From vector form to matrix form.
Description
This routine converts a block-diagonal operator $\Delta$ from vector form to matrix form.
Synta
delta=xi2delta(xi,blk)
Input arguments
xi | Vector form of $\Delta=diag\left(\Delta_1,...,\Delta_N\right)$. |
blk | Matrix defining the structure of $\Delta$. Its first 2 columns must be defined as follows for all $i=1,...,N$:
|
Output argument
delta | Matrix form of $\Delta$. |
Example
blk=[-3 0;2 0;2 3];
xi1=(1:15)';
delta=xi2delta(xi1,blk)
xi2=delta2xi(delta,blk)