response σ(M3(jω)) with the Youla parameter.
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Chapter 4

Convex design of a Youla
parameter for an LFT plant model

4.1 Introduction to gain-scheduled control
To a large extent, gain-scheduling techniques [13, 20] can be divided into two main
categories, depending on the design specifications. These can correspond to the
frozen-time linearizations, or to the I/O behaviour of the nonlinear plant. The best
known example of this second type of gain-scheduling approach is the LPV one.
The nonlinear model is put under an LPV form, typically a polytopic or an LFT
one, and the scheduling parameters are supposed to be time-varying, without or
with a bound on their rate of variation, see e.g. [18, 23]. A closed-loop L2 gain is
usually minimized. It is worth emphasizing that the obtained (quasi-) LPV model is
supposed to represent the I/O behaviour of the ”true” nonlinear system, or at least
to encompass it, so that constraining the L2 gain of the closed loop LPV model also
constrains the L2 gain of the ”true” closed loop nonlinear model.

As for the gain-scheduling techniques that handle frozen-time linearizations, the
most classical one designs LTI controllers at several trim points of a nonlinear plant,
and interpolate them a posteriori. Some techniques exist to guarantee a posteriori
the closed loop stability and performance between the points of gridding [22], noting
that their practical implementation appears difficult on challenging high order ex-
amples, e.g. a flexible aircraft. Another method which handles frozen-time lineariza-
tions is the Robust Modal Control technique, extended to the gain-scheduled and
LFT cases [15, 16]. The scheduling parameters are supposed to be time-invariant,
which is consistent with the fact that the time invariant linearizations correspond
to the trim points of a nonlinear plant.

In the same way, as an extension of the work in [6], the aim of this chapter is
to directly synthesize an LPV/LFT controller which satisfies modal and H∞ design
specifications on a continuum of time invariant linearizations. The main advantage
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of the technique is its capability to handle several modal and I/O specifications
(nearly) without conservatism, even within the context of LTI scheduling parame-
ters. Moreover, the controller can easily be retuned at a finite set of trim points,
which can be a key issue from an industrial point of view.

Last note that the results presented in this chapter could be considered as rem-
iniscent of the work in [14]. Nevertheless, [14] deals with the case of a discrete-time
LFT model with arbitrarily time-varying parameters, while this chapter deals with a
continuous-time LFT model with LTI parameters. Moreover, [14] does not propose
a controller design approach, unlike this chapter.

4.2 Problem statement

�
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H(s)

w z
∆

(a) (b)

ev

∆

K(s)

ŵ
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ẑ

H(s)

∆

d p

w z

y

Figure 4.1: Open loop LFT model (a) and Youla parameterization for the gain-
scheduled case (b).

On figure 4.1.a, the continuum of open loop linearizations is described as an
LFT model [

p

y

]
= Fu(H(s),∆)

[
d

u

]
,

where the structured model perturbation ∆ = diag(δkIqk
) contains the normalized

scheduling parameters δk (repeated qk times on the diagonal). Let δ = (δk)k∈[1, n]
be the corresponding vector. ∆ belongs to the unit ball B∆ (i.e. σ(∆) ≤ 1) if and
only if δ belongs to the unit hypercube D (i.e. δk ∈ [−1, 1] ∀k). Let a state-space
representation of the augmented open loop plant model H(s) be

ẋ = Ax+B1w +B2d+B3u (4.1)
z = C1x+D11w +D12d+D13u (4.2)
p = C2x+D21w +D22d+D23u (4.3)
y = C3x+D31w +D32d+D33u. (4.4)

u and y denote the physical I/O used by feedback, d is an unmeasured disturbance
and p an output relevant of performance. ∆ is introduced as the fictitious feedback
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w = ∆z. For the ease of notation D33 = 0 is assumed in the following. The issue is
twofold:

1. Compute an observed state-feedback LFT controller by computing gain-scheduled
state-feedback and observer gains K(δ) and L(δ). The open loop LFT model
is embedded inside the observer. The poles of this initial closed loop are re-
quested to have a minimal damping ratio ξ and a minimal degree of stability
λ > 0, ∀δ ∈ D.

