Transform a linear criterion.
Description
This routine computes the row vector A
such that the linear term u*delta*v
is transformed into A*xi
, where xi
and delta
are the vector form and the matrix form of a block-diagonal operator $\Delta$ respectively, i.e. xi=delta2xi(delta,blk)
.
Syntax
A=linconv(u,v,blk)
Input arguments
u | Row vector. |
v | Column vector. |
blk | Matrix defining the structure of the block-diagonal operator $\Delta=diag\left(\Delta_1,...,\Delta_N\right)$. Its first 2 columns must be defined as follows for all $i=1,...,N$:
|
Output argument
A | Row vector such that u*delta*v=A*xi . |
Example
blk=[-3 0;2 0;2 3];
u=rand(1,7)+j*rand(1,7);
v=rand(8,1)+j*rand(8,1);
A=linconv(u,v,blk);
xi=(1:15)';
delta=xi2delta(xi,blk);
u*delta*v-A*xi