Compute upper bounds on the (skewed) robust stability margin or lower bounds on the worst-case $\mathcal{H}_\infty$ norm.
Description
Let us consider the following interconnections between a nominal LTI system $M(s)$ and a block-diagonal operator $\Delta(s)$.
If $M(s)$ has no exogenous input and output, a robust stability problem is considered: a (skew-)$\mu$ lower bound, i.e. an upper bound $k_{ub}$ on the robustness margin $k_{max}$, is computed (see problem 1 on the overview page of the toolbox for more details). An associated destabilizing value $\tilde{\Delta}(s)$ of $\Delta(s)$ is also determined, and the considered stability region can be bounded either by the imaginary axis or by a truncated sector.
If $M(s)$ has exogenous inputs $e$ and outputs $y$, a worst-case $\mathcal{H}_\infty$ performance problem is considered: a lower bound $\gamma_{lb}$ is computed on the highest $\mathcal{H}_\infty$ norm $\gamma_{max}$ of the transfer matrix between $e$ and $y$ when $\Delta(s)$ takes any admissible value (see problem 2 on the overview page of the toolbox for more details). A value $\tilde{\Delta}(s)$ of $\Delta(s)$ for which the bound is obtained is also determined, and the $\mathcal{H}_\infty$ norm can be computing either along the imaginary axis or along the boundary of a truncated sector.
Note: In both cases, the initial interconnection is normalized with convert_data
before the problem is solved.
Syntax
[lbnd,wc,pert,iodesc]=mulb(usys{,skew/perf,options}) [lbnd,wc,pert,iodesc]=mulb(gsys{,skew/perf,options}) [lbnd,wc,pert,iodesc]=mulb(lsys{,skew/perf,options}) [lbnd,wc,pert,iodesc]=mulb(sys,blk{,skew/perf,options})
Input arguments
The interconnection between $M(s)$ and $\Delta(s)$ can be described by:
- a USS object
usys
, - a GSS object
gsys
, - a LFR object
lsys
, - a LTI object
sys
describing the LTI system $M(s)$ and a $N\times 2$ matrixblk
defining the structure of the block-diagonal operator $\Delta(s)=diag\left(\Delta_1(s),\dots,\Delta_N(s)\right)$:blk(i,:)=[-ni 0]
$\Rightarrow$ $\Delta_i(s)=\delta_iI_{n_i}$ with $\delta_i$ real,blk(i,:)=[ni 0]
$\Rightarrow$ $\Delta_i(s)=\delta_iI_{n_i}$ with $\delta_i$ complex,blk(i,:)=[ni mi]
$\Rightarrow$ $\Delta_i(s)$ is a $n_i\times m_i$ LTI system.
For a robust stability problem, an additional input argument skew
can be defined, indicating whether the maximum admissible $\mathcal{H}_\infty$ norm of each $\Delta_i(s)$ is bounded (skew(i)=0
) or not (skew(i)=1
). If skew
is undefined, skew(i)
is set to 1 for all $i=1,\dots,N$, which means that a classical $\mu$ problem is considered.
For a worst-case $\mathcal{H}_\infty$ performance problem, an additional input argument perf
can be defined to specify how the transfer between $e$ and $y$ is structured. Each line of perf
corresponds to a performance channel. For example, if perf=[2 1;1 3]
, the transfer between inputs 1-2 and output 1 is considered independently of the one between input 3 and outputs 2-3-4. If perf
is undefined, it is set to [ne ny]
, where ne
and ny
denote the size of the signals $e$ and $y$. The last input argument options
is an optional structured variable with fields:
freq | Frequency interval $\Omega$ in rad/s on which the bound is to be computed. The default value is options.freq=[0 10*max(abs(eig(sys)))] . |
grid | Frequency grid in rad/s ($1\times m$ array). It can also be a negative integer -$m$, in which case a $m$-point grid is automatically generated from $\Omega$. The default value is options.grid=-10 if all uncertainties are real and options.grid=-50 otherwise. |
sector | Vector $[\alpha\ \xi]$ or $[\alpha\ \xi\ \omega_c]$ characterizing the considered truncated sector (see display_sector for a complete description). The default value is options.sector=[0 0] , which means that the left half plane is considered. |
target | The algorithm is interrupted if a (skew-)$\mu$ lower bound or a lower bound on the worst-case $\mathcal{H}_\infty$ norm is found which is greater than options.target . The default value is options.target=Inf . |
trace | Trace of execution. The default value is options.trace=1 . |
warn | Warnings display. The default value is options.warn=1 . |
Additional fields can be defined (see mulb_mixed
, mulb_1real
, mulb_nreal
and hinflb_real
), but the ones listed above are usually sufficient for non-expert users.