2. This initial closed loop is modified so as to compute a Youla parameterization
of stabilizing controllers: the closed loop transfer matrix between d and p can
be written under the affine form T1(s, δ) + T2(s, δ)Q(s, δ)T3(s, δ) w.r.t. the
Youla parameter Q(s, δ). The closed loop transfer matrices Ti(s, δ), which
correspond to the initial closed loop, are fixed. The design parameter Q(s, δ)
is computed so as to satisfy H∞ specifications ∀δ ∈ D.

The state-feedback gain K(δ) is chosen under the form

K(δ) =
L∑
j=1

pj(δ)Kj, (4.5)

where the multivariate polynomial or rational functions pj(δ), with values in <, are
fixed while the matrices Kj are free. The same applies to the observer gain L(δ).
The key point is to handle an affine representation of K(δ) or L(δ) as a function of
the design parameters. Analogously, let

Q(s, δ) =
M∑
j=1

qj(δ) Qj(s),

where the free transfer matrices Qj(s) are put under the form

Qj(s) =
∑
k

θk,jQk(s)

The Qk(s) are fixed while the θk,j are the design parameters. With an appropriate
choice of the filters Qk(s) [1], an orthonormal basis of filters is obtained.

4.3 Youla parameterization: the LFT case
∆ is supposed to be measured. A Youla parameterization is computed on the basis of
a gain-scheduled observed state-feedback LFT controller. To this aim the following
Lemma, whose proof is tedious but straightforward, proposes a closed loop structure
described on figure 4.1.b. Below, to alleviate the notation, the state feedback and
observer gains K and L are chosen not to depend on δ.
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Lemma 4.1 Let (4.1, 4.2, 4.3, 4.4) be a state-space representation of the augmented
open loop plant model H(s), with D33 = 0 and d an unmeasured disturbance input.
Let an observed state feedback structure for the LFT controller be

˙̂x = Ax̂+B1ŵ +B3u+ L e

ẑ = C1x̂+D11ŵ +D13u

u = −Kx̂+ v (4.6)
e = y − C3x̂−D31ŵ.

The Youla parameter is introduced as v = Q(s, δ)e. K and L are the state feedback
and observer gains. Let δx = x − x̂, w = ∆z and ŵ = ∆ẑ. The closed loop
state-space representation is(

ẋ
˙δx

)
= A

(
x

δx

)
+
(
B3 +B1X∆D13

0

)
v +

(
B2 +B1X∆D12

B2 − LD32 + (B1 − LD31)X∆D12

)
d

e =
(

0 C3 +D31X∆C1
)( x

δx

)
+ (D32 +D31X∆D12) d,

with X∆ = ∆(I −D11∆)−1 and

A =
(
A+B1X∆C1 − (B3 +B1X∆D13)K (B3 +B1X∆D13)K

0 A+B1X∆C1 − L(C3 +D31X∆C1)

)
(4.7)

Remark: det(I−D11∆) 6= 0 is supposed for all ∆ ∈ B∆, as a classical well-posedness
assumption of the open loop LFT plant model. Thus, X∆ is well defined ∀∆ ∈ B∆.

First note the triangular structure of the state-matrix A in equation (4.7).
The separation principle is valid, i.e. it is possible to independently design the
state-feedback and observer gains K and L, so as to place the closed loop poles in
regions of the complex plane: see section 4.4.

Assume that d, x(0) and x̂(0) are zero. A non-zero signal v induces a non-zero
state vector x, but δx and e stay identically zero. Thus, the transfer matrix between
v and e is zero. More precisely, on figure 4.1.b, the transfer matrix T (s, δ) between
the inputs d and v and the outputs p and e has the structure:

T (s) =
(
T1(s, δ) T2(s, δ)
T3(s, δ) 0

)

When choosing v = Q(s, δ)e, the closed loop transfer matrix T1(s, δ)+T2(s, δ)Q(s, δ)T3(s, δ)
between d and p is an affine function of the Youla parameter Q(s, δ). Moreover, the
closed loop poles are those of the initial closed loop and those of the Youla parameter.

