Transform a quadratic criterion.
Description
This routine computes the matrix H
such that the quadratic term v'*delta'*delta*v
is transformed into xi'*H*xi
, where xi
and delta
are the vector form and the matrix form of a block-diagonal operator $\Delta$ respectively, i.e. xi=delta2xi(delta,blk)
.
Syntax
H=quadconv(v,blk)
Input arguments
v | Column vector. |
blk | Matrix defining the structure of the block-diagonal operator $\Delta=diag\left(\Delta_1,...,\Delta_N\right)$. Its first 2 columns must be defined as follows for all $i=1,...,N$:
|
Output argument
H | Matrix such that v'*delta'*delta*v=xi'*H*xi. |
Example
blk=[-3 0;2 0;2 3];
v=rand(8,1)+j*rand(8,1);
H=quadconv(v,blk);
xi=(1:15)';
delta=xi2delta(xi,blk);
v'*delta'*delta*v-xi'*H*xi