Output arguments
lbnd | Upper bound $k_{ub}$ on the robustness margin for the normalized interconnection, or lower bound $\gamma_{lb}$ on the worst-case $\mathcal{H}_\infty$ norm for each performance channel, on the considered frequency interval $\Omega$. |
wc | Frequency $\omega_c$ in rad/s for which $k_{ub}$ or $\gamma_{lb}$ has been computed. |
pert | The normalized interconnection is unstable (robust stability problem) or the $\mathcal{H}_\infty$ norm of the transfer between $e$ and $y$ is greater than or equal to $\gamma_{lb}$ (worst-case $\mathcal{H}_\infty$ performance problem) for every perturbation $\tilde{\Delta}(s)$ whose frequency response $\tilde{\Delta}(p(\omega_c))$ is equal to pert , where $p(\omega_c)$ denotes the point $j\omega_c$ on the imaginary axis or the corresponding point on the boundary of the truncated sector defined by options.sector . |
iodesc | Cell array of structured variables:
In case a worst-case $\mathcal{H}_\infty$ performance problem is considered, the last cell of |
Example
1. Robust stability problem
Description of the uncertain system by a USS object:a1=ureal('a',5,'Percentage',20);
b1=ucomplex('b',4+3*sqrt(-1),'Percentage',40);
c1=ultidyn('c',[2 1],'Bound',2,'Type','GainBounded');
A1=[-3*a1*b1-2 1;a1 -b1^2-1]+c1*[a1 -b1];
usys=lft(tf({1 0;0 1},[1 0]),A1);
usys=simplify(usys,'full');
Computation of an upper bound $k_{ub}$ on the robustness margin $k_{max}$ for the normalized interconnection:lbnd1,wc1,pert1,iodesc1]=mulb(usys);
k_ub=1/lbnd1
Frequency response $\tilde{\Delta}(\omega_c)$ of a perturbation $\tilde{\Delta}(s)$ which makes the initial interconnection unstable: iodesc1{:} sys1=usubs(usys,'a',iodesc1{1}.value,'b',iodesc1{2}.value,'c',iodesc1{3}.value); damp(sys1)
Description of the uncertain system by a GSS object:a3=gss('a',5,[4 6]);
b3=gss('b',4+3i,[4 3 2]);
c3=gss('c','LTI',[2 1],0,2);
A3=[-3*a3*b3-2 1;a3 -b3^2-1]+c3*[a3 -b3];
gsys=abcd2gss(A3,2);
Computation of an upper bound $k_{ub}$ on the robustness margin $k_{max}$ for the normalized interconnection:lbnd3,wc3,pert3,iodesc3]=mulb(gsys);
k_ub=1/lbnd3
Frequency response $\tilde{\Delta}(\omega_c)$ of a perturbation $\tilde{\Delta}(s)$ which makes the initial interconnection unstable: iodesc3{:}
sys3=eval(gsys,{'a' 'b' 'c'},{iodesc3{2}.value iodesc3{3}.value iodesc3{1}.value}); damp(sys3)
2. Worst-case $\mathcal{H}_\infty$ performance problem
Description of the uncertain system by a LFR object:a2=lfr('a','ltisr',1,[4 6],'minmax');
b2=lfr('b','ltisc',1,[4+3*sqrt(-1) 2],'disc');
c2=lfr('c','ltifc',[2 1],ltisys([],[],[],2),'freq');
d2=lfr('d','ltifc',[2 2],ltisys(-1,1,3,2),'freq');
A2=[-3*a2*b2-2 1;a2 -b2^2-1]+c2*[a2 -b2];
B2=[1 3;2 a2];
C2=d2*[b2 1;2 -3];
D2=[0 2;0 1];
lsys=abcd2lfr([A2 B2;C2 D2],2);
lsys=minlfr(lsys);
size(lsys)
Computation of a lower bound $\gamma_{lb}$ on the worst-case $\mathcal{H}_\infty$ norm $\gamma_{max}$: [lbnd2,wc2,pert2,iodesc2]=mulb(lsys);
gamma_lb=lbnd2
Frequency response $\tilde{\Delta}(\omega_c)$ of a perturbation $\tilde{\Delta}(s)$ for which the $\mathcal{H}_\infty$ norm or the initial interconnection is equal to $\gamma_{lb}$: iodesc2{:}
a=iodesc2{1}.value;b=iodesc2{2}.value;c=iodesc2{3}.value;d=iodesc2{4}.value;
sys2=eval(lsys);
svd(calc_freq_resp(ss(sys2.a,sys2.b,sys2.c,sys2.d),wc2,[0 0]))
See also
mulb_mixed
mulb_1real
mulb_nreal
hinflb_real
convert_dat
make_square