IR 1/19678 DCSD
March, 2014

Page 30/47
SMP



4.4 LTI Design of an observed state-feedback LFT controller

UNCLASSIFIED

31

4.4 LTI Design of an observed state-feedback LFT
controller

The issue is to design the state feedback and observer gains K(δ) and L(δ), so that
the eigenvalues of (see equation (4.7))

Asf (δ,K(δ)) = A+B1X∆C1 − (B3 +B1X∆D13)K(δ)
Aobs(δ, L(δ)) = A+B1X∆C1 − L(δ)(C3 +D31X∆C1)

have a minimal damping ratio ξ and a minimal degree of stability λ > 0, for all
δ ∈ D. In the following, one focuses on the design of a state feedback gain K(δ)
under the form (4.5). The functions pj(δ) are fixed, while the matrices Kj are the
design parameters. The design principle is to combine a multi-model design step
(1st subsection) with a validation step on the continuum (2d subsection).

4.4.1 Polytopic design of state-feedback and observer gains

Let (Ai, Bi, Ci, 0) be a state-space representation of the strictly proper open loop
plant #i, with i = 1, . . . , N . The issue is to design state feedback and observer gains
K and L, so that the eigenvalues of Ai−BiK and Ai−LCi have a minimal damping
ratio ξ = cos(α) and a minimal degree of stability λ > 0 for all i = 1, . . . , N , with
the additional difficulty that K and L depend on the scheduling parameters. Just
the case of a state feedback gain is considered here, the technique is similar for an
observer gain since the eigenvalues of Ai−LCi are also those of ATi −CT

i L
T , which

has the same structure as Ai−BiK. Proposition 4.2 is an extension of [7] to the case
of a gain-scheduled state-feedback gain. Its proof follows the one in this reference.

Proposition 4.2 Let (δi)i∈[1, N ] be a finite set of values of the vector δ. Let Ai =
A + B1X∆iC1 and Bi = B3 + B1X∆iD13, where ∆i is the value of the structured
model perturbation ∆ associated to δi. Thus Asf (δi, K(δi)) = Ai − BiK(δi), where
K(δ) is defined in (4.5). If there exist one Lyapunov matrix X = XT > 0 and
matrices Wj = KjX, with j = 1, . . . , L, satisfying the LMIs ∀i ∈ [1, N ]

Li + LTi + 2λX < 0 sinα
(
Li + LTi

)
−cosα

(
Li − LTi

)
? sinα

(
Li + LTi

)  < 0,

where
Li = Li(X,W1, . . . ,WL) = (Ai −Bi

L∑
j=1

pj(δi)Kj)X

= AiX −Bi

L∑
j=1

pj(δi)Wj
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and ? denotes the conjugate part of the hermitian matrix, then there exists a state
feedback law K(δ) under the form (4.5), such that the eigenvalues of Ai − BiK(δi)
have a minimal damping ratio ξ = cos(α) and a minimal degree of stability λ > 0,
with Kj = WjX

−1.

4.4.2 Validation on the continuum with µ analysis

�

-

�

-

- -
M(s)

(a)

∆ ∆̃

(b)

d p
M(s)

Figure 4.2: Standard interconnection structures for robust stability (a) and perfor-
mance analysis (b).

Given the gain-scheduled state-feedback gain K(δ) designed in the preceding
subsection, it must be checked if the eigenvalues of Asf (δ,K(δ)) are inside the region
R, defined by a minimal damping ratio ξ and a minimal degree of stability λ > 0,
for all δ ∈ D. To be able to use µ tools, the key issue is to transform this problem
into the robust stability analysis of the standard interconnection structure M(s) -
∆ of figure 4.2.a [8]. The nominal closed loop poles corresponding to ∆ = 0, i.e. the
poles of M(s), are assumed to strictly belong to R. Then, it is tested if the poles
of the interconnection structure still lie in R for all ∆ ∈ B∆, where ∆ is supposed
to be LTI. This reduces to the test µ(M(s)) ≤ 1 ∀s ∈ δR, where δR denotes the
border of R and the structured singular value µ is defined as follows.

Definition 4.3 Let M be a given complex matrix and ∆ be a structured model
perturbation. 1

µ(M) is defined as the σ norm of the minimal size model perturbation
∆ that satisfies det(I −∆M) = 0.

