Skip to main content
Home
SMAC - Systems Modeling Analysis and Control

Navigation principale

  • Home
  • Modeling
  • Analysis
  • Control
  • Aerospace Benchmarks

Breadcrumb

  1. Home

Routine lsapprox

Polynomial approximation of tabulated data using linear least-squares.

Description

This routine uses Linear Least-Squares to compute a multivariate polynomial approximation f : ℝn → ℝn1×n2  of a set of samples { yk ∈ ℝn1×n2, k ∈ [1, N] } obtained for different values { xk ∈ ℝn, k ∈ [1, N]} of some explanatory variables x ∈ ℝn. The maximum degree of the polynomial function is set by the user. No maximum admissible error can be specified and a full polynomial expression is obtained, which minimizes the global relative error and the root-mean-square error between { f(xk), k ∈ [1, N]} and {yk, k ∈ [1, N]} for each entry (see errapprox for precise definitions).

Syntax

[fdata,flfr]=lsapprox(X,Y,names,maxdeg{,options})

Input arguments

The first four input arguments are mandatory:

XValues $\left\{x_k\in\mathbb{R}^n,k \in [1, N]\right\}$ of the explanatory variables $x$ ($n\times N$ array, where X(:,k) corresponds to $x_k$).
YSamples $\left\{y_k\in\mathbb{R}^{n_1\times n_2}, k\in [1, N]\right\}$ to be approximated ($n_1\times n_2\times N$ array where Y(:,:,k) corresponds to $y_k$ in the general case, or possibly $1\times N$ array where Y(k) corresponds to $y_k$ if $n_1=n_2=1$).
namesNames of the explanatory variables $x$ ($1\times n$ cell array of strings).
maxdegMaximum degree of the approximating polynomial function $f$.

The fifth input argument options is an optional structured variable with fields:

maxexpMaximum exponent of each explanatory variable in the approximating polynomial function $f$ ($1\times n$ array). The default value is options.maxexp=maxdeg*ones(1,n).
Xeq
Yeq
Constraint to be exactly met (no least squares). options.Yeq is a $n_1\times n_2$ array and options.Xeq is a $n\times 1$ vector with associated values of the explanatory variables. The default values are options.Xeq=[] and options.Yeq=[].
traceTrace of execution (0=no, 1=text, 2=text+figures). The default value is options.trace=1.
viewpointThis option is applicable only if 3-D graphs are to be displayed (options.trace=2 and n=2). It represents the deviation with respect to the default viewpoint (see plotapprox). The default value is options.viewpoint=[0 0].

Output arguments

fdataValues $\left\{f(x_k)\in\mathbb{R}^{n_1\times n_2},k \in [1, N]\right\}$ of the approximating function $f$ (same size as Y).
flfrLinear fractional representation of the approximating function $f$ (GSS object if the GSS library is installed, LFR object otherwise if the LFR toolbox is installed).

Caution

If some values in X are much larger than 1, they must be scaled or normalized.

Example

Drag coefficient of a generic fighter aircraft model:
load data_cx
Approximation on a rough grid:
maxdeg=12;
options.trace=2;
options.viewpoint=[-100 0];
[fdata,flfr]=lsapprox(X1,Y1,names,maxdeg,options);

 

Image
lsapproxa

Validation on a fine grid:
plotapprox(Xv,Yv,names,flfr,options);

 

Image
lsapproxb

See also

olsapprox
qpapprox
tracker
koala
errapprox
plotapprox

References

[1]C. Poussot-Vassal and C. Roos, "Generation of a reduced-order LPV/LFT model from a set of large-scale MIMO LTI flexible aircraft models", Control Engineering Practice, vol. 20, no. 9, pp.919-930, 2012.
[2]C. Roos, "Generation of LFRs for a flexible aircraft model", Optimization based clearance of flight control laws, Lecture Notes in Control and Information Sciences, vol. 416, pp. 59–77, Springer Verlag, 2011.

Navigation

  • Home
  • Modeling
    • GSS library
    • LFR toolbox
    • APRICOT library
      • Download library
      • Example
      • List of routines
        • lsapprox
        • olsapprox
        • qpapprox
        • tracker
        • koala
        • errapprox
        • plotapprox
        • plosurfaces
        • plosurfs
        • plofronts
  • Analysis
  • Control
  • Aerospace Benchmarks
ONERA

Systems Control and Flight Dynamics Department
2, avenue Edouard Belin
31055 Toulouse
smac@onera.fr

Flux RSS

Menu du compte de l'utilisateur

  • Log in