In practice, µ lower and upper bounds are computed instead of the exact
value [8]. The next two Propositions explain how to validate the gain-scheduled
state-feedback and observer gains K(δ) and L(δ) with µ analysis. Note that a
preliminary requirement is to put K(δ) (and L(δ)) under the standard LFT form
K11 + K12∆K(I −K22∆K)−1K21, where ∆K = diag(δkIrk

). This is easily done us-
ing e.g. the LFR Toolbox [16]. The polynomial or rational functions pj(δ) should
be chosen to be well defined for all δ ∈ D, so that it can be guaranteed that
det(I −K22∆K) 6= 0 ∀∆K ∈ B∆K .
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Proposition 4.4 let Asf (∆, K(∆K)) = A + B1X∆C1 − (B3 + B1X∆D13)K(∆K),
with X∆ = ∆(I − D11∆)−1 and K(∆K) = K11 + K12∆K(I − K22∆K)−1K21. The
state-feedback gain K(∆K) and the open loop plant model are supposed to be well-
posed, i.e. det(I −K22∆K) 6= 0 ∀∆K ∈ B∆K and det(I −D11∆) 6= 0 ∀∆ ∈ B∆.
Then, let R be a given region of the complex plane, and assume that the nominal
closed loop poles are strictly inside R, i.e. the eigenvalues of Asf (0, K(0)). The
eigenvalues of Asf (∆, K(∆K)) stay inside R for all ∆ ∈ B∆ and ∆K ∈ B∆K if
and only if

det

(
I −M(s)

(
∆ 0
0 ∆K

))
6= 0

for all ∆ ∈ B∆, all ∆K ∈ B∆K and all s on the border δR of the region. A
state-space representation of M(s) is

M(s) =

 A−B3K11 B1 −B3K12
C1 −D13K11

K21

D11 −D13K12
0 K22


Proposition 4.5 let Aobs(∆, L(∆L)) = A + B1X∆C1 − L(∆L)(C3 + D31X∆C1),
with X∆ = ∆(I − D11∆)−1 and L(∆L) = L11 + L12∆L(I − L22∆L)−1L21. The
observer gain L(∆L) and the open loop plant model are supposed to be well-posed,
i.e. det(I − L22∆L) 6= 0 ∀∆L ∈ B∆L and det(I −D11∆) 6= 0 ∀∆ ∈ B∆. Then, let
R be a given region of the complex plane, and assume that the nominal closed loop
poles are strictly inside R, i.e. the eigenvalues of Aobs(0, L(0)). The eigenvalues of
Aobs(∆, L(∆L)) stay inside R for all ∆ ∈ B∆ and ∆L ∈ B∆L if and only if

det

(
I −M(s)

(
∆ 0
0 ∆L

))
6= 0

for all ∆ ∈ B∆, all ∆L ∈ B∆L and all s on the border δR of the region. A
state-space representation of M(s) is

M(s) =

 A− L11C3 B1 − L11D31 L12
C1

−L21C3

D11 0
−L21D31 L22



4.5 LTI design of the Youla parameter
The first subsection shows that the computation of a gain-scheduled Youla param-
eter Q(s, δ) reduces to the computation of an augmented Youla parameter Q(s),
independent of δ. Thus, only the design of a fixed, i.e. non-gain-scheduled, Youla
parameter Q(s) is presented in the second subsection. The third explains how to
combine multi-model design and validation on the continuum into a one-shot or
iterative algorithm.
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4.5.1 Case of a gain-scheduled Youla parameter Q(s, δ)
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Figure 4.3: Interconnection structures for the design and validation of a gain-
scheduled Youla parameter.

Consider the closed loop of figure 4.1.b, and rewrite it under the form of fig-
ure 4.3.a with ∆̃ = diag(∆,∆). Remember that after connecting v = Q(s, δ)e,
the transfer matrix between d and p can be written under the form T1(s, δ) +
T2(s, δ)Q(s, δ)T3(s, δ). If e.g. Q(s, δ) = q1(δ)Q1(s) + q2(δ)Q2(s), the functions qi(δ)
can be incorporated into figure 4.3.a, see figure 4.3.b. We have

v = Q(s)
(
e1
e2

)
=
(
Q1(s) Q2(s)

)( e1
e2

)
= (q1(δ)Q1(s) + q2(δ)Q2(s)) e

Hence, the new design parameter is the unstructured asymptotically stable dynamic
transfer matrix Q(s). Moreover, the static gains qi(δ) can be put under an LFT
form, so that the interconnection of figure 4.3.b can be put under the standard LFT
form of figure 4.3.c, where ∆i is the model perturbation associated to the LFT form
of qi(δ). The LFR Toolbox [16] can be helpful.

4.5.2 Design of a Youla parameter Q(s)
For the sake of clarity, one focuses on the simplified problem of computing the
minimized worst-case H∞ objective

J∗ = min
Q(s)∈Q

max
δ∈D

max
ω∈[0, +∞)

σ (T1(jω, δ) + T2(jω, δ)Q(jω)T3(jω, δ)) . (4.8)

Q is the space spanned by a finite N -dimensional orthonormal basis of filters Qk(s),
i.e. Q(s) = ∑N

k=1 θkQk(s) where the θk are the optimization parameters while the
Qk(s) are fixed.

It is worth emphasizing that computing J∗ is an infinite dimensional opti-
mization problem, because of the double continuum of frequencies and param-
eters. The problem is convex despite the highly non-linear (LFT) structure of
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T1(s, δ) + T2(s, δ)Q(s)T3(s, δ). Indeed, let

J(Q(s)) = max
δ∈D

max
ω∈[0, +∞)

σ (T1(jω, δ) + T2(jω, δ)Q(jω)T3(jω, δ)) . (4.9)

Let Q1(s) and Q2(s) be two values of the Youla parameter. It is straightforward to
prove that

J (λQ1(s) + (1− λ)Q2(s)) ≤ λJ(Q1(s)) + (1− λ)J(Q2(s))

In the same way as for the observed state-feedback LFT controller, the principle
of the design technique on the continuum is to combine a multi-model design tech-
nique with a µ validation technique on the continuum. An interval of J∗ is obtained.

A lower bound of J∗ can be computed as

J = min
Q(s)∈Q

max
i∈[1, n]

max
ω∈[0, +∞)

σ
(
T1(jω, δi) + T2(jω, δi)Q(jω)T3(jω, δi)

)
, (4.10)

where (δi)i∈[1, n] is a set of values for the vector δ of scheduling parameters. In prac-
tice, this multi-model design problem can be solved either using a trivial extension of
the state-space solution [21, 24] (one design model is considered in these references),
or using the frequency-domain cutting planes method of section 2.2.

An upper bound of J∗ can be obtained by computing (4.9) for a fixed value
of Q(s), typically the solution of (4.10). To this aim, connect v = Q(s)e on figure
4.3.a, so that the transfer matrix between d and p becomes Fl(M(s), ∆̃) on figure
4.2.b. At a given frequency ω, computing (4.9) reduces to computing the robust
performance level

γwc(ω) = max
∆̃∈B∆̃

σ
(
Fl(M(jω), ∆̃)

)
.

This standard robust performance problem reduces to a skew µ problem, see [8, 10]
for details, i.e. skew µ lower and upper bounds are computed to obtain an interval
of γwc(ω). An upper bound of γwc(ω) is a guaranteed (but potentially conservative)
robust performance level, while the lower bound measures the accuracy of the upper
bound. Moreover, a worst-value of ∆̃ (and thus of the uncertain parameters δi) is
provided with this lower bound.

When computing an upper bound of γwc(ω) over ω ∈ [0, +∞) an upper bound
of (4.9) is obtained, which is also an upper bound of J∗.

4.5.3 A one-shot or an iterative algorithm

Concerning the design over a model continuum of either the Youla parameter, or
the observed state feedback LFT controller, several algorithms can be proposed.
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The most general one is fully iterative: the controller, designed with a multi-model
approach, is validated on the continuum. If the spec. are satisfied STOP, otherwise
compute a worst-case model and add it to the set of design models. . .

A potentially faster and less cumbersome solution is one-shot: if there are
few scheduling parameters the controller is designed e.g. on the vertices of the
hypercube, and it is checked if the spec are satisfied on the continuum, so as to
(in)validate the initial guess that the worst-case models are on the vertices.

More generally, on the basis of section 4.5.2, an algorithm can be developed to
solve the generic problem of simultaneously minimizing severalH∞ control objectives
under several H∞ constraints over the continuum. As for the validation of the H∞
constraints on the continuum a µ test can be performed, which is computationally
less involved than a skew µ calculation. Moreover, if a convex H∞ constraint reveals
unfeasible during the multi-model design step, it is unfeasible on the continuum.

4.6 Conclusion
First, an extension of Youla parameterization to the case of gain-scheduled LFT
controllers was proposed. On this basis, the Convex Control Design technique was
extended to the case of an open loop LFT plant model. A technique was presented
for the design of the initial observed state feedback LFT controller: using the sep-
aration principle the state feedback and observer gains are synthesized to satisfy
pole placement inside an LMI region of the complex plane for the continuum of time
invariant linearized closed loops. Next, the Youla parameter is designed to satisfy
H∞ specifications inside this continuum, by combining a convex multi-model design
technique with a validation on the continuum using µ analysis.

An alternative for designing an LFT controller would be the use of classical µ
synthesis techniques, but these non-convex schemes would just provide a local min-
imum. On the contrary, concerning at least the design of the Youla parameter, an
infinite-dimensional convex optimization problem over a continuum of models is to
be solved in our technique, due to the specific gain-scheduled closed loop structure.
If the exact value of µ were computed the design problem could be exactly solved.
The use of µ bounds complexifies the algorithm, but the gap between these bounds
is usually small so that the design problem is expected to be nearly exactly solved.
As an illustration, when minimizing a design objective over the continuum an (accu-
rate) interval is obtained for the minimized value. This would not be possible using
a non-convex optimization solver.
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Chapter 5

A missile application

The technique of chapter 4 is applied to a non-linear missile example whose numerical
data is extracted from [19]. The 4th order missile model contains a scalar input for
feedback and two outputs α (angle of attack) and q (pitch rate), with a 2d order
aerodynamic model (whose state vector is [q, α]) and a 2d order actuator model
(whose state vector is [η, η̇], where η is the actuator position and η̇ is the actuator
rate).

The open loop missile LFT model, which describes the continuum of time-
invariant linearizations corresponding to trim points, is extracted from [8, 16], where
∆ = diag(δ1I4, δ2I6) contains variations of α and the Mach numberMa. δi ∈ [−1, 1]
corresponds to the validity domain of the nonlinear missile model, i.e. α between 0
and 20 degrees and Ma between 2 and 4.

As a preliminary, the well-posedness of this LFT model is checked by computing
an upper bound of µ∆(D11), see section 4.3. This µ upper bound is far below unity,
which means that the open loop missile LFT model is well-posed largely beyond its
validity domain.

5.1 Design of the initial observed state-feedback
LFT controller

The state-feedback and observer gains can be chosen as constant, i.e. δ-independent.
Noting that the observed state-feedback controller stays under an LFT form, since
the open loop missile LFT model is embedded inside. When using the polytopic
technique of section 4.4.1, the truncated sector is chosen as λ = 1 and ξ = 0.6. The
state-feedback or observer gain is validated with the µ technique of section 4.4.2.
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5.1.1 Multi-model design of the state feedback gain

The state feedback gain is synthesized first. An integrator is added on the output
α. The design models are chosen as the 4 vertices of an enlarged square in the space
of (δ1, δ2), namely:

delta1 = +1.15, delta2= +1.15

delta1 = +1.15, delta2= -1.15

delta1 = -1.15, delta2= +1.15

delta1 = -1.15, delta2= -1.15

A constraint on the maximal magnitude of the poles is added in the polytopic LMI
design of the state feedback gain, i.e. the magnitude of the closed loop poles must be
less than r. This tuning parameter enables to modify the norm of the state feedback
gain, as illustrated now. Very simply, r is automatically chosen using a dichotomy
search, i.e. the minimal value of r is computed so that the LMIs are still feasible.
This appears to minimize the norm of the state-feedback gain, as seen below:

r vs K

Inf 5057.6

1000.0 193.4

500.0 136.8

492.2 135.3

488.3 133.0

When checking the closed loop poles on the 4 design models, it is worth noting that
the minimal value of the stability degree over the 4 models is 1.07, and the minimal
damping ratio is 0.615, to be compared with λ = 1 and ξ = 0.6. This is due to
the conservatism of the LMI polytopic technique, which stays (very) satisfactory at
least in this case.

5.1.2 Validation of the state feedback gain on the continuum

The routine mu margin.m of the Skew Mu Toolbox [10] is used to check that the
closed loop poles stay inside the truncated sector defined by λ = 1 and ξ = 0.6 for
all δ inside the unit square, i.e. inside the flight domain of validity of the missile
model. To this aim a µ test can be performed, i.e. the issue is to check if the
maximal µ upper bound over frequency is less than 1, which is found to be the
case. A computationally more involved solution is to compute the maximal µ upper
bound over frequency, obtained as:

mu upper bound = 0.883 at 17.367 rad/s
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See figure 5.1 for an estimate of the µ upper bound as a function of frequency. The
bars on this figure mean that µ is guaranteed to be less than βi on the frequency
interval [ωi, ωi+1] [8], i.e. a peak on the µ plot cannot be missed, unlike what may
happen when classically computing a µ upper bound on a frequency gridding.
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mu upper bound for the state−feedback gain

Figure 5.1: µ upper bound for the validation of the state-feedback gain on the con-
tinuum.

5.1.3 Multi-model design and validation of the observer gain

The observer gain is synthesized. Note that no integrator on the output α needs to
be introduced in the observer model, since the state associated to the integrator is
available. The design models are chosen as the 4 vertices of the unit square in the
space of (δ1, δ2). A constraint on the maximal magnitude r of the closed loop poles
is introduced in the polytopic LMI design of the observer gain, so as to tune the
norm of this gain, but this needs to be done manually. r = 200 is chosen.

When checking the closed loop poles on the 4 design models, the minimal value
of the stability degree over the 4 models is 2.75, and the minimal damping ratio is
0.7, to be compared with λ = 1 and ξ = 0.6. The LMI polytopic technique is very
conservative in this case.

When computing the maximal µ upper bound over frequency, one obtains:

mu upper bound = 0.805 at 0.000 rad/s

IR 1/19678 DCSD
March, 2014

Page 39/47
SMP



40

UNCLASSIFIED

5. A missile application

Since this upper bound is less than unity, the closed loop poles are guaranteed to
stay in the truncated sector defined by λ = 1 and ξ = 0.6, inside the flight domain
of validity of the missile model.

5.2 Computation of the Youla parameterization

7

epsilon

6

actuator rate

5

actuator position

4

alfa

3

q

2

z_hat

1

z

UU(E)

Selector4

UU(E)

Selector3

UU(E)

Selector2

U U(E)

Selector1

U U(E)

Selector

x’ = Ax+Bu
 y = Cx+Du

MISSILE

x’ = Ax+Bu
 y = Cx+Du

INITIAL CONTROLLER

Demux

4

v

3

delta u

2

w_hat

1

w

Figure 5.2: Simulink file describing the closed loop LFT model.

The Youla parameterization is computed with the Simulink file of figure 5.2.
The first and second blocks of I/O (labeled w, w hat, z and z hat) correspond to the
interconnection of the open loop plant model and initial controller with the ∆ blocks
(i.e. w = ∆z and ŵ = ∆ẑ). The third input (labeled delta u) is an unmeasured
additive disturbance δu on the feedback input. The 4th input (labeled v) is used to
connect the Youla parameter Q(s), i.e. v = Q(s)e where the observation error e is
output # 7 (labeled epsilon). Outputs # 3 to 6 are q, α, the actuator position η

and the actuator rate η̇.

Remark: a more efficient implementation could use the LFR-Simulink tools.

5.3 Design of the Youla parameter

5.3.1 Design specifications

The two design specifications, to be satisfied on the continuum of models, are the
following. Let H1(s, δ) (resp. H2(s, δ)) be the closed loop transfer function between
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δu and the output α (resp. η̇). Let

Hi = max
δ∈D

max
ω
|Hi(jω, δ)|.

The issue is to minimize H1 under the constraint H2 ≤ C. C will take on several
values in the following. Thus, the issue is to minimize the effect of an unmeasured
disturbance on the angle of attack (which is the most relevant output for perfor-
mance), under a constraint on the actuator activity.

5.3.2 Analysis of the initial controller
An interval is computed for the values of H1 and H2 when Q(s) = 0. To this aim,
instead of computing skew µ bounds [8, 10], a simpler solution is chosen with a lower
computational burden.

A lower bound Hi of Hi is calculated by simply computing |Hi(jω, δ)| over the
frequency ω for a gridding of 25 values of δ over the unit square. An upper bound
is computed by testing Hi ≤ λ over the continuum for several values of λ. A good
initial guess is λ = 1.2Hi, i.e. the lower bound is assumed to be accurate. Testing
Hi ≤ λ reduces to a µ test over frequency, for which an efficient frequency sweeping
technique is available [8, 10].

For the initial controller, this method gives:

spec. 1: w.c. perf. level between 0.660 and 0.693 (gap = 4.729 percent)

spec. 2: w.c. perf. level between 1.029 and 1.065 (gap = 3.315 percent)

which means that H1 ∈ [0.660, 0.693] and H2 ∈ [1.029 C0, 1.065 C0], where the
normalizing factor is C0 = 150. Note the good accuracy of the results, i.e. the gap
between the bounds is low for both H1 and H2.

5.3.3 One-shot solution
A one-shot multi-model design of Q(s) is performed, where the design models are
simply the 4 vertices of the square. The poles of the basis of Q(s) are simply chosen
as the same pole -20 repeated 6 times (Laguerre basis).

First consider C = C0 = 150. The following result is obtained:

spec. 1: w.c. perf. level between 0.193 and 0.208 (gap = 6.882 percent)

spec. 2: w.c. perf. level between 0.993 and 1.034 (gap = 3.899 percent)

guaranteed value of the w.c. minimization objective = 0.208

For the optimal value of Q(s), whose order is 6, one obtains H1 ∈ [0.193, 0.208] and
H2 ∈ [0.993 C, 1.034 C], with C = 150. The guaranteed value of the minimization
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objective has been largely reduced, from 0.693 to 0.208. The constraint is satisfied
with a reasonable tolerance.

Next consider C = 170. The following result is obtained:

spec. 1: w.c. perf. level between 0.120 and 0.129 (gap = 7.208 percent)

spec. 2: w.c. perf. level between 0.991 and 1.027 (gap = 3.560 percent)

guaranteed value of the w.c. minimization objective = 0.129

This means that H1 ∈ [0.120, 0.129] and H2 ∈ [0.991 C, 1.027 C], with C = 170.
The result appears very sensitive to the value of C, since the guaranteed value of
the minimization objective is 0.129 for C = 170, instead of 0.208 for C = 150. This
illustrates the capability of the convex design technique to explore tradeoffs between
specifications.

5.3.4 Iterative solution

The design is now iteratively performed on a gridding of 25 models over the unit
hypercube. This means that at the end of the design, before validating the result on
the continuum, the specifications should be satisfied on all 25 models. But inside the
design process, worst-case models are iteratively determined, so as to avoid designing
the Youla parameter on all 25 models. To this aim, the following algorithm is used:

1. Choice of the first initial worst-case model (the first of the gridding in the
following, as an arbitrary choice).

2. Design of the Youla parameter on the current list of worst-case models.

3. Validation on the whole gridding of models. If the specifications are satisfied
on all the gridding, STOP. Otherwise, determine the model for which the
specifications are the most violated and insert it into the list of worst-case
models. Go back to step 2.

Let C = 150. Only 3 worst-case models are needed to design a Youla parameter
which minimizes H1 under the constraint H2 ≤ C over the gridding of 25 models.
Then, the result is validated on the continuum:

spec. 1: w.c. perf. level between 0.186 and 0.213 (gap = 12.634 percent)

spec. 2: w.c. perf. level between 1.003 and 1.045 (gap = 4.001 percent)

guaranteed value of the w.c. minimization objective = 0.213

The result is consistent with the one obtained using a one-shot solution.
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Chapter 6

Conclusion

A Youla-parameterization technique was presented, for transforming a feedback de-
sign problem into a convex optimization problem, where the minimization objective
and constraints directly correspond to time- and frequency-domain design specifica-
tions. The case of an LTI model was considered first, before extending the method
to the LFT case. A frequency-domain cutting planes solver was developed, which
is especially suited for the case of high order models. The technique was applied
to an LTI, rather high order, flexible aircraft model and to an LFT missile model.
The ability to explore the necessary trade-offs between the design specifications was
illustrated, as well as the interest of using a dedicated solver: keeping subgradients
from one optimization to another enables to save a large amount of computational
time